Система для моделирования чрезвычайной ситуации

Изобретение относится к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Макет взрывоопасного объекта с установленным в нем взрывным осколочным элементом с инициатором взрыва размещен в испытательном боксе. В потолочной части макета выполнен проем, который закрыт взрывозащитным элементом. В покрытии взрывоопасного объекта жестко заделаны четыре опорных стержня, которые телескопически вставлены в неподвижные патрубки-опоры панели. Снаружи опорных стержней расположены упругодемпфирующие элементы, один конец которых упирается в бронированную металлическую обшивку, а другой - в листы-упоры, расположенные в верхней части опорных стержней. Упругодемпфирующие элементы выполнены в виде цилиндрической винтовой пружины со встроенным демпфером. Цилиндрическая винтовая пружина состоит из двух частей со встречно-направленными концами, одна часть из которых имеет витки прямоугольного сечения, а другая часть пружины выполнена полой. Зазоры в первой части винтовой пружины, выполненной с витками прямоугольного сечения, заполнены крошкой из фрикционного материала. Техническим результатом изобретения является повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте. 3 ил.

 

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации.

Наиболее близким техническим решением к заявленному объекту является устройство систем безопасности в чрезвычайных ситуациях по патенту РФ №120569, A62C 35/00, от 20.03.12 г. (прототип), содержащее систему датчиков, установленных в зоне опасного расположения защищаемого объекта, который требуется перевести из обычного режима работы в аварийный режим в результате возникновения опасности развития чрезвычайной ситуации, который соединен с исполнительным устройством, на срабатывание которого поступает сигнал с устройства управления. Таким образом, в прототипе используют систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации.

Недостатком известного решения является сравнительно невысокая информативность для системы управления по принятию решения о введении аварийного режима работы системы и отсутствие возможности прогнозировать развитие чрезвычайной ситуации.

Технически достижимый результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте.

Это достигается тем, что система моделирования чрезвычайной ситуации, содержащая блоки мониторинга и обработки полученной информации об опасной зоне, размещенный в испытательном боксе макет взрывоопасного объекта с установленным в нем взрывным осколочным элементом с инициатором взрыва, защитный чехол и поддон, при этом чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета взрывоопасного объекта, а макет оборудован транспортной и подвесной системами, при этом защитный чехол выполнен многослойным и состоящим из обращенного внутрь к макету алюминиевого слоя, затем резинового и перкалевого слоев, а подвесная система состоит из комплекта скоб и растяжек, размещенных на защитном чехле, а также необходимого количества анкерных крюков в потолке, стенах и полу испытательного бокса, а внутри макета взрывоопасного объекта, по его внутреннему и внешнему периметрам, установлены видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, а выходы с видеокамер соединены с блоком записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, причем в потолочной части макета выполнен проем, который закрыт взрывозащитным элементом, по фронту движения взрывной волны установлен трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединен со входом блока записывающей и регистрирующей аппаратуры, причем по обе стороны от датчика давления расположены датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединены со входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеены тензодатчиками, выходы которых также соединены со входом блока записывающей и регистрирующей аппаратуры, также содержит металлический бронированный каркас с металлической бронированной обшивкой и наполнителем - свинцом, имеющей в торцах четыре неподвижных патрубка-опоры, а в покрытии взрывоопасного объекта жестко заделаны четыре опорных стержня, которые телескопически вставлены в неподвижные патрубки-опоры панели, а снаружи опорных стержней расположены упругодемпфирующие элементы, один конец которых упирается в бронированную металлическую обшивку, а другой - в листы-упоры, расположенные в верхней части опорных стержней, отличается тем, что упругодемпфирующие элементы выполнены в виде цилиндрической винтовой пружины со встроенным демпфером, содержащей цилиндрическую винтовую пружину, состоящую из двух частей со встречно-направленными концами, одна часть из которых имеет витки прямоугольного сечения, а другая часть пружины выполнена полой, при этом встречно-направленный конец первой части размещен в полости второй, зазоры сегментного профиля контактирующих частей пружины заполнены антифрикционной смазкой, при этом на конце второй части пружины установлена уплотнительная манжета для предотвращения утечки смазки, а первую часть винтовой пружины, выполненную с витками прямоугольного сечения с закругленными кромками, охватывает трубка из демпфирующего материала, например полиуретана, а зазоры в первой части винтовой пружины, выполненной с витками прямоугольного сечения, которую охватывает трубка из демпфирующего материала, заполнены крошкой из фрикционного материала, выполненного из композиции, включающей следующие компоненты при их соотношении, мас. %: смесь резольной и новолачной фенолоформальдегидных смол в соотношении 1:(0,2-1,0) в количестве 28÷34%; волокнистый минеральный наполнитель, содержащий стеклоровинг или смесь стеклоровинга и базальтового волокна в соотношении 1:(0,1-1,0), в количестве 12÷19%; графит в количестве 7÷18%; модификатор трения, содержащий технический углерод в виде смеси с каолином и диоксидом кремния, в количестве 7÷15%; баритовый концентрат в количестве 20÷35%; тальк в количестве 1,5÷3,0%.

На фиг. 1 показана принципиальная схема системы для моделирования чрезвычайной ситуации при аварии на взрывоопасном объекте, на фиг. 2 представлена схема взрывозащитного элемента, на фиг. 3 представлен вариант выполнения упругодемпфирующих элементов 31 в виде цилиндрических винтовых пружин со встроенным демпфером.

Система для моделирования чрезвычайной ситуации при аварии на взрывоопасном объекте содержит макет 1 взрывоопасного объекта с установленным в нем взрывным осколочным элементом 14 с инициатором взрыва 13, защитный чехол 2 и поддон 3, при этом чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета 1 взрывоопасного объекта, размещенного в испытательном боксе 8. Кроме того, макет 1 оборудован транспортной 6 и подвесной 5 системами, а защитный чехол 2 выполнен многослойным и состоящим из обращенного внутрь к макету 1 алюминиевого слоя, затем резинового и перкалевого слоев. Подвесная система состоит из комплекта скоб и растяжек 5, размещенных на защитном чехле, а также необходимого количества анкерных крюков (петель) в потолке, стенах и полу испытательного бокса 8. Транспортная система 6 предназначена для удаления разрушенного макета 1 после проведения испытаний из испытательного бокса 8 вместе с защитным чехлом 2.

Транспортная система представляет собой тележку с дышлом. На раме тележки крепятся проставки, на которые устанавливаются и крепятся поддон и макет 1. Подвесная система состоит из комплекта скоб и растяжек, размещенных на защитном чехле, а также необходимого количества анкерных крюков (петель) в потолке, стенах и полу защитного сооружения.

Внутри макета 1 взрывоопасного объекта, по его внутреннему и внешнему периметрам, установлены видеокамеры 7 и 4 видеонаблюдения за процессом развития ЧС, смоделированной посредством взрывного осколочного элемента 14 с инициатором взрыва 13, причем видеокамеры 4 и 7 выполнены во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок 10 соединены с блоком 17 записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта. В потолочной части макета 1 выполнен проем 15, который закрыт взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19, один конец каждого из которых жестко вмонтирован в потолок макета 1, а на втором имеется горизонтальная перекладина. Между взрывным осколочным элементом 14 и проемом 15, выполненным в потолочной части макета 1 и закрытым взрывозащитным элементом 16, по фронту движения взрывной волны установлен трехкоординатный датчик давления 9 во взрывозащитном исполнении, выход которого соединен со входом блока 17 записывающей и регистрирующей аппаратуры. По обе стороны от датчика давления 9 расположены датчики температуры 20 и влажности 21, контролирующие термовлажностный режим в макете 1, выходы которых также соединены со входом блока 17 записывающей и регистрирующей аппаратуры. Внутренние поверхности ограждений макета 1 обклеены тензодатчиками 12 (тензорезисторами), а внешние - тензодатчиками 11, выходы которых также соединены со входом блока 17 записывающей и регистрирующей аппаратуры. Защитный чехол 2 после предварительной примерки и отладки подвесной системы 5 подвязывается к потолку испытательного бокса 8 над макетом 1, поддоном 3 и транспортной системой 6. После проведения подготовительных к подрыву операций с макетом 1 и взрывным осколочным элементом 14 с инициатором взрыва 13, выведения и герметизации коммуникаций и подсоединения соответствующих электрических цепей чехол монтируется вокруг макета 1, герметично соединяется с поддоном и растягивается с помощью подвесной системы, образуя замкнутое герметичное пространство (объем) вокруг макета 1.

Взрывозащитный элемент 16 (фиг. 2) состоит из бронированного металлического каркаса 22 с бронированной металлической обшивкой 23 и наполнителем - свинцом 24. В покрытии объекта 28 у проема 29 симметрично относительно оси 30 заделаны четыре опорных стержня 25, телескопически вставленных в неподвижные патрубки-опоры 27, заделанные в панели. Для фиксации предельного положения панели к торцам опорных стержней 25 приварены листы-упоры 26. Для того чтобы сдемпфировать (смягчить) ударные нагрузки при возврате панели, наполнитель выполнен в виде дисперсной системы воздух - свинец, причем свинец выполнен по форме в виде крошки, а опорные стержни 25 могут быть выполнены упругими.

Снаружи опорных стержней расположены упругодемпфирующие элементы 31, один конец которых упирается в бронированную металлическую обшивку 23, а другой - в листы-упоры 26, расположенные в верхней части опорных стержней 25.

Упругодемпфирующие элементы 31 могут быть выполнены в виде цилиндрических винтовых пружин, внешняя винтовая поверхность которых покрыта вибродемпфирующей мастикой, например, типа ВД-17.

Система для моделирования чрезвычайной ситуации работает следующим образом.

В испытательном боксе 8 устанавливают макет 1 взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры 7 и 4 видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете 1 взрывного осколочного элемента 14 с инициатором взрыва 13, при этом видеокамеры 4 и 7 выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок 10 соединяют с блоком 17 и производят запись и регистрацию протекающих процессов изменения технологических параметров в макете 1, после чего регистрируют посредством системы анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта. В потолочной части макета 1 выполняют проем 15, который закрывают взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19, один конец каждого из которых жестко фиксируют в потолке макета 1, а на втором крепят горизонтальную перекладину. Между взрывным осколочным элементом 14 и проемом 15 устанавливают трехкоординатный датчик давления 9 во взрывозащитном исполнении, выход которого соединяют со входом блока 17 записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления 9 располагают датчики температуры 20 и влажности 21, контролирующие термовлажностный режим в макете 1, выходы которых также соединяют со входом блока 17 записывающей и регистрирующей аппаратуры. Внутренние поверхности ограждений макета 1 обклеивают тензодатчиками 12 (тензорезисторами), а внешние - тензодатчиками 11, выходы которых также соединяют со входом блока 17 записывающей и регистрирующей аппаратуры. После обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте.

Взрывозащитный элемент работает следующим образом.

При взрыве внутри производственного помещения (не показано) происходит подъем панели 22 от воздействия ударной волны и через открытый проем 29 сбрасывается избыточное давление. При этом упругодемпфирующие элементы 31 сжимаются, гася энергию взрыва, а затем возвращают панель в исходное состояние.

Внешняя винтовая поверхность упругодемпфирующих элементов 31 покрыта вибродемпфирующей мастикой, например, типа ВД-17, которая дополнительно способствует демпфированию взрывной волны.

После взрыва и спада избыточного давления, опустившись, панель перекрывает проем 29 и вредные вещества не поступают в атмосферу. Для фиксации предельного положения панели служат листы-упоры 26. Для того чтобы сдемпфировать (смягчить) ударные нагрузки при возврате панели, наполнитель металлического каркаса 22 выполнен в виде дисперсной системы воздух - свинец, причем свинец выполнен по форме в виде крошки, а опорные стержни 25 могут быть выполнены упругими.

Возможен вариант, когда упругодемпфирующие элементы 31 выполнены в виде цилиндрических винтовых пружин со встроенным демпфером.

Цилиндрическая винтовая пружина со встроенным демпфером содержит цилиндрическую винтовую пружину, состоящую из двух частей 34 и 35 со встречно-направленными концами 37 и 36 соответствующих витков этих пружин. На опорных витках пружины выполнены опорные кольца 32 и 33 для прочной и надежной фиксации концов пружин при их работе.

Первая часть винтовой пружины 34 выполнена с витками прямоугольного (или квадратного) сечения с закругленными кромками, а вторая часть 35 пружины выполнена полой, например, круглого сечения, при этом встречно-направленный конец 37 первой части пружины размещен в полости встречно-направленной второй части пружины с концом 36, при этом второй ее конец, закрепленный на опорном кольце 33, загерметизирован, например, при помощи резьбовой пробки (не показана).

В полости второй части 4 пружины, выполненной полой круглого сечения, образованы с четырех сторон, относительно прямоугольного сечения первой части 34 пружины, зазоры 38 сегментного профиля в сечении, перпендикулярном оси контактирующих частей 34 и 35 пружины.

Первую часть 34 винтовой пружины, выполненную с витками прямоугольного (или квадратного) сечения с закругленными кромками, охватывает трубка 39 из демпфирующего материала, например полиуретана. Зазоры в первой части 34 винтовой пружины, выполненной с витками прямоугольного сечения, которую охватывает трубка 39 из демпфирующего материала, заполнены крошкой из фрикционного материала (не показано).

Возможен вариант, когда зазоры в первой части винтовой пружины, выполненной с витками прямоугольного сечения, которую охватывает трубка из демпфирующего материала, заполнены крошкой из фрикционного материала, выполненного из композиции, включающей следующие компоненты при их соотношении, мас. %: смесь резольной и новолачной фенолоформальдегидных смол в соотношении 1:(0,2-1,0) в количестве 28÷34%; волокнистый минеральный наполнитель, содержащий стеклоровинг или смесь стеклоровинга и базальтового волокна в соотношении 1:(0,1-1,0), в количестве 12÷19%: графит в количестве 7÷18%; модификатор трения, содержащий технический углерод в виде смеси с каолином и диоксидом кремния, в количестве 7÷15%; баритовый концентрат в количестве 20÷35%; тальк в количестве 1,5÷3,0%.

Цилиндрическая винтовая пружина со встроенным демпфером работает следующим образом. Регулировка жесткости пружины осуществляется укорочением или удлинением высоты пружины. При вращении опорных колец 32 и 33 витки пружины перемещаются относительно друг друга во взаимно противоположных направлениях относительно продольной оси пружины, т.е. ввинчиваются или вывинчиваются.

Система для моделирования чрезвычайной ситуации, содержащая блоки мониторинга и обработки полученной информации об опасной зоне, размещенный в испытательном боксе макет взрывоопасного объекта с установленным в нем взрывным осколочным элементом с инициатором взрыва, защитный чехол и поддон, при этом чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета взрывоопасного объекта, а макет оборудован транспортной и подвесной системами, при этом защитный чехол выполнен многослойным и состоящим из обращенного внутрь к макету алюминиевого слоя, затем резинового и перкалевого слоев, а подвесная система состоит из комплекта скоб и растяжек, размещенных на защитном чехле, а также необходимого количества анкерных крюков в потолке, стенах и полу испытательного бокса, а внутри макета взрывоопасного объекта, по его внутреннему и внешнему периметрам, установлены видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, а выходы с видеокамер соединены с блоком записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, причем в потолочной части макета выполнен проем, который закрыт взрывозащитным элементом, по фронту движения взрывной волны установлен трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединен со входом блока записывающей и регистрирующей аппаратуры, причем по обе стороны от датчика давления расположены датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединены со входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеены тензодатчиками, выходы которых также соединены со входом блока записывающей и регистрирующей аппаратуры, также содержит металлический бронированный каркас с металлической бронированной обшивкой и наполнителем - свинцом, имеющей в торцах четыре неподвижных патрубка-опоры, а в покрытии взрывоопасного объекта жестко заделаны четыре опорных стержня, которые телескопически вставлены в неподвижные патрубки-опоры панели, а снаружи опорных стержней расположены упругодемпфирующие элементы, один конец которых упирается в бронированную металлическую обшивку, а другой - в листы-упоры, расположенные в верхней части опорных стержней, отличающаяся тем, что упругодемпфирующие элементы выполнены в виде цилиндрической винтовой пружины со встроенным демпфером, содержащей цилиндрическую винтовую пружину, состоящую из двух частей со встречно-направленными концами, одна часть из которых имеет витки прямоугольного сечения, а другая часть пружины выполнена полой, при этом встречно-направленный конец первой части размещен в полости второй, зазоры сегментного профиля контактирующих частей пружины заполнены антифрикционной смазкой, при этом на конце второй части пружины установлена уплотнительная манжета для предотвращения утечки смазки, а первую часть винтовой пружины, выполненную с витками прямоугольного сечения с закругленными кромками, охватывает трубка из демпфирующего материала, например полиуретана, а зазоры в первой части винтовой пружины, выполненной с витками прямоугольного сечения, которую охватывает трубка из демпфирующего материала, заполнены крошкой из фрикционного материала, выполненного из композиции, включающей следующие компоненты при их соотношении, мас.%: смесь резольной и новолачной фенолоформальдегидных смол в соотношении 1:(0,2-1,0) в количестве 28÷34%; волокнистый минеральный наполнитель, содержащий стеклоровинг или смесь стеклоровинга и базальтового волокна в соотношении 1:(0,1-1,0), в количестве 12÷19%, графит в количестве 7÷18%; модификатор трения, содержащий технический углерод в виде смеси с каолином и диоксидом кремния, в количестве 7÷15%; баритовый концентрат в количестве 20÷35%; тальк в количестве 1,5÷3,0%.



 

Похожие патенты:

Изобретение относится к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Стенд для моделирования чрезвычайной ситуации содержит макет взрывоопасного объекта, защитный чехол и поддон.

Изобретение относится к пожаротушению, применяемому в автоматических и автономных системах пожаротушения. Способ приведения в действие установки для тушения пожара, в котором на стадии конфигурирования средства термического разрушения термочувствительного элемента и создания зоны его разрушения формируют ограниченный объем вокруг термочувствительного элемента, который заполняют пиротехническим веществом, инициируют после приложения электрического импульса его воспламенение, и производят интенсивный нагрев термочувствительного элемента в зоне его разрушения, и разрушение названного элемента.

Изобретение относится к области противопожарной техники. Модуль пожаротушения, включающий корпус, изготовленный из профилированных стальных полос, в который вертикально установлен баллон с сифонной трубкой, разделенный уровнем жидкости на жидкостный и газовый объемы, и заполненный огнетушащей жидкостью, находящейся под давлением сжатого газа.

Изобретение относится к системам безопасности, предотвращающим развитие чрезвычайной ситуации. В испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры.

Изобретение относится к машиностроению и может быть использовано для взрывозащиты технологического оборудования. В стенде для испытаний взрывозащитных элементов в испытательном боксе устанавливается макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете.

Предлагаемое изобретение относится к области спринклерных воздушных установок пожаротушения. Способ управления спринклерной воздушной установкой пожаротушения заключается в сочетании принципа действия спринклерной воздушной установки пожаротушения, спринклерно-дренчерной установки пожаротушения и спринклерной установки пожаротушения, оснащенной спринклерными оросителями с устройством контроля срабатывания.

Изобретение относится к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Макет взрывоопасного объекта установлен на стойках в испытательном боксе и оборудован транспортной и подвесной системами.

Изобретение относится к системам безопасности, предотвращающим развитие чрезвычайной ситуации. В испытательном боксе устанавливают макет взрывоопасного объекта.

Изобретение относится к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Макет взрывоопасного объекта устанавливают на стойках и оснащают исследуемыми взрывозащитными элементами.

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации. В испытательном боксе устанавливают макет взрывоопасного объекта.

Изобретение относится к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Инициатор взрыва установлен в макете взрывоопасного объекта. Защитный чехол и поддон представляют собой единую замкнутую конструкцию, образованную вокруг макета взрывоопасного объекта. Взрывозащитный элемент установлен над отверстием в верхней части макета. Для фиксации предельного положения панели взрывозащитного элемента к торцам опорных стержней приварены листы-упоры. Упругодемпфирующие элементы расположены снаружи опорных стержней и выполнены в виде цилиндрических винтовых пружин со встроенным демпфером. Каждая пружина состоит из двух частей со встречно направленными концами. Встречно направленный конец первой части размещен в полости второй. Зазоры сегментного профиля контактирующих частей пружины заполнены антифрикционной смазкой. Первая часть винтовой пружины выполнена с витками прямоугольного сечения с закругленными кромками и охватывается трубкой из демпфирующего материала. Зазоры между первой частью пружины трубкой заполнены крошкой из фрикционного материала. Техническим результатом изобретения является повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций. 3 ил.

Изобретение относится к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Инициатор взрыва размещен в испытательном боксе макета взрывоопасного объекта. Макет оборудован транспортной и подвесной системами. Взрывозащитный элемент установлен над отверстием в верхней части макета. У отверстия, симметрично относительно его оси, укреплены четыре опорных стержня, телескопически вставленные в неподвижные патрубки-опоры, заделанные в панели взрывозащитного элемента. Снаружи опорных стержней коаксиально расположены упругодемпфирующие элементы, выполненные в виде конических втулок из полиуретана. Меньшее основание конических втулок упирается в бронированную металлическую обшивку взрывозащитного элемента, а большее основание - в листы-упоры, расположенные в верхней части опорных стержней. В боковой части макета установлен дополнительный взрывозащитный элемент, идентичный взрывозащитному элементу, установленному в его верхней части. Технический результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте. 3 ил.

Изобретение относится к области пожаротушения и, в частности, к устройствам, обеспечивающим подачу огнетушащей жидкости на очаг возгорания в производственных, офисных, складских и других помещениях. Ороситель огнетушащей жидкости установки пожаротушения содержит корпус, выполненный в виде стакана, имеющего донную часть с распылительными каналами и боковую стенку с основными распылительными каналами, расположенными кольцевыми рядами и выполненными под углами к оси оросителя, увеличивающимися до прямого угла в направлении от донной части. Корпус снабжен, по меньшей мере, одним рядом дополнительных распылительных каналов, выполненных на части боковой стенки стакана выше последнего ряда основных распылительных каналов, образуя сектор распыла, создающий асимметричную диаграмму распыла огнетушащей жидкости относительно оси оросителя. Сектор распыла с дополнительными распылительными каналами позволяет осуществлять тушение возгорания в «проблемных» зонах, выходящих за пределы основной зоны орошения. 5 з.п. ф-лы, 7 ил.

Изобретение относится к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Способ прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте заключается в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации. В испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете взрывного осколочного элемента с инициатором взрыва. Видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете. Регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта. В потолочной части макета выполняют проем, который закрывают взрывозащитным элементом. Между взрывным осколочным элементом и проемом устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют с входом блока записывающей и регистрирующей аппаратуры. Внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте, и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте. Технически достижимый результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте. 1 з.п. ф-лы, 2 ил.

Изобретение относится к испытательному оборудованию предохранительных устройств систем безопасности в чрезвычайных ситуациях (ЧС) взрывного характера. Способ предотвращения чрезвычайных ситуаций взрывного характера, заключается в получении сигнала от системы зондирования опасной зоны, включающей в себя датчики, настроенные на превышение ПДК химически-опасных веществ, присутствующих в зоне, зонд, настроенный на превышение ПДУ радиоактивных веществ, и датчик инфракрасного излучения, извещающий о возникновении пожара. Направляют на общий микропроцессор системы зондирования опасной зоны и обрабатывают эти сигналы с получением управляющего сигнала, дополнительно получают сигнал с индикатора безопасности, реагирующего на деформацию втулки из быстроразрушающегося материала, закрепленной между фланцами противовзрывной панели, и направляют сигнал на тензоусилитель, а с выхода тензоусилителя направляют на вход общего микропроцессора системы оповещения об аварийной ситуации, на который также поступает сигнал с индикатора безопасности, реагирующего на деформацию втулки. Втулка закреплена на внешней поверхности штыря пакета тарельчатых упругих элементов. Сигнал с индикатора безопасности направляют на тензоусилитель и на вход общего микропроцессора системы оповещения об аварийной ситуации. Затем сигналы с общего микропроцессора системы оповещения об аварийной ситуации направляют на микропроцессор управления чрезвычайной ситуацией взрывного характера. Поступившие на микропроцессор управления чрезвычайной ситуацией взрывного характера полученные сигналы обрабатывают и принимают меры по ликвидации чрезвычайной ситуацию. Сигнал с микропроцессора управления чрезвычайной ситуацией по линии связи поступает на электроклапан устройства управления исполнительным органом общей системы оповещения и отключения. Технический результат - повышение эффективности защиты взрывоопасных объектов от аварийных ситуаций. 2 ил.

Изобретение относится к машиностроению, в частности к испытательному оборудованию предохранительных устройств систем безопасности в чрезвычайных ситуациях (ЧС) взрывного характера. Способ зондирования и предотвращения чрезвычайных ситуаций заключается в получении сигнала от системы зондирования опасной зоны, включающей в себя датчики, настроенные на превышение ПДК химически-опасных веществ, присутствующих в зоне, зонд, настроенный на превышение ПДУ радиоактивных веществ, и датчик инфракрасного излучения, извещающий о возникновении пожара, сигналы с которых направляют на общий микропроцессор системы зондирования опасной зоны, и обрабатывают эти сигналы с получением управляющего сигнала, дополнительно получают сигналы с одновременно функционирующей встроенной системы оповещения о чрезвычайной ситуации взрывоопасного характера, которую выполняют на базе двух индикаторов безопасности, размещенных непосредственно на противовзрывной панели, и в конструкции взрывозащитного элемента, расположенного на ее опорном стержне, при этом элементами «слабого звена» во встроенных системах оповещения о чрезвычайной ситуации взрывоопасного характера определяют: в одном случае втулку из быстроразрушающегося материала, например стекла, типа «триплекс», которую устанавливают непосредственно в противовзрывной панели на опорном стержне, телескопически вставленном в неподвижные патрубки-опоры, а в другом - во взрывозащитных элементах, демпфирующих воздействие ударной волны при взрыве, которые выполняют в виде пакетов тарельчатых упругих элементов подвижно базирующихся на стержнях с листами-упорами, содержащих круглое основание, которое посредством, по крайней мере двух, штырей подвижно расположено на стержне с листом-упором, при этом один конец штыря жестко закрепляют на листе-упоре, а другой - входит с зазором в отверстие, выполненное в основании, и фиксируют его посредством гайки, а на внешней поверхности штыря, коаксиально и осесимметрично, устанавливают втулку из быстроразрушающегося материала, стекла, типа «триплекс», на которой размещают индикатор безопасности в виде датчика, реагирующего на деформацию, например тензорезистора, выход которого соединяют с усилителем сигнала, например тензоусилителем, а выход тензоусилителя соединяют со входом общего микропроцессора системы оповещения об аварийной ситуации взрывоопасного характера. Технический результат - повышение эффективности защиты взрывоопасных объектов от аварийных ситуаций. 2 ил.

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Способ моделирования чрезвычайной ситуации при аварии на взрывоопасном объекте заключается в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации, в испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете взрывного осколочного элемента с инициатором взрыва, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют со входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют со входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте. Технически достижимый результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте. 2 ил.

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Стенд для испытаний устройств, демпфирующих взрывную волну при аварии на взрывоопасном объекте, содержит систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации. В испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете взрывного осколочного элемента с инициатором взрыва, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, между дополнительными демпфирующими элементами и металлическим каркасом с бронированной металлической обшивкой, на опорных стержнях установлены втулки из быстроразрушающегося материала, например стекла, типа «триплекс», а между дополнительным элементом и втулкой из быстроразрушающегося материала установлен тензодатчик для регистрации давления разрушения втулки из стекла типа «триплекс», сигнал, с которого по линии связи 34 направляют в блок записывающей и регистрирующей аппаратуры, выход которой соединяют с блоком анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта. Технически достижимый результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области противопожарной техники, а именно к тушению пожаров классов А, В, С, Е, и может быть использовано на транспортных средствах. Техническим результатом предлагаемого изобретения является повышение эффективности и надежности пожаротушения в стесненных условиях за счет создания объемного пожаротушения с использованием гибких трубопроводов. Способ распыления огнетушащего вещества включает распыление огнетушащего вещества под давлением через систему гибких трубопроводов и распылительных насадок. Система трубопроводов сформирована в плоскостях, разноориентированных относительно центральной оси, с рабочим давлением в системе от 0,5 МПа до 10,5 МПа с возможностью создания разнонаправленных факелов распыления различной формы в каждой плоскости и подачи огнетушащего вещества через каждую распылительную насадку до 2 кг в секунду с формированием области оптимальной концентрации огнетушащего вещества. Для осуществления способа предлагаются два варианта исполнения устройства для распыления огнетушащего вещества, которое включает емкость, заполненную огнетушащим веществом, соединенную трубопроводами с распылительными насадками. При этом используют систему гибких трубопроводов, состоящую из центрального трубопровода и трубопроводов второго уровня, имеющих разный диаметр, трубопроводы второго уровня сформированы относительно центрального трубопровода и соединены между собой жестко для деления потоков под углом 90° и при отношении внутренних диаметров трубопроводов второго уровня к внутреннему диаметру центрального трубопровода не более 0,75 и не менее 0,5, используют распылительные насадки, формирующие разную форму факелов распыления, соединенные с трубопроводами с возможностью изменения их направления и формирования оптимального распыления. Второй вариант исполнения устройства предполагает использование гибких трубопроводов, расположенных с возможностью ориентации в пространстве. 3 н. и 4 з.п. ф-лы, 8 ил.

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Технически достижимый результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте. Это достигается тем, что в способе прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте, заключающемся в том, что используют систему мониторинга с обработкой полученной информации об опасной зоне для принятия решения о предотвращении чрезвычайной ситуации, в испытательном боксе устанавливают макет взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры для видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете взрывного осколочного элемента с инициатором взрыва, при этом видеокамеры выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок соединяют с блоком, посредством которого производят запись и регистрацию протекающих процессов изменения технологических параметров в макете, после чего регистрируют посредством системы анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, а в потолочной части макета выполняют проем, который закрывают взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко фиксируют в потолке макета, а на втором крепят горизонтальную перекладину, между взрывным осколочным элементом и проемом устанавливают трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединяют с входом блока записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления располагают датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеивают тензодатчиками, выходы которых также соединяют с входом блока записывающей и регистрирующей аппаратуры, после обработки полученных экспериментальных данных формируют информационную базу данных о развитии чрезвычайной ситуации при аварии на взрывоопасном объекте и составляют математическую модель, прогнозирующую предотвращение чрезвычайной ситуации при аварии на взрывоопасном объекте. 3 ил.

Изобретение относится к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Макет взрывоопасного объекта с установленным в нем взрывным осколочным элементом с инициатором взрыва размещен в испытательном боксе. В потолочной части макета выполнен проем, который закрыт взрывозащитным элементом. В покрытии взрывоопасного объекта жестко заделаны четыре опорных стержня, которые телескопически вставлены в неподвижные патрубки-опоры панели. Снаружи опорных стержней расположены упругодемпфирующие элементы, один конец которых упирается в бронированную металлическую обшивку, а другой - в листы-упоры, расположенные в верхней части опорных стержней. Упругодемпфирующие элементы выполнены в виде цилиндрической винтовой пружины со встроенным демпфером. Цилиндрическая винтовая пружина состоит из двух частей со встречно-направленными концами, одна часть из которых имеет витки прямоугольного сечения, а другая часть пружины выполнена полой. Зазоры в первой части винтовой пружины, выполненной с витками прямоугольного сечения, заполнены крошкой из фрикционного материала. Техническим результатом изобретения является повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте. 3 ил.

Наверх