Способ определения индикаторной мощности при стендовых испытаниях многоцилиндровых двигателей внутреннего сгорания с газотурбинным наддувом

Изобретение относится к области стендовых испытаний поршневых двигателей внутреннего сгорания и может быть использовано для определения индикаторной мощности многоцилиндровых двигателей. Способ определения индикаторной мощности при стендовых испытаниях многоцилиндровых двигателей внутреннего сгорания с газотурбинным наддувом, заключающийся в том, что при работе на заданном режиме определяют эффективную мощность двигателя Ne при всех работающих цилиндрах, затем определяют эффективную мощность двигателя Ne' при работе двигателя на части цилиндров, и по разнице Ne - Ne' определяют величину индикаторной мощности, при этом при работе на заданном режиме для определения эффективной мощности двигателя Ne при всех работающих цилиндрах дополнительно измеряют давление воздуха перед компрессором, давление отработавших газов после турбины, расход воздуха двигателем и давление наддувочного воздуха, при работе двигателя на части цилиндров для определения эффективной мощности двигателя Ne' дополнительно измеряют те же параметры, затем переходят на заданный режим работы двигателя со всеми включенными цилиндрами и изменяют значения давления воздуха перед компрессором и давление отработавших газов после турбины до совпадения значений расхода воздуха двигателем и давления наддувочного воздуха при работе двигателя на всех цилиндрах со значениями расхода воздуха двигателем и давления наддувочного воздуха при работе двигателя на части цилиндров, и с учетом этого определяют значение эффективной мощности, которое используют для расчета индикаторной мощности. 1 табл.

 

Изобретение относится к области стендовых испытаний поршневых двигателей внутреннего сгорания и может быть использовано для определения индикаторной мощности многоцилиндровых двигателей.

Известен способ определения индикаторной мощности (Ni) х-го цилиндра многоцилиндрового двигателя, заключающийся в том, что при работе на заданном режиме определяют эффективную мощность двигателя на заданном режиме Ne при всех работающих цилиндрах, последовательно отключают топливоподачу в каждом из цилиндров и определяют эффективную мощность двигателя при неизменной подаче топлива в оставшиеся работающие цилиндры, и по разнице рассчитывают индикаторную мощность отключенного цилиндра, используя формулу (Стефановский Б.С. Испытания двигателей внутреннего сгорания. - М.: Машиностроения, 1972, с. 61)

где Nix - индикаторная мощность отключенного цилиндра;

Ne(j) и Ne(j-1) - эффективные мощности соответственно j и (j-1) работающих цилиндров, определяемые по динамометру тормозного стенда.

Данный способ принят в качестве прототипа.

Недостатком указанного прототипа является то, что его применение возможно только для двигателей без наддува, у которых отключение одного из цилиндров не влияет на работу остальных.

Технический результат заявляемого изобретения заключается в повышении точности определения индикаторной мощности.

Указанный технический результат достигается за счет того, что в способе определения индикаторной мощности при стендовых испытаниях многоцилиндровых двигателей внутреннего сгорания с газотурбинным наддувом, заключающемся в том, что при работе на заданном режиме определяют эффективную мощность двигателя Ne при всех работающих цилиндрах, затем определяют эффективную мощность двигателя при работе двигателя на части цилиндров, и по разнице определяют величину индикаторной мощности, согласно изобретению, при работе на заданном режиме для определения эффективной мощности двигателя Ne при всех работающих цилиндрах дополнительно измеряют давление воздуха перед компрессором рвс, давление отработавших газов после турбины р2, расход воздуха двигателем Gв и давление наддувочного воздуха рк, при работе двигателя на части цилиндров для определения эффективной мощности двигателя дополнительно измеряют давление воздуха перед компрессором , давление отработавших газов после турбины , расход воздуха двигателем и давление наддувочного воздуха , затем переходят на заданный режим работы двигателя со всеми включенными цилиндрами и изменяют значения давления воздуха перед компрессором рвс и давление отработавших газов после турбины р2 до совпадения значений расхода воздуха двигателем Gв и давления наддувочного воздуха рк при работе двигателя на всех цилиндрах со значениями расхода воздуха двигателем и давления наддувочного воздуха при работе двигателя на части цилиндров, и с учетом этого определяют значение эффективной мощности Ne, которое используют для определения индикаторной мощности.

Дополнительное измерение давления воздуха перед компрессором рвс, давления отработавших газов после турбины р2, расхода воздуха двигателем Gв и давления наддувочного воздуха рк при всех работающих цилиндрах, а также давления воздуха перед компрессором , давления отработавших газов после турбины , расхода воздуха двигателем и давления наддувочного воздуха при работе двигателя на части цилиндров связано с тем, что отключение топливоподачи, например, в одном из цилиндров, снижает среднюю температуру отработавших газов в выпускном коллекторе, т.е. уменьшает их располагаемую энергию перед турбиной. Вследствие этого снижается мощность турбины, соответственно и мощность приводимого от нее компрессора. Это приводит к уменьшению давления наддувочного воздуха и, как следствие, уменьшению расхода воздуха двигателем . Таким образом, цилиндры многоцилиндрового двигателя с газотурбинным наддувом при отключении одного из них начинают работать не в том режиме, в каком они работали, когда топливоподача осуществлялась во все цилиндры, и суммарная мощность двигателя уменьшается в результате снижения расхода воздуха двигателем . При этом снижение мощности многоцилиндрового двигателя с газотурбинным наддувом при отключении одного из цилиндров происходит на величину индикаторной мощности этого цилиндра, а также на величину снижения мощности остальных цилиндров за счет снижения расхода воздуха двигателем .

В таблице 1 приведены результаты испытаний многоцилиндровых двигателей внутреннего сгорания с газотурбинным наддувом.

За исходный (заданный) режим принята работа двигателя в штатном варианте на всех 12 цилиндрах.

Характер изменения показателей двигателя сохраняется одним и тем же при отключении любого цилиндра, а именно: уменьшается эффективная мощность двигателя Ne, расход воздуха двигателя Gв и давление наддува рк. Частота вращения коленчатого вала при этом поддерживалась постоянной. Также сохранялась неизменной топливоподача в работающие цилиндры.

Из таблицы видно, что отключение топливоподачи в любой из цилиндров сопровождается не только ожидаемым снижением мощности двигателя, но и снижением давления наддувочного воздуха pk на 0,12÷0,15 бар, т.е. на 1…8% и расхода воздуха двигателем Gв на 180÷220 кг/час.

После начала топливоподачи очередной форсункой соответствующий цилиндр вступает в работу, и показатели двигателя восстанавливаются в соответствии с исходным режимом.

Способ осуществляется следующим образом.

При проведении стендовых испытаний многоцилиндрового двигателя внутреннего сгорания с газотурбинным наддувом при запуске и работе двигателя на заданном режиме со всеми работающими цилиндрами измеряют давление воздуха перед компрессором рвс, давление отработавших газов после турбины р2, расход воздуха двигателем Gв и давление наддувочного воздуха рк и определяют эффективную мощность Ne. Далее, при работе двигателя на части цилиндров (при отключении топливоподачи в один из цилиндров) измеряют давление воздуха перед компрессором , давление отработавших газов после турбины , расход воздуха двигателем и давление наддувочного воздуха . За счет того что при отключении, по меньшей мере, одного из цилиндров изменяются условия работы остальных цилиндров, то значения давления воздуха перед компрессором , давления отработавших газов после турбины , расхода воздуха двигателем и давления наддувочного воздуха будут меньше, чем при работе двигателя со всеми цилиндрами. После измерения давления воздуха перед компрессором , давления отработавших газов после турбины , расхода воздуха двигателем и давления наддувочного воздуха определяют эффективную мощность .

После этого переходят на режим работы двигателя на всех цилиндрах, в результате чего давление наддувочного воздуха рк и расход воздуха двигателем Gв увеличатся за счет увеличения располагаемой энергии отработавших газов перед турбиной.

После этого, продолжая работать на всех цилиндрах, изменяют значения давления воздуха перед компрессором рвс и давления отработавших газов после турбины р2 до совпадения значений расхода воздуха двигателем Gв и давления наддувочного воздуха рк со значениями расхода воздуха двигателем и давления наддувочного воздуха при работе двигателя на части цилиндров, и с учетом этого% определяют значение эффективной мощности Ne, которое используют для определения индикаторной мощности. После чего по разнице определяют индикаторную мощность отключенного цилиндра.

В итоге проведения испытаний на двух описанных режимах становится известной мощность двигателя, по крайней мере, с одним выключенным цилиндром и мощность двигателя со всеми работающими цилиндрами Ne. Поэтому при определении разницы остается истинная индикаторная мощность отключенного цилиндра.

Способ определения индикаторной мощности при стендовых испытаниях многоцилиндровых двигателей внутреннего сгорания с газотурбинным наддувом, заключающийся в том, что при работе на заданном режиме определяют эффективную мощность двигателя Ne при всех работающих цилиндрах, затем определяют эффективную мощность двигателя при работе двигателя на части цилиндров и по разнице определяют величину индикаторной мощности, отличающийся тем, что при работе на заданном режиме для определения эффективной мощности двигателя Ne при всех работающих цилиндрах дополнительно измеряют давление воздуха перед компрессором рвс, давление отработавших газов после турбины р2, расход воздуха двигателем GB и давление наддувочного воздуха рк, при работе двигателя на части цилиндров для определения эффективной мощности двигателя дополнительно измеряют давление воздуха перед компрессором давление отработавших газов после турбины , расход воздуха двигателем и давление наддувочного воздуха , затем переходят на заданный режим работы двигателя со всеми включенными цилиндрами, и изменяют значения давления воздуха перед компрессором рвс и давление отработавших газов после турбины р2 до совпадения значений расхода воздуха двигателем GB и давления наддувочного воздуха рк при работе двигателя на всех цилиндрах со значениями расхода воздуха двигателем и давления наддувочного воздуха при работе двигателя на части цилиндров, и с учетом этого определяют значение эффективной мощности Ne, которое используют для расчета индикаторной мощности.



 

Похожие патенты:
Изобретение относится к области испытания и регулировки топливной аппаратуры дизельных двигателей внутреннего сгорания (ДВС). Предложен способ контроля технического состояния дизельной топливной аппаратуры, заключающийся в том, что обеспечивают при стендовых испытаниях дизельной топливной аппаратуры сначала постоянный, а затем переменный характер изменения скорости вращения приводного вала топливного насоса (ТНВД).

Изобретение относится к технике отбора образцов проб воздуха, отбираемых от компрессора авиационных газотурбинных двигателей (ГТД) для исследования степени загрязнения воздуха продуктами, поступающими вместе с воздухом в систему кондиционирования воздуха (СКВ), а также определения состава вредных примесей, опасных концентраций в воздухе газов и паров.

Изобретение относится к области испытаний и эксплуатации газотурбинных двигателей. Техническим результатом является повышение надежности работы подшипника и двигателя в целом, снижение трудоемкости и затратности при реализации способа за счет сохранения неизменной материальной части, расширение области использования способа, включая эксплуатацию двигателей.

Способ повышения эффективности диагностики развития трещины в диске работающего авиационного газотурбинного двигателя, который реализуется совместным анализом интегрального вибросигнала, регистрируемого на корпусе двигателя из-за импульсного высвобождения энергии при ступенчатом развитии трещины при выходе двигателя на максимальные обороты в рабочем цикле, и составляющих спектра вибрации, зарегистрированных одновременно с интегральным вибросигналом.

Изобретение относится к области оборудования для проведения испытаний и может быть использовано для проведения приемосдаточных и других испытаний газотурбинных двигателей различного назначения.
Изобретение относится к области авиадвигателестроения, а именно, к способам испытаний газотурбинных двигателей. Способ испытания авиационного газотурбинного двигателя, включающий приработку деталей и узлов на стационарных и переходных режимах в процессе предъявительских испытаний двигателя.

Изобретение относится к способам испытаний турбореактивных двигателей (ТРД) и может быть использовано при испытаниях стационарных газотурбинных двигателей. В способе приведение параметров к стандартным атмосферным условиям производят с учетом влажности атмосферного воздуха, при этом предварительно проводят испытания двигателя при различной влажности атмосферного воздуха, измеряют параметры двигателя при различной влажности атмосферного воздуха, вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от влажности атмосферного воздуха, а при приведении параметров к стандартным атмосферным условиям умножают приведенные значения параметров на коэффициенты, учитывающие отклонение влажности атмосферного воздуха от стандартного.

Изобретение может быть использовано в машиностроении, авиа-, двигателестроении и других областях. В качестве датчиков звукового давления используется ряд технических микрофонов с узкой диаграммой направленности, установленных в заданном секторе исследуемой детали.

Изобретение относится к испытательной технике, а именно к стендам для температурных испытаний авиационной техники. Стенд для температурных испытаний содержит устройство нагрева рабочей среды, основание, размещенные на нем камеру для испытуемого изделия, трубопровод и защитное устройство в виде компенсатора температурного расширения трубопровода.

Способ эксплуатации предназначен для использования в управлении периодичностью профилактического технического обслуживания объектов. Способ включает определение начальной периодичности технического обслуживания объекта по наработке и допустимой интенсивности отказов по отношению к наработке, проведение технического обслуживания по наработке и фиксацию величины интенсивности отказов до обслуживания, сравнение величины интенсивности отказов с допустимой и, при ее величине больше допустимой, проведение очередного обслуживания при наработке объекта, пропорциональной отношению допустимой интенсивности отказов к фиксированной.
Наверх