Способ получения (13z)-эйкоз-13-ен-10-она

Настоящее изобретение относится к способу получения (13Z)-эйкоз-13-ен-10-она, который в смеси с минорным компонентом (12Z)-нонадец-12-ен-9-оном в соотношении 20:1 идентифицирован как половой феромон персиковой плодожорки Casposina niponensis. Способ заключается в том, что двойную углерод-углеродную связь (Z)-конфигурации формируют в результате стереоселективного Fe(acac)3-катализируемого кросс-сочетания этил(4Z)-5-хлорпент-4-еноата с н-гексилмагнийбромидом в смеси тетрагидрофурана и N-метилпирролидона с получением этил(4Z)-ундец-4-еноата, затем проводят щелочной гидролиз этил(4Z)-ундец-4-еноата с получением (4Z)-ундец-4-еновой кислоты, трансформируют ее в хлорангидрид и осуществляют второе Fe(асас)3-катализируемое кросс-сочетание полученного хлорангидрида с н-нонилмагнийбромидом. Предлагаемый способ позволяет получить целевой продукт на ключевой стадии кросс-сочетания с более высоким выходом. 4 пр.

 

Изобретение относится к области органической химии, в частности к способу получения (13Z)-эйкоз-13-ен-10-она.

(13Z)-Эйкоз-13-ен-10-он (1) в смеси с минорным компонентом (12Z)-нонадец-12-ен-9-оном в соотношении 20:1 идентифицирован как половой феромон персиковой плодожорки Carposina niponensis - опасного вредителя фруктов [Tamaki Y., Honma К., Kawasaki К. // Appl. Ent. Zool., 1977, V. 12, P. 60]. Гусеницы плодожорки поражают плоды груши, яблони, абрикоса, персика, сливы, айвы и многих других культурных и диких плодовых растений косточковых и семечковых пород.

Результаты изобретения могут быть использованы в химии, малотоннажной химической промышленности и сельском хозяйстве.

Основной задачей в синтезе (13Z)-эйкоз-13-ен-10-она является стереоселективное построение двойной углерод-углеродной связи (Z)-конфигурации в γ-положении к карбонильной группе.

Известны способы получения (13Z)-эйкоз-13-ен-10-она [Bestmann H.J., Schmidt М. // Tetrahedron Lett., 1985, V. 26, P. 6171; Lee E., Koh S.Y., Song B.D., Park Т.К. // Bull. Korean Chem. Soc, 1984, V. 5, P. 223], в которых двойная связь (Z)-конфигурации создавалась парциальным стереоселективным гидрированием соответствующих ацетиленовых предшественников. Способы базируются на труднодоступном сырье и характеризуются невысоким общим выходом целевого продукта.

Известны способы получения (13Z)-эйкоз-13-ен-10-она [Naoshima Y., Kawakubo М., Wakabayashi S., Hayashi S. // Agric. Biol. Chem., 1981, V. 45, P. 439; Hernandez J.E., Cisneros A., Fernandez S. // Synth. Commun., 1983, V. 13, P. 191], в которых двойная связь (Z)-конфигурации создавалась реакцией Виттига. Способы базируются на труднодоступном сырье и характеризуются невысокой стереоселективностью (~90% Z).

Известны способы получения (13Z)-эйкоз-13-ен-10-она на основе относительно труднодоступного (Z)-1-бром-2-нонена [Yamashita М., Matsumiya K., Murakami K., Suemitsu R. // Bull. Chem. Soc. Jpn., 1988, V. 61, P. 3368; Kang S.-K., Lee D.-H. // OPPI, 1990, V. 22, P. 122].

Наиболее близким к предлагаемому изобретению по типу металлокатализируемой реакции сочетания и взятому нами за прототип является способ получения (13Z)-эйкоз-13-ен-10-она, в котором двойная связь (Z)-конфигурации создавалась Pd-катализируемым кросс-сочетанием 2-[(3Z)-4-иодбут-3-ен-1-ил]-1,3-диоксолана с н-гексилцинкбромидом [Zhong-young W., Jisheng L., Deheng C. // Acta Chim. Sinica, 1989, V. 47, P. 818-820]. Недостатками способа являются недостаточно высокий выход на ключевой стадии кросс-сочетания (74%) и общий выход целевого продукта (21%), использование труднодоступного винилиодида и дорогостоящего Pd-катализатора [Pd(PPh3)4].

Задачей изобретения является создание более эффективного, практичного и стереоселективного способа получения (13Z)-эйкоз-13-ен-10-она.

Указанная задача решается тем, что в способе получения (13Z)-эйкоз-13-ен-10-она (1), согласно изобретению, двойную углерод-углеродную связь (Z)-конфигурации формируют в результате стереоселективного Fe(acac)3-катализируемого кросс-сочетания этил(4Z)-5-хлорпент-4-еноата (2) с н-гексилмагнийбромидом в смеси тетрагидрофурана (ТГФ) и N-метил-пирролидона (NMP) с получением этил(4Z)-ундец-4-еноата (3), затем проводят щелочной гидролиз этил(4Z)-ундец-4-еноата (3) с получением (4Z)-ундец-4-еновой кислоты (4), трансформируют ее в хлорангидрид под действием SOCl2 и осуществляют второе Fe(асас)3-катализируемое кросс-сочетание хлорангидрида с н-нонилмагнийбромидом.

Исходный этил(4Z)-5-хлорпент-4-еноата (2) получают аллилированием малонового эфира (5) промышленно доступным (Z)-1,3-дихлорпропеном (6) в присутствии K2CO3 и каталитических количеств 18-краун-6 с последующим декарбалкоксилированием образующегося диэтил [(2Z)-3-хлорпроп-2-ен-1-ил]пропандиоата (4) под действием LiCl и воды в N-метилпирролидоне.

Способ осуществляется следующим образом. К раствору этил(4Z)-5-хлорпент-4-еноата (2) и ацетилацетоната железа (Fe(acac)3) в смеси тетрагидрофурана и N-метилпирролидона в атмосфере аргона медленно приливали при 0°C 1 М раствор н-гексилмагнийбромида в ТГФ и перемешивали 30 минут при следующем мольном соотношении реагентов [этил(4Z)-5-хлорпент-4-еноат] : [н-гексилмагнийбромид] : [Fe(acac)3] : [ТГФ] : [W-метилпирролидон] = 1: 1.05:0.02:12:8. Продукт выделяли экстракцией этилацетатом и очищали методом колоночной хроматографии.

Затем щелочной гидролиз этил(4Z)-ундец-4-еноата (3) в (4Z)-ундец-4-еновую кислоту (4), трансформация кислоты 4 в хлорангидрид под действием SOCl2 и второе Fe-катализируемое кросс-сочетание хлорангидрида с н-нонилмагнийбромидом в присутствии Fe(acac)3 приводит к целевому феромону (1) с общим выходом 33% и изомерной чистотой более 98%.

Пример 1. Получение этил(4Z)-5-хлорпент-4-еноата (2)

Смесь 1.92 г (0.012 моль) малонового эфира (5), 1.11 г (0.01 моль) (Z)-1,3-дихлорпропена (6), 0.05 г 18-краун-6, 1.38 г (0.01 моль) K2СО3 в 10 мл ацетонитрила перемешивали 6 ч при кипении до полной конверсии 6 (контроль методом ГЖХ). Реакционную смесь фильтровали, осадок промывали этилацетатом и объединенные органические слои концентрировали. Получили 2.42 г сырого диэтил[(2Z)-3-хлорпроп-2-ен-1-ил]пропандиоата (4), используемого далее без дополнительной очистки.

Смесь диоата 4, 0.36 г (0.02 моль) H2O, 1.27 г (0.03 моль) LiCl в 12 мл N-метилпирролидона перемешивали при 140-150°C до полной конверсии субстрата (4-5 ч, контроль методом ГЖХ). Затем добавили 30 мл воды и 30 мл этилацетата, органический слой отделяли, водный слой обрабатывали этилацетатом (2×20 мл). Объединенные органические фазы промывали водой, сушили MgSO4 и концентрировали при атмосферном давлении. Продукт реакции выделяли методом колоночной хроматографии (SiO2, гексан - диэтиловый эфир, 9:1→8:2). Выход 0.91 г (56%) в 2 стадии, маслообразное вещество. ИК-спектр (ν, см-1): 2984, 1730, 1373, 1333, 1304, 1258, 1211, 1184, 1161, 735. Спектр ЯМР 1Н (300 МГц, CDCl3, δ, м. д., J/Гц): 1.26 (3Н, т, J=7, СН3), 2.42 (2Н, т, J=7.3, СН2-2), 2.52-2.57 (2Н, м, СН2-3), 4.14 (2Н, к, J=7, СН2O), 5.80 (1Н, к, Jцис=7, СН-4), 6.07 (1Н, д, Jцис=7, СН-5). Спектр ЯМР 13С (75 МГц, CDCl3, δС, м.д.): 14.08 (СН3), 22.42 (С-3), 32.77 (С-2), 60.42 (СН2O), 119.27 (С-5), 129.60 (С-4), 172.59 (С-1). Масс-спектр, m/z (Iотн, %): 127 ([М-Cl]+, 70), 117 (28), 99 (92), 91 (25), 89 (47), 88 (33), 53 (100), 51 (25), 43 (32), 42 (22).

Пример 2. Получение этил(4Z)-ундец-4-еноата (3)

К раствору 0.325 г (2 ммоль) этил(4Z)-5-хлорпент-4-еноата (2), 14 мг (0.04 ммоль) Fe(acac)3 в смеси 2 мл ТГФ и 1.6 мл NMP в атмосфере аргона при 0°C медленно прибавляли по каплям 1 М раствор н-гексилмагнийбромида в ТГФ (2.1 мл). Реакционную смесь перемешивали 1 ч при комнатной температуре, обрабатывали 10 мл 5% раствора HCl и 10 мл этилацетата, органический слой отделяли, а водный экстрагировали этилацетатом (2×10 мл). Объединенные органические фазы промывали насыщенным раствором NaHCO3, сушили MgSO4 и концентрировали. Продукт выделяли методом колоночной хроматографии (SiO2, гексан - этилацетат, 9:1). Выход 0.332 г (78%), маслообразное вещество. ИК-спектр (ν, см-1): 2958, 2927, 2857, 1740, 1466, 1371, 1349, 1250, 1162, 1039. Спектр ЯМР 1Н (300 МГц, CDCl3, δ, м. д., J/Гц): 0.88 (3Н, т, J=7, СН3-11), 1.22-1.38 (11Н, м, СН3СН2O, 4СН2), 2.04 (2Н, к, J=6.8, СН2-6), 2.33-2.43 (4Н, м, СН2-2, СН2-3), 4.13 (2Н, к, J=7.1, CH3CH2О), 5.28-5.46 (2Н, м, СН-4, СН-5). Спектр ЯМР 13С (75 МГц, CDCl3, δС, м.д.): 14.03 (С-11), 14.18 (СН3СН2O), 22.60 (С-10), 22.78 (С-3), 27.15 (С-6), 28.92 (СН2), 29.55 (СН2), 31.71 (С-9), 34.37 (С-2), 60.22 (СН2O), 127.30 (С-4), 131.46 (С-5), 173.22 (С-1). Масс-спектр, m/z (Iотн, %): 212 ([М]+, 3), 124 (75), 96 (72), 88 (93), 84 (54), 81 (53), 69 (64), 67 (65), 55 (100), 43 (65), 41 (86).

Пример 3. Получение (4Z)-ундец-4-еновой кислоты (4)

Раствор 0.3 г (1.41 ммоль) эфира 3 и 0.252 г (4.5 ммоль) КОН в 5 мл 95% этилового спирта перемешивали при 70°C в течение 5 ч до полной конверсии субстрата (контроль методом ГЖХ). После охлаждения большую часть растворителя удаляли, остаток подкисляли 5% HCl и экстрагировали хлороформом. Органическую фазу промывали насыщенным раствором NaHCO3, сушили MgSO4 и концентрировали. Выход 0.246 г (95%), маслообразное вещество. ИК-спектр (ν, см-1): 2956, 2926, 2855, 1715, 1465, 1457, 1378, 1250, 1164, 723. Спектр ЯМР 1Н (300 МГц, CDCl3, δ, м. д., J/Гц): 0.88 (3Н, т, J=7, СН3-11), 1.21-1.42 (8Н, м, 4СН2), 2.04 (2Н, к, J=6.9, СН2-6), 2.34-2.43 (4Н, м, СН2-2, СН2-3), 5.29-5.48 (2Н, м, СН-4, СН-5). Спектр ЯМР 13С (75 МГц, CDC13, δС, м.д.): 14.03 (С-11), 22.48 (С-3), 22.60 (С-10), 27.18 (С-6), 28.92 (СН2), 29.55 (СН2), 31.73 (С-9), 34.19 (С-2), 126.88 (С-4), 131.88 (С-5), 179.81 (С-1). Масс-спектр, m/z (Iотн, %): 184 ([М]+, 1), 84 (36), 82 (40), 69 (61), 68 (44), 67 (48), 56 (36), 55 (93), 54 (38), 43 (83), 41 (100).

Пример 4. Получение (13Z)-эйкоз-13-ен-10-она (1)

К раствору 0.2 г (1.09 ммоль) кислоты 4 и 4 мкл N,N-диметилформамида (DMF) в 1 мл безводного толуола прибавляли 0.169 г (1.42 ммоль) тионилхлорида. Реакционную смесь перемешивали в атмосфере аргона при комнатной температуре в течение 4 ч до полной конверсии кислоты (контроль методом ГЖХ). Растворитель и избыток SOCl2 удаляли под вакуумом.

К раствору полученного хлорангидрида кислоты 4, 11 мг (0.03 ммоль) Fe(acac)3 в 2 мл безводного ТГФ в атмосфере аргона медленно прибавляли 1 М раствор н-нонилмагнийбромида в ТГФ (1.1 мл). Реакционную смесь перемешивали 1 ч при комнатной температуре, приливали 5 мл 5% раствора HCl и 10 мл гексана, органический слой отделяли, а водный экстрагировали гексаном (2×5 мл). Объединенные органические фазы промывали насыщенным раствором NaHCO3, сушили MgSO4 и концентрировали. Продукт выделяли методом колоночной хроматографии (SiO2, гексан - этилацетат, 9:1). Выход 0.254 г (79%) в 2 стадии, маслообразное вещество. ИК-спектр (ν, см-1): 2956, 2927, 2856, 1716, 1466, 1458, 1368, 1261, 1163, 722. Спектр ЯМР 1Н (300 МГц, CDCl3, δ, м. д., J/Гц): 0.88 (6Н, т, J=7, СН3-1, СН3-20), 1.19-1.41 (20Н, м, 10СН2), 1.54-1.59 (2Н, м, СН2-8), 2.00-2.07 (2Н, м, СН2-15), 2.26-2.46 (6Н, м, СН2-9, СН2-11, СН2-12), 5.25-5.43 (2Н, м, СН-13, СН-14). Спектр ЯМР 13С (75 МГц, CDCl3, δС, м.д.): 14.02 (С-1, С-20), 21.66 (С-8), 22.59 (С-2, С-19), 23.79 (С-12), 27.15 (С-15), 28.94 (СН2), 29.21 (2СН2), 29.39 (2СН2), 29.57 (СН2), 31.73 (С-3 или С-18), 31.82 (С-3 или С-18), 42.61 (С-9 или С-11), 42.91 (С-9 или С-11), 127.75 (С-13), 131.17 (С-14), 210.86 (С-10). Масс-спектр, m/z (Iотн, %): 294 ([М]+, 5), 155 (75), 95 (42), 83 (48), 81 (44), 71 (72), 69 (49), 57 (65), 55 (79), 43 (100), 41 (71).

Преимуществами предлагаемого способа получения феромона являются более высокий выход на ключевой стадии кросс-сочетания (78%) и общий выход целевого продукта (33%), использование промышленно доступного (2)-изомера 1,3-дихлорпропена (побочного продукта производства аллилхлорида), малостадийность, а также низкая стоимость Fe-катализатора, применяемого в двух последовательных реакциях кросс-сочетания.

Способ получения (13Z)-эйкоз-13-ен-10-она, включающий стадию металлокатализируемого кросс-сочетания, отличающийся тем, что двойную углерод-углеродную связь (Z)-конфигурации формируют в результате стереоселективного Fe(acac)3-катализируемого кросс-сочетания этил(4Z)-5-хлорпент-4-еноата с н-гексилмагнийбромидом в смеси тетрагидрофурана и N-метилпирролидона с получением этил(4Z)-ундец-4-еноата, затем проводят щелочной гидролиз этил(4Z)-ундец-4-еноата с получением (4Z)-ундец-4-еновой кислоты, трансформируют ее в хлорангидрид и осуществляют второе Fe(асас)3-катализируемое кросс-сочетание полученного хлорангидрида с н-нонилмагнийбромидом.



 

Похожие патенты:

Изобретение относится к способу получения мезитилена путём конденсации. Способ характеризуется тем, что ацетон находится в состоянии сверхкритического флюида (при повышенной температуре и избыточном давлении), а плотность ацетона составляет не менее 5 моль/л.

Изобретение относится к усовершенствованному способу отделения функционализованных альфа-олефинов от функционализованных неконцевых олефинов, заключающемуся в обработке исходного сырья, содержащего функционализованные альфа-олефины и функционализованные неконцевые олефины, которая включает: a) контактирование исходного сырья с линейным полиароматическим соединением в условиях, эффективных для образования реакционной смеси, содержащей аддукт линейного полиароматического соединения - функционализованного альфа-олефина; b) выделение аддукта линейного полиароматического соединения - функционализованного альфа-олефина, и необязательно также непрореагировавшего линейного полиароматического соединения, из реакционной смеси с получением потока аддукта функционализованного альфа-олефина и потока функционализованного неконцевого олефина; c) диссоциацию аддукта линейного полиароматического соединения - функционализованного альфа-олефина в упомянутом потоке аддукта функционализованного альфа-олефина с получением линейного полиароматического соединения и композиции функционализованных альфа-олефинов, и необязательно, d) выделение линейного полиароматического соединения, образованного на стадии с) , из композиции функционализованных альфа-олефинов; при этом концентрация функционализованных альфа-олефинов в упомянутой композиции альфа - олефинов увеличивается по сравнению с концентрацией функционализованных альфа-олефинов в исходном сырье, и где функционализованные олефины, либо неконцевые, либо альфа представляют собой соединения с, по меньшей мере, одной двойной связью, расположенной в алифатической или циклоалифатической части соединения, и где олефин содержит функциональную группу, отличную от С-С-ненасыщенности, при этом функциональная группа выбрана из кетоновой или гидроксильной группы.

Изобретение относится к новому способу получения 3-(н-пропил)алк-3-ен-2-онов общей формулы СН3С(O)С(С3Н7)=СНR, где R=н-С6Н13, н-C8H17 взаимодействием соединения RCH=C=CH2 с AlEt3 при их мольном соотношении 10:(10-14), в присутствии катализатора Cp2ZrCl2, взятого в количестве 2-6 мол.% по отношению к исходному аллену в атмосфере аргона, при комнатной температуре и нормальном давлении в хлористом метилене, в течение 5 ч, с последующим добавлением к реакционной массе ацетонитрила (СН3СN), взятого в 3-кратном избытке по отношению к триэтилалюминию, перемешивании при температуре 40oС в течение 4-8 ч и последующем кислотном гидролизе реакционной массы.
Изобретение относится к органической химии, конкретно к усовершенствованному способу получения 6-метил-5-гептен-2-она, который находит широкое применение в органическом синтезе, являясь основой для производства витаминов A и E и душистых веществ, таких как цитраль, линалоол, - и --иононы, нерол и неролидол [1-3] Известны промышленные способы получения 6-метил-5-гептен-2-она, разработанные и применяемые такими зарубежными фирмами, как "La Roche", BASF, "SNAM-Progetti", заключающиеся в том, что 3-метил-1-бутен-3-ол подвергают взаимодействию с дикетеном при температуре не более 30oC в растворителе (обычно ксилоле) в присутствии катализаторов (в основном третичных аминов или пиридина [1] приводящему к образованию ацетоацетоната 3-метил-1-бутен-3-ола (выход 90 95%), последующее разложение которого при температуре 160 - 180oC дает 6-метил-5-гептен-2-он (выход 80 90%) [4] Несмотря на высокий суммарный выход 6-метил-5-гептен-2-она (75 85%), существенным недостатком большинства этих способов является использование чрезвычайно токсичного и неустойчивого дикетена, получаемого, в свою очередь, разложением ацетона или уксусного ангидрида до кетена при температуре 500 700oC с последующей димеризацией в дикетен, протекающей с невысоким выходом (50 55%) [5] Известны также способы получения 6-метил-5-гептен-2-она, заключающиеся в том, что 3-метил-1-бутен-3-ол подвергают взаимодействию с ацетоуксусным эфиром как в растворителе, так и без растворителя, в присутствии катализаторов и без них с выходом целевого продукта до 60% [4] В двухстадийных синтезах через промежуточные пренилгалогениды удалось получить 6-метил-5-гептен-2-он из 3-метил-1-бутен-3-ола с выходом 60 5% [6] В последней случае их недостатками являются наличие галогенсодержащих примесей, невысокий выход целевого 6-метил-5-гептен-2-она, сложность проведения процесса и обработки реакционной смеси, а также образование побочных продуктов [2] Наиболее близким к заявляемому является способ получения 6-метил-5-гептен-2-она, заключающийся в том, что 3-метил-1-бутен-3-ол подвергают взаимодействию с ацетоуксусным эфиром в вазелиновом масле, добавляя в разогретое до 210oC вазелиновое масло смесь 3-метил-1-бутен-3-ола с ацетоуксусным эфиром в мольном соотношении 10:1, проводя реакцию при температуре 160 180oC [6] Этот способ характеризуется недостаточно высоким выходом целевого 6-метил-5-гептен-2-она (60% ) за счет побочной реакции разложения 3-метил-1-бутен-3-ола до изопрена [6] Технической задачей изобретения является повышение выхода 6-метил-5-гептен-2-она за счет максимальной конверсии реагентов и минимального образования побочных продуктов.

Изобретение относится к области синтеза душистых веществ, в частности к новому душистому веществу ряда октагидронафталина 2-ацетонил-5,5-диметил-1,2,3,4,5,6,7,8-октагидронафталину формулы I (I) в качестве компонента парфюмерной композиции, промежуточному продукту его синтеза 2,6-диметил-2,6,10-тридекатриен-12-ону формулы II (II) и способу получения соединения I.

Изобретение относится к способу выделения метилгептенона (МГ), который используется в качестве полупродукта для получения витаминов А, Е и душистых веществ. .

Изобретение относится к ненасыщенным кетонам, в частности к способу получения 2,6-диметилундекатриен-2,6,8-она-10, который применяют в производстве душистых веществ и витамина А.

Изобретение относится к ненасыщенным кетонам, в частности к получению 3-метил-3-пентен-2-она, который используют в качестве полупродукта синтеза душистых веществ. .

Настоящее изобретение относится к способу получения 1-адамантилацетальдегида, который служит ценным промежуточным продуктом для получения биологически активных веществ и функциональных органических материалов.

Изобретение относится к улучшенному способу получения соединения формулы , где Z представляет собой необязательно замещенный фенил; Q представляет собой фенил или 1-нафталенил, каждый необязательно замещенный.

Изобретение относится к химии производных дифенилоксида, а именно к новым 3-феноксифенилсодержащим 1,3-дикетонам, промежуточным соединениям в синтезах широкого спектра веществ, обладающих биологической активностью, общей формулы например, в качестве исходных соединений для получения их хелатных комплексов с ионами меди (II) общей формулы которые представляют интерес в качестве экстрагентов, аналитических реагентов РЗЭ, важнейших полупродуктов в синтезе вероятных биологически активных веществ.

Изобретение относится к способу получения 1-(4-хлорфенил)-2-циклопропилпропан-1-она (I), который является промежуточным продуктом для получения биологически активных веществ, а также к способу получения 1-(4-хлорфенил)-2-метил-3-бутен-1-она (II) - промежуточного продукта для получения 1-(4-хлорфенил)-2-циклопропилпропан-1-она.

Изобретение относится к химии производных адамантана, а именно к новому способу получения -адамантилсодержащих альдегидов общей формулы где R1=H, R2=СН3, С 3Н7, С4Н9; R1 =R2=СН3, которые являются полупродуктами для синтеза биологически активных веществ, с использованием производного адамантана.

Изобретение относится к способу получения 5,5'-(оксиди)пентанона-2, который может быть использован в качестве полифункционального растворителя, экстрагента, как душистое вещество и как исходное сырье для синтеза гетероциклов.

Изобретение относится к способу получения 5-алкоксипентанонов-2 формулы СН3СО(СН2)3OR, где R = СnН2n+1, n = 1-10, взаимодействием ацетилциклопропана (АЦП) с одноатомным спиртом R-OH в присутствии палладийсодержащего катализатора в водной в присутствии исходного спирта R-OH в качестве растворителя или водно-эфирной среде при температуре 165-200°С в течение 6-60 ч при мольном соотношении компонентов: [АЦП]:[R-ОН]:[Н2O]:[кат]:[растворитель] = 1:1: (3-8) : (0,005-0,01) : (2-9), где при R = CnH2n+1 (n = 1-3) растворитель - соответствующий спирт, а при n 4 растворитель - диэтиловый эфир.

Настоящее изобретение относится к способу получения ароматических ацетиленовых кетонов общей формулы где Ar, Ar' - ароматические радикалы, которые находят разнообразное применение в синтезе различных гетероциклических соединений. Способ включает взаимодействие ацетиленового компонента с альдегидом в присутствии кислоты Льюиса в органическом растворителе. В качестве ацетиленового компонента используют тетраалкинилиды олова в среде толуола при температуре 40-60°С в течение 4-6 часов с использованием хлорида цинка в качестве кислоты Льюиса по схеме: при этом на 1 эквивалент ацетиленового фрагмента расходуют 2 эквивалента альдегида. Предлагаемый способ позволяет получить целевые продукты с использованием простой технологии. 1 табл., 10 пр.
Наверх