Ингибитор коррозии и коррозионного растрескивания под напряжением

Изобретение относится к защите металлов от коррозии, а именно к ингибиторам коррозии и коррозионного растрескивания под напряжением (КРН) стальных трубопроводов. Ингибитор содержит компоненты при следующем соотношении, мас. %: соли высших алифатических кислот с щелочноземельными металлами 5-45; соли высших алифатических кислот с аминами 5-45; замещенный триалкоксисилан 25-75. Технический результат: разработка ингибитора, обеспечивающего при введении в грунтовочное покрытие эффективную защиту стали от коррозии и КРН. 3 з.п. ф-лы, 2 табл., 23 пр.

 

Изобретение относится к защите металлов от коррозии, а именно к ингибиторам коррозии и коррозионного растрескивания под напряжением (КРН) стальных трубопроводов.

Подземные стальные трубопроводы подвержены интенсивной коррозии и КРН. Для защиты от коррозии на трубы наносят защитные покрытия, в т.ч. грунты. Часто для повышения их эффективности в состав грунтов вводят ингибиторы. Известно большое количество ингибиторов коррозии, используемых в составе грунтов /Розенфельд И.Л., Рубинштейн Ф.И. Антикоррозионные грунтовки и ингибированные лакокрасочные покрытия. - М.: Химия, 1980. - 200 с./ [1]. Аналогом предлагаемого ингибитора является магниевая соль олеиновой кислоты, используемая в составе ингибированных битумных и битумно-полимерных грунтов /Богданова Т.И., Шехтер Ю.Н. Ингибированные нефтяные составы для защиты от коррозии. - М.: Химия, 1984. - 248 с./ [2]. Однако олеат магния не достаточно эффективен при защите стали от коррозии и не защищает сталь от КРН. Наиболее близким по технической сущности к предлагаемому ингибитору является смесь солей высших алифатических кислот со щелочноземельными металлами и аминами /Кузнецов Ю.И., Андреев Н.Н., Олейник С.В., Лукьянчиков О.А. Ингибированные покрытия типа ИФХАН для временной защиты металлоизделий. Тезисы докладов научно-технической конференции «Проблемы защиты металлов от коррозии». Липецк, 1985, с. 84-85/ [3]. Однако и этот ингибитор (прототип) недостаточно эффективен в отношении коррозии стали и ее КРН.

Цель настоящего изобретения - разработка ингибитора, обеспечивающего при введении в грунтовочное покрытие эффективную защиту стали от коррозии и КРН.

Поставленная цель достигается тем, что ингибитор на основе смеси солей высших алифатических кислот с щелочноземельными металлами и аминами дополнительно содержит замещенный триалкоксисилан при следующем соотношении компонентов (мас. %):

соли высших алифатических кислот со
щелочноземельными металлами 5-45
соли высших алифатических кислот с аминами 5-45
замещенный триалкоксиксисилан 25-75

В качестве солей высших алифатических кислот с щелочноземельными металлами используют олеаты или стеараты кальция, магния или бария, а также продукты взаимодействия таллового масла или кокосового масла с оксидами этих металлов.

В качестве солей высших алифатических кислот с аминами используют олеаты или стеараты октадециламина, аминов таллового или кокосового масла, а также продукты взаимодействия таллового масла или кокосового масла с аминами этих масел.

В качестве замещенного триалкоксисилана используют винилтриэтоксисилан, винилтриметоксисилан, аминопропилтриэтоксисилан или метакрилоксипропилтриметоксисилан.

Ниже приводятся примеры конкретных составов предлагаемого ингибитора и подробное описание изобретения, поясняющее его техническую сущность.

Все ингибиторы готовили смешением компонентов при температуре 50-60°С: в грунт битумно-полимерный ГТ-760ИН ингибиторы по примерам 1.1-1.11, 2.1-2.12, а также ингибитор - аналог и ингибитор - прототип вводили в количестве 4%.

Продукты взаимодействия таллового масла и кокосового масла с оксидами кальция, магния или бария получали перемешиванием компонентов при температуре 80-90°С в течение 2 часов. Оксиды щелочноземельных металлов брали в избытке. После приготовления продуктов нерастворившиеся вещества отделяли фильтрованием через тонкую металлическую сетку.

Продукты взаимодействия таллового масла или кокосового масла с аминами этих масел получали перемешиванием равных весовых количеств компонентов при температуре 80-90°С в течение 2 часов.

Композиция-прототип содержала равные весовые количества стеаратов кальция и октадециламина. Такое соотношение компонентов ингибитора-прототипа является оптимальным по данным [3].

Для оценки эффективности исследуемых ингибиторов к отношении коррозии прямоугольные образцы стали Х70 (30×40 мм) однократно окунали в грунт с добавками ингибитора и сушили в течение 10 дней в комнатных условиях. Толщина покрытия составляла 110-120 мкм. После сушки (10 дней в комнатных условиях) образцы помещали в камеру солевого тумана на 60 суток. В ходе эксперимента фиксировали время до появления на поверхности образцов очагов коррозии.

Оценка эффективности исследуемых ингибиторов в отношении КРН проводилась на цилиндрических образцах ГОСТ 1497 - 84, тип IV с размерами рабочей части d0=2,5 мм, l0=25 мм, изготовленных из трубной стали категории прочности Х70. Образцы однократно окунали в грунт с добавками ингибитора и сушили в течение 10 дней в комнатных условиях. Толщина покрытия составляла 110-120 мкм. После сушки образцы помещали в камеру искусственного климата при температуре 30°С и 100% относительной влажности воздуха и выдерживали в течение 30 суток. Коррозионно-механические испытания образцов проводились методом медленного растяжения с постоянной скоростью, равной 2×10-9 м/с, при выдержке в испытательном растворе. Испытательная среда представляет собой водный раствор, содержащий хлористый калий (0,12 г/л), бикарбонат натрия (0,48 г/л), хлористый кальций (0,18 г/л), сульфат магния (0,13 г/л) и сульфид натрия (0,08 г/л) на фоне боратного буфера с рН 7,0 (борной кислоты 24,8 г/л, буры 2,1 г/л). Данный раствор имеет ионный состав, близкий к составам грунтовых электролитов, вызывающих КРН трубных сталей.

Стандартным способом определялось относительное сужение образца (Ψ), а именно после разрыва образца измеряли минимальный диаметр образца в двух взаимно перпендикулярных направлениях. По среднему арифметическому из полученных значений вычислялась площадь поперечного сечения образца после разрыва. Относительное сужение после разрыва образца вычисляли по формуле: Ψ=(So-Sk)⋅100%/So (где So - начальная площадь поперечного сечения образца, мм2; Sk - площадь поперечного сечения образца после разрыва, мм2). На основании полученных значений Ψ рассчитывали показатель склонности материала к КРН в коррозионной среде: I=(Ψ-Ψкор)⋅100%/Ψ (где Ψкор - среднее значение относительного сужения образца, полученное при испытаниях в коррозионной среде; Ψ - среднее значение относительного сужения образца при испытаниях на воздухе) и эффективность ингибирования процесса КРН определяли по величине показателя Z=(Iфон-Iинг)⋅100%/Iфон (где Iинг и Iфон - показатели склонности металла к КРН в ингибированной среде и без ингибитора соответственно). Величина Z использовалась как критерий влияния ингибитора на КРН. При полном ингибировании процесса КРН показатель Z=100%.

Данные табл. 1 свидетельствуют, что ингибитор коррозии и КРН на основе стеарата бария, стеарата октадециламина и винилтриэтоксисилана при соблюдении указанных соотношений компонентов (примеры 1.1-1.5) и введении в грунтовку обеспечивает более эффективную защиту стали от коррозии и КРН, чем композиции аналога и прототипа. Это проявлялось в более высоких временах до появления на поверхности образцов очагов коррозии в камере солевого тумана и показателях эффективности ингибирования КРН.

Нарушение указанных соотношений компонентов ведет к резкому снижению (ниже уровня прототипа) защиты металла от коррозии и КРН (примеры 1.6-1.11).

Резкий рост защитных свойств предлагаемого ингибитора при соблюдении указанных выше соотношений компонентов имеет синергетический характер. Природа его в настоящее время неясна.

Данные табл. 2 иллюстрируют возможность использования в составе ингибитора коррозии и КРН в качестве солей высших алифатических кислот со щелочноземельными металлами: олеата кальция (пример 2.1), олеата магния (пример 2.2), олеата бария (пример 2.3), стеарата кальция (пример 2.4), стеарата магния (пример 2.5), стеарата бария (пример 2.6), продуктов взаимодействия таллового масла с оксидом кальция (пример 2.7), оксидом магния (пример 2.8), оксидом бария (пример 2.9), или кокосового масла с оксидом кальция (пример 2.10), оксидом магния (пример 2.11) и оксидом бария (пример 2.12).

В качестве солей высших алифатических кислот с аминами можно использовать олеат октадециламина (примеры 2.1), олеат аминов таллового масла (пример 2.2), олеат аминов кокосового масла (пример 2.3), стеарат октадециламина (примеры 2.4, 2.7, 2.12), стеарат аминов таллового масла (пример 2.5), стеарат аминов кокосового масла (пример 2.6), а также продукт взаимодействия таллового масла с аминами таллового масла (пример 2.8), продукт взаимодействия таллового масла с аминами кокосового масла (пример 2.9), продукт взаимодействия кокосового масла с аминами таллового масла (пример 2.10), продукт взаимодействия кокосового масла с аминами кокосового масла (пример 2.11).

В качестве замещенного триалкоксисислана можно использовать винилтриэтоксисилан (примеры 2.1-2.3), винилтриметоксисилан (примеры 2.4-2.6), аминопропилтриэтоксисилан (примеры 2.7-2.9), метакрилоксипропилтриметоксисилан (примеры 2.10-2.12).

Таким образом, результаты коррозионных испытаний свидетельствуют, что предлагаемый ингибитор коррозии и коррозионного растрескивания под напряжением превосходит по защитным свойствам преобразователь - аналог и преобразователь - прототип.

Использование предлагаемого ингибитора коррозии и коррозионного растрескивания под напряжением позволит увеличить сроки службы стальных трубопроводов.

Литература

1. Розенфельд И.Л., Рубинштейн Ф.И. Антикоррозионные грунтовки и ингибированные лакокрасочные покрытия. - М.: Химия, 1980. - 200 с.

2. Богданова Т.И., Шехтер Ю.Н. Ингибированные нефтяные составы для защиты от коррозии. - М.: Химия, 1984. - 248 с.

3. Кузнецов Ю.И., Андреев Н.Н., Олейник С.В., Лукьянчиков О.А. Ингибированные покрытия типа ИФХАН для временной защиты металлоизделий. Тезисы докладов научно-технической конференции «Проблемы защиты металлов от коррозии». Липецк, 1985, с. 84-85.

1. Ингибитор коррозии и коррозионного растрескивания под напряжением на основе смеси солей высших алифатических кислот с щелочноземельными металлами и аминами, отличающийся тем, что он дополнительно содержит замещенный триалкоксисилан при следующем соотношении компонентов, мас. %:

соли высших алифатических кислот с щелочноземельными металлами 5-45
соли высших алифатических кислот с аминами 5-45
замещенный триалкоксисилан 25-75

2. Ингибитор по п. 1, отличающийся тем, что в качестве солей высших алифатических кислот с щелочноземельными металлами используют олеаты, стеараты кальция, магния или бария, и продукты взаимодействия таллового масла или кокосового масла с оксидами этих металлов.

3. Ингибитор по п. 1, отличающийся тем, что в качестве солей высших алифатических кислот с аминами используют олеаты или стеараты октадециламина, аминов таллового или кокосового масла и продукты взаимодействия таллового масла или кокосового масла с аминами этих масел.

4. Ингибитор по п. 1, отличающийся тем, что в качестве замещенного триалкоксисилана используют винилтриэтоксисилан, винилтриметоксисилан, аминопропилтриэтоксисилан или метакрилоксипропилтриметоксисилан.



 

Похожие патенты:

Изобретение относится к защитным консервационным материалам для противокоррозионной защиты металлических изделий от воздействия окружающей среды. Композиция содержит тормозную жидкость "Томь" и ингибитор коррозии, при этом в качестве ингибитора коррозии она содержит 3,5-динитробензоат пиперидина в количестве от более 1,5 до 3,0 мас.%.

Изобретение относится к области защиты от коррозии металлов, в частности к способам получения полимерных основ для составов, обеспечивающих надежную защиту в средах, содержащих растворенный сероводород или углекислый газ, обладающих высокой сорбционной активностью по отношению к металлическим поверхностям, и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности для защиты технологического оборудования.

Изобретение относится к области защиты металлов от коррозии и может быть использовано в нефтедобывающей промышленности для защиты технологического оборудования и трубопроводов от коррозионных разрушений в водно-нефтяных средах.

Изобретение относится к области защиты металлов от атмосферной коррозии с помощью ингибиторов и может быть использовано для временной защиты от коррозии изделий из черных и цветных металлов, а также деталей машин и оборудования при их транспортировании и хранении.

Изобретение относится к области защиты нефтепромыслового оборудования от коррозии, в том числе сероводородной и углекислотной, и может быть использовано в нефте- и газодобывающей промышленности.

Изобретение относится к области теплоэнергетики и может быть использовано для поддержания на тепловых электростанциях оптимального водно-химического режима ВХР пароводяного тракта, выполнения отмывки и консервации на топливосжигающих энергоблоках и парогазовых энергетических установках с обеспечением в заданных пределах величины pH рабочей среды и созданием на стенках тепловых поверхностей защитной магнетито-аминовой противокоррозионной пленки.

Изобретение относится к области теплоэнергетики и может быть использовано при организации водно-химического режима на основе комплексных аминосодержащих реагентов для пароводяного тракта энергоблока с барабанными котлами и, в частности, с котлами-утилизаторами применительно к энергоблокам с парогазовыми установками.

Изобретение относится к области защиты металлов от коррозии с помощью ингибиторов в минерализованных средах, содержащих сероводород, и может быть использовано в нефтяной отрасли.

Антифриз // 2540545
Изобретение относится к антифризам - низкозамерзающим охлаждающим жидкостям и может быть использовано для охлаждения двигателей внутреннего сгорания транспортных средств, специальной техники, а также в качестве теплоносителя в теплообменных аппаратах.
Изобретение относится к низкозамерзающим охлаждающим жидкостям и может быть использовано для охлаждения двигателей внутреннего сгорания машин и специальной техники, а также в качестве теплоносителя в теплообменных аппаратах.

Изобретение относится к области защиты металлов от коррозии в сероводородных средах ингибиторами и может быть использовано для защиты стального оборудования в нефтяной отрасли. Способ включает добавление в минерализованную водно-нефтяную среду, содержащую сероводород, 2-метил-2-этил-5,7-ди-(1-метилбут-2-ен-1-ил)индолина в концентрации 25-200 мг/л. Технический результат: повышение степени защиты от коррозии до 86,25-95,5%. 1 табл., 3 пр.

Изобретение относится к области защиты металлов от коррозии, наводороживания и развития сульфатредуцирующих бактерий (СРБ) и может быть использовано в водно-солевых средах, содержащих СРБ. Способ включает введение в коррозионную среду ингибитора-бактерицида, при этом в качестве ингибитора-бактерицида используют органическое соединение - координационно-насыщенный комплекс кобальта с двумя перпендикулярно расположенными тридентатными лигандами - основание Шиффа 5-Br-салицилового альдегида и (S)-аминокислоты: аспарагина, глицина, глутамина или лейцина в количестве 1, 2, 5, 10 ммоль/л общей формулы где R - изменяющаяся часть (S)-аминокислоты. Технический результат: повышение коррозионной стойкости стали и расширение ассортимента ингибиторов-бактерицидов. 4 табл., 1 пр.

Изобретение относится к области защиты металлов от коррозии в сероводородных средах ингибиторами и может быть использовано для защиты от коррозии оборудования в нефтяной отрасли. Способ включает добавление в сероводородсодержащую среду ингибитора 2,5-бис[2Е(Z)-1-метилбут-2-ен-1-ил] фенил-1,4-диамина в концентрации 25-200 мг/л. Технический результат: повышение степени защиты стали от коррозии до 89,8-96,1 %. 1 табл., 3 пр.

Изобретение относится к области защиты от образования накипи и коррозии металлов теплоэнергетического оборудования и может быть использовано для защиты оборудования и трубопроводов пароводяных трактов тепловых электрических станций (ТЭС), тепловых сетей и подобных теплоэнергетических установок. Способ включает дозирование стеариламина пленкообразующего алифатического амина R-NH2, где R=C16H33-С18Н37, в пароводяные тракты теплоэнергетической установки, при этом осуществляют дозирование стериламина в виде водного мицелла-молекулярного раствора, полученного рециркуляцией в вихревом насосе упомянутого стеариаламина с обессоленной деаэрированной водой при температуре 60-63°C в течение 1 часа, независимо от режима работы теплоэнергетической установки периодически 1-4 раза в год, как на рабочем, так и на остановленном оборудовании. Технический результат: повышение эффективности защиты от образования накипи и коррозии оборудования. 3 табл., 10 ил.
Изобретение относится к области защиты от коррозии металлов и может быть использовано в теплоэнергетике для использования при эксплуатации энергетического оборудования и трубопроводов, в том числе тепловых и атомных электрических станций, для снижения скорости коррозии металлических поверхностей оборудования и трубопроводов как в период эксплуатации, так и в период простоя, в том числе на период профилактических и ремонтных работ. Способ включает ввод консерванта в движущийся поток рабочего тела и консервацию в течение времени, необходимого для сорбции консерванта в количестве не менее 3 мг/м2, при этом в качестве консерванта используют водную эмульсию смеси первичных пленкообразующих алифатических аминов C16-C18, имеющую свойства текучести и гомогенности, водную эмульсию смешивают с циркулирующим в контуре энергетической установки рабочим телом, причем осуществляют ввод водной эмульсии с температурой 31-50°C. Технический результат изобретения заключается в повышении технологичности, расширении технологических возможностей, сокращении времени проведения консервации. 2 з.п. ф-лы, 3 пр.

Изобретение относится к защите от коррозии оборудования для добычи нефти, а также трубопроводов и резервуаров для нее. Ингибитор коррозии для защиты оборудования для добычи сырой нефти, нефтепроводов и резервуаров для сырой нефти, содержащий: компонент а), полученный в результате выполнения следующих процессов: А) - частичной нейтрализации смеси модифицированных производных имидазолина общих приведенных структурных формул путем обработки алифатической и/или ароматической монокарбоновой кислотой, содержащей от 1 до 7 атомов углерода в молекуле, и В) - дальнейшей частичной нейтрализации полученного промежуточного продукта жирными кислотами, содержащими от 12 до 22 атомов углерода в молекуле, и/или полимерами жирных кислот, содержащими от 18 до 54 атомов углерода в молекуле, компонент b), представляющий собой этоксилированные жирные амины, содержащие от 14 до 22 атомов углерода в молекуле, и от 2 до 22, предпочтительно от 5 до 15, этокси-групп в молекуле, компонент d), представляющий собой алифатические спирты, содержащие от 1 до 6 атомов углерода на молекулу, возможно, с добавлением воды. Способ получения указанного выше ингибитора коррозии включает указанные выше операции. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение эффективности ингибирования. 2 н. и 7 з.п. ф-лы, 1 табл., 13 пр.

Изобретение относится к защите от коррозии оборудования для добычи нефти, а также трубопроводов и резервуаров для нее. Ингибитор коррозии для защиты оборудования для добычи сырой нефти, нефтепроводов и резервуаров для сырой нефти, содержащий: компонент а), полученный в результате выполнения следующих процессов: А) - частичной нейтрализации смеси модифицированных производных имидазолина общих приведенных структурных формул путем обработки алифатической и/или ароматической монокарбоновой кислотой, содержащей от 1 до 7 атомов углерода в молекуле, и В) - дальнейшей частичной нейтрализации полученного промежуточного продукта жирными кислотами, содержащими от 12 до 22 атомов углерода в молекуле, и/или полимерами жирных кислот, содержащими от 18 до 54 атомов углерода в молекуле, компонент b), представляющий собой этоксилированные жирные амины, содержащие от 14 до 22 атомов углерода в молекуле, и от 2 до 22, предпочтительно от 5 до 15, этокси-групп в молекуле, компонент d), представляющий собой алифатические спирты, содержащие от 1 до 6 атомов углерода на молекулу, возможно, с добавлением воды. Способ получения указанного выше ингибитора коррозии включает указанные выше операции. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение эффективности ингибирования. 2 н. и 7 з.п. ф-лы, 1 табл., 13 пр.

Настоящее изобретение относится к способам и композициям для ингибирования коррозии металлов, конкретно нержавеющих и дуплексных сталей. Коррозия металлических трубопроводов составами ингибиторов гидратообразования, в частности локализованная коррозия, уменьшается, когда состав ингибитора гидратообразования содержит эффективное количество по меньшей мере одной гидроксикислоты или эквивалента, выбранной из группы, состоящей из гидроксикислот, имеющих от 2 до 20 атомов углерода и по меньшей мере одну гидроксильную группу, и по меньшей мере один ион неорганического галогенида, а также не содержит метанол. Изобретение развито в зависимых пунктах формулы. Технический результат – улучшение ингибирования гидратообразования и коррозии указанных сталей. 3 н. и 14 з.п. ф-лы, 1 пр., 1 ил.

Настоящее изобретение относится к способам и композициям для ингибирования коррозии металлов, конкретно нержавеющих и дуплексных сталей. Коррозия металлических трубопроводов составами ингибиторов гидратообразования, в частности локализованная коррозия, уменьшается, когда состав ингибитора гидратообразования содержит эффективное количество по меньшей мере одной гидроксикислоты или эквивалента, выбранной из группы, состоящей из гидроксикислот, имеющих от 2 до 20 атомов углерода и по меньшей мере одну гидроксильную группу, и по меньшей мере один ион неорганического галогенида, а также не содержит метанол. Изобретение развито в зависимых пунктах формулы. Технический результат – улучшение ингибирования гидратообразования и коррозии указанных сталей. 3 н. и 14 з.п. ф-лы, 1 пр., 1 ил.

Изобретение относится к защите металлов от коррозии, а именно к ингибиторам коррозии и коррозионного растрескивания под напряжением стальных трубопроводов. Ингибитор содержит компоненты при следующем соотношении, мас. : соли высших алифатических кислот с щелочноземельными металлами 5-45; соли высших алифатических кислот с аминами 5-45; замещенный триалкоксисилан 25-75. Технический результат: разработка ингибитора, обеспечивающего при введении в грунтовочное покрытие эффективную защиту стали от коррозии и КРН. 3 з.п. ф-лы, 2 табл., 23 пр.

Наверх