Способ ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения с применением антенных решеток

Использование: для ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения. Сущность изобретения заключается в том, что две антенные решетки размещают на поверхности контролируемого изделия на оптимальном расстоянии между собой с двух сторон от сварного соединения, регистрируют отраженные от донной поверхности ультразвуковые эхо-импульсы, восстанавливают множество парциальных изображений, получают изображение профиля донной поверхности, по которому находят таблицу значений толщины контролируемого изделия в каждой точке области восстановления. Технический результат: повышение точности определения профиля внутренней поверхности изделия. 3 ил.

 

Изобретение относится к области ультразвукового неразрушающего контроля.

Известен способ ультразвукового контроля профиля внутренней поверхности изделия с неровными поверхностями [Пат. RU №2560754. Базулин Евгений Геннадьевич, Вопилкин Алексей Харитонович, Пронин Виталий Владимирович, Тихонов Дмитрий Сергеевич. Способ ультразвукового контроля профиля внутренней поверхности изделия с неровными поверхностями. Опубл. 20.08.2015].

Недостатком способа является отсутствие учета изменения расстояния между призмами при проведении контроля, что приводит к ошибке определения толщины контролируемого изделия.

Наиболее близким, принятым за прототип, является способ ультразвукового контроля профиля внутренней поверхности изделия с неровными поверхностями [Пат. RU №2560754. Базулин Евгений Геннадьевич, Вопилкин Алексей Харитонович, Пронин Виталий Владимирович, Тихонов Дмитрий Сергеевич. Способ ультразвукового контроля профиля внутренней поверхности изделия с неровными поверхностями. Опубл. 20.08.2015].

Известный способ не позволяет уточнять расстояние между призмами при проведении контроля, что приводит к ошибке определения толщины контролируемого изделия.

Предложен способ ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения с применением антенных решеток, заключающийся в том, что две антенные решетки, одна из которых излучатель, а вторая - приемник, устанавливают на наклонные призмы, обращенные передними гранями друг к другу, размещают на поверхности контролируемого изделия на оптимальном расстоянии между собой с двух сторон от сварного соединения, излучают ультразвуковые импульсы в контролируемое изделие независимо и попеременно каждым из выбранных активных элементов излучающей решетки, регистрируют отраженные от донной поверхности ультразвуковые эхо-импульсы заданными активными элементами регистрирующей решетки, восстанавливают множество парциальных изображений путем умножения матрицы принятых эхо-импульсов и матрицы сигналов, рассчитанных для каждой точки изображения для точечного отражателя с учетом трансформации типов волн при отражениях, получают изображение профиля донной поверхности, по которому находят таблицу значений толщины контролируемого изделия в каждой точке области восстановления, отличающейся тем, что с целью повышения точности определения профиля внутренней поверхности изделия в процессе проведения контроля регистрируют импульсы головных волн, сравнивают измеренные импульсы с рассчитанными в зависимости от оптимального расстояния между призмами и номинального значения скорости продольной волны в контролируемом изделии, минимизируя разницу между измеренными и рассчитанными импульсами головных волн, описываемых целевой функцией, определяют фактическое расстояние между призмами и реальное значение скорости продольной волны в объекте контроля.

Предлагаемый способ позволяет уточнять расстояние между призмами в процессе проведения контроля и корректировать номинальное значение скорости звука продольной волны в контролируемом изделии. Определяемые параметры позволяют повысить точность определения профиля внутренней поверхности.

Для пояснения описываемого способа:

На фигуре 1 приведены примеры зарегистрированных ультразвуковых эхо-импульсов, отраженных от донной поверхности объект контроля ОК, и ультразвуковых эхо-импульсов головных волн. На верхнем рисунке расстояние между призмами равно 0 мм, а на нижнем рисунке расстояние между призмами равно 40 мм.

На фигуре 2 приведена схема контроля с излучением и регистрацией эхо-импульсов головной волны элементами антенных решеток.

На фигуре 3 приведены изображения донной поверхности образца толщиной 18 мм по номинальным значениям расстояния между призмами и скорости звука в ОК (слева) и по их уточненным значениям (справа).

Предложенный способ ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения с применением антенных решеток осуществляется следующим образом. Две идентичные антенные решетки (АР) устанавливают на идентичные наклонные призмы и располагают на поверхности образца так, чтобы призмы были обращены передними гранями друг к другу. Оптимальное расстояние между гранями призм с АР выбирают исходя из параметров АР (рабочей частоты, количества элементов, шага, ширины элемента, активной апертуры), призм (угла наклона, скорости продольной волны в призме) и объекта контроля (номинальная толщина). Одну АР используют в качестве излучателя ультразвуковых эхо-сигналов, а вторую АР - в качестве приемника. Каждый из выбранных активных элементов излучающей АР независимо и попеременно излучает ультразвуковые сигналы в ОК. Принимающая АР заданными активными элементами регистрирует ультразвуковые эхо-импульсы, отраженные от донной поверхности ОК, и ультразвуковые эхо-импульсы головных волн (фиг. 1).

Как видно из фиг. 2, время прихода импульсов головной волны от излучателя, расположенного в точке rt, до приемника, расположенного в точке rr, зависит от расстояния между призмами b и скорости продольной волны в ОК . Уточнение расстояния между призмами и скорости продольной волны в ОК основано на достижении максимального совпадения по заданному критерию измеренных эхосигналов p(rt, rr, t) и их оценки при вариации уточняемых параметров. Вектор, по которому происходит вариация, имеет обозначение . Критерием максимального совпадения измеренных эхосигналов и их оценки является минимизация целевой функции, в качестве которой является обратная функция корреляции:

где * - операция комплексного сопряжения.

Измеренные эхосигналы и их оценка переводится в комплексный формат с применением преобразования Гильберта.

Оценка импульсов головной волны проводится по формуле:

где s(t) - форма импульса головной волны, которую определяют по измеренным эхосигналам, t и r - номера излучающего и приемного элементов АР соответственно.

Для расчета градиента целевой функции применяют симплексный метод Нелдера-Мида. В случае с двумя переменными b и симплексом является треугольник, а схема поиска минимума заключается в сравнении вычисленных значений функции в вершинах треугольника и перемещении симплекса с помощью итерационной процедуры в направлении минимума.

Вычисленные значения расстояния между призмами и скорости продольной волны в ОК используются для определения профиля донной поверхности по сигналам, отраженным от донной поверхности с учетом трансформации типов волн, по методу, описанному в способе ультразвукового контроля профиля внутренней поверхности изделия с неровными поверхностями. На фигуре 3 слева показано изображение дна в образце толщиной 18 мм, восстановленное при измерении базы обычной линейкой и использовании справочной скорости звука, а на рисунке справа после определения скорости звука и базы по предложенному методу. В первом случае блики дна сместились вверх на 0,8 мм, а во втором случае блик находится точно на глубине 18 мм. Кроме того, форма блика на изображении слева не соответствует ровной донной поверхности, в отличии от изображения справа.

Предлагаемый способ может найти широкое применение в ультразвуковой дефектоскопии различных металлоконструкций для контроля профиля донной поверхности сварных соединений трубопроводов с наличием валика усиления с применением автоматизированных систем сканирования.

Таким образом, предлагаемый способ позволяет уточнить расстояние между призмами в процессе проведения контроля с применением сканирующих устройств для механического перемещения по поверхности ОК, а также скорректировать номинальную скорость продольной волны в ОК. Способ применяется для контроля профиля донной поверхности сварных соединений металлоконструкций с наличием внешнего валика усиления и позволяет обнаруживать вмятины, выемки, утонения, провисания, смещение кромок и др. с измерением их геометрических параметров.

Способ ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения с применением антенных решеток, заключающийся в том, что две антенные решетки, одна из которых излучатель, а вторая - приемник, устанавливают на наклонные призмы, обращенные передними гранями друг к другу, размещают на поверхности контролируемого изделия на оптимальном расстоянии между собой с двух сторон от сварного соединения, излучают ультразвуковые импульсы в контролируемое изделие независимо и попеременно каждым из выбранных активных элементов излучающей решетки, регистрируют отраженные от донной поверхности ультразвуковые эхо-импульсы заданными активными элементами регистрирующей решетки, восстанавливают множество парциальных изображений путем умножения матрицы принятых эхо-импульсов и матрицы сигналов, рассчитанных для каждой точки изображения для точечного отражателя с учетом трансформации типов волн при отражениях, получают изображение профиля донной поверхности, по которому находят таблицу значений толщины контролируемого изделия в каждой точке области восстановления, отличающейся тем, что с целью повышения точности определения профиля внутренней поверхности изделия в процессе проведения контроля регистрируют импульсы головных волн, сравнивают измеренные импульсы с рассчитанными в зависимости от оптимального расстояния между призмами и номинального значения скорости продольной волны в контролируемом изделии, минимизируя разницу между измеренными и рассчитанными импульсами головных волн, описываемых целевой функцией, определяют фактическое расстояние между призмами и реальное значение скорости продольной волны в объекте контроля.



 

Похожие патенты:

Использование: для определения характеристик небольших объектов, имеющих поверхность, которая искривлена в плоскости сечения. Сущность изобретения заключается в том, что выполняют по меньшей мере одно наблюдение ультразвука, проходящего через объект, причем каждое наблюдение выполняют на оси, перпендикулярной плоскости симметрии, причем каждое наблюдение получают в результате излучения ультразвука, формируемого вдоль соответствующей одной из упомянутых осей и падающего на объект вдоль упомянутой оси под углом падения, отличным от нормального, причем ультразвук падает на объект таким образом, чтобы следовать по пути, который является симметричным относительно плоскости симметрии, причем время пролета ультразвуковой волны и/или положение оси, на которой выполняются излучение и наблюдение, анализируют для описания характеристик объекта.

Использование: для локального ультразвукового неразрушающего контроля качества труб. Сущность изобретения заключается в том, что акустический блок содержит сканирующий узел с основанием с опорными роликами, которое связано штоками с корпусом, в котором размещены демпфер, ультразвуковой эхо-пьезопреобразователь, локальная ванна для иммерсионной жидкости (воды).

Использование: для автоматизированного неразрушающего контроля резервуаров для хранения нефти и нефтепродуктов. Сущность изобретения заключается в том, что предложено устройство для автоматизированного неразрушающего контроля металлической конструкции, содержащее ультразвуковой блок неразрушающего контроля, блок неразрушающего контроля на основе метода утечки магнитного поля, вихретоковый блок неразрушающего контроля, управляющий блок, соединенный с указанными ультразвуковым блоком неразрушающего контроля, блоком неразрушающего контроля на основе метода утечки магнитного поля и вихретоковым блоком неразрушающего контроля для отправки управляющих сигналов для осуществления контроля металлической конструкции, и блок навигации, соединенный с управляющим блоком управления и выполненный с возможностью определения положения указанного устройства для автоматизированного неразрушающего контроля относительно металлической конструкции и состояния поверхности контролируемой металлической конструкции и направления сигналов с информацией о положении указанного устройства для автоматизированного неразрушающего контроля и состоянии поверхности контролируемой металлической конструкции в управляющий блок, причем все указанные блоки установлены во взрывозащищенном корпусе, имеющем средства перемещения по поверхности контролируемой металлической конструкции, управляющий блок выполнен с возможностью направления управляющих сигналов одновременно на по меньшей мере один блок из числа указанных ультразвукового блока неразрушающего контроля, блока неразрушающего контроля на основе метода утечки магнитного поля и вихретокового блока неразрушающего контроля на основе сигналов, полученных от блока навигации, а блок неразрушающего контроля на основе метода утечки магнитного поля выполнен с возможностью изменения индукции магнитного поля, создаваемого этим блоком, от минимального значения, близкого к нулю, до заданного максимального значения.

Использование: для дефектоскопии листов, плит и других изделий двухсторонним доступом в металлургической, машиностроительной областях промышленности. Сущность изобретения заключается в том, что излучают с одной стороны контролируемого изделия импульсы ультразвуковых колебаний, принимают с противоположной стороны изделия первый сквозной и двукратно отраженный сквозной импульсы, а также эхо-импульсы ультразвуковых колебаний, отраженных от дефекта, сканируют изделие по всей площади, обеспечивая соосность излучающего и приемного электроакустических преобразователей, анализируют огибающие амплитуд ультразвуковых колебаний первого прошедшего (сквозного) импульса и эхо-сигналы от дефекта во временном интервале между первым и вторым сквозными импульсами, дополнительно считывают координаты уменьшения прошедших через изделие сквозных импульсов, повышают чувствительность приема сигналов во временном интервале между первым и вторым сквозными импульсами, измеряют временной интервал между первым сквозным импульсом и первым эхо-сигналом от дефекта, по измеренным значениям определяют местоположение и глубину залегания дефекта.

Использование: для контроля технического состояния магистральных нефтепроводов в процессе их эксплуатации. Сущность изобретения заключается в том, что для стопроцентного контроля всего сечения трубы на дефектоскопе устанавливают большое количество ультразвуковых преобразователей.

Изобретение относится к области испытания конструкции на воздействие подводной ударной волны и может быть использовано для регистрации сотрясений на элементах подводного аппарата при воздействии подводной ударной волны.

Использование: для неразрушающего ультразвукового контроля изделий. Сущность изобретения заключается в том, что осуществляют ввод излучающим преобразователем ультразвуковых колебаний в изделие, прозвучивание свода изделия импульсами ультразвуковых колебаний и прием прошедших свод изделия ультразвуковых колебаний в воздушной среде канала изделия устройством с приемным преобразователем, при этом проводят предварительный ультразвуковой контроль изделия известным способом для определения участков, на которых фиксируется прохождение ультразвуковых колебаний через свод изделия, после чего на один из таких участков устанавливают неподвижно излучающий ультразвуковой преобразователь, выбирают акустически непрозрачный участок изделия для определения на нем сплошности скрепления полимерного материала с прилегающей к нему поверхностью корпуса, а также участок изделия, симметричный ему относительно излучающего преобразователя и образующей поверхности изделия, проходящей через место контакта излучающего преобразователя с поверхностью изделия, ориентируют устройство с приемным преобразователем путем поворота и продольного перемещения относительно оси изделия на участок поверхности канала, радиально противоположный выбранному акустически непрозрачному участку, устанавливают уровень сигнала в пределах экрана без ограничения сверху, и при неподвижно установленном излучающем преобразователе сканируют ультразвуковым приемным преобразователем участки поверхности канала изделия, радиально-противоположные выбранному акустически непрозрачному участку и симметричному ему участку, и последовательно сравнивают сигналы на данных участках, выявляя участки, на которых имеет место относительное уменьшение уровня сигнала, после чего аналогичным образом проверяют другие акустически непрозрачные участки.

Изобретение относится к неразрушающим методам и средствам дефектоскопии технически сложных элементов конструкции. Сущность: элемент конструкции, к которому есть доступ, нагружают переменной механической нагрузкой и вызывают его перемещения.

Изобретение относится к области исследования механических свойств проводящих и диэлектрических материалов при их обработке и может быть использовано при получении информации в процессе различных работ, связанных с токарной обработкой, сверлением, фрезерованием, шлифованием, прокаткой и другими технологическими операциями.

Использование: для неразрушающего контроля эхо-импульсным методом магистрального трубопровода. Сущность изобретения заключается в том, что контроль роста усталостной трещины производят путем одновременной передачи не менее двух сигналов в виде импульсных ультразвуковых колебаний от источников, размещенных в одной плоскости на одной общей платформе, причем сигналы формируют разной частоты и они направлены под разными углами к исследуемому объекту, а прием сигналов производят посредствам устройств, смонтированных на второй платформе в той же плоскости, что и источники импульсных ультразвуковых колебаний, при этом платформы располагают в одной плоскости на внешней стороне магистрального трубопровода, измеряют время распространения ультразвуковых колебаний в исследуемом образце и рассчитывают геометрические характеристики усталостных трещин магистральных трубопроводов.

Способ может быть использован в машиностроении, гидроэнергетике и других отраслях промышленности, требующих применения в производстве ультразвукового контроля. Для определения температурного коэффициента скорости ультразвука используются данные об изменении акустических характеристик материала. Сущность способа заключается в том, что в недеформированном и деформированном материале при разных температурах возбуждают упругие волны, определяют скорость их распространения и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука. Используя полученную аналитическую зависимость, можно определять температурный коэффициент для промежуточных значений температуры и величины пластической деформации, причем деформацию можно определять акустическим способом, измеряя параметр акустической анизотропии, не зависящий от температуры. Технический результат – повышение точности получаемых данных. 1 з.п. ф-лы, 1 ил.

Использование: для обнаружения изменений параметров заглубленного трубопровода и окружающей его среды. Сущность изобретения заключается в том, что в оболочке трубы возбуждают последовательность виброакустических импульсов через интервалы, превышающие интервал корреляции существующих в ней шумов, последовательность отсчетов регистрируемых реакций на каждое воздействие на другом конце контролируемого участка трубопровода суммируют с ранее полученными аналогичными отсчетами, модуль результирующего сигнала нормируют и принимают за плотность распределения временных интервалов отсчетов от начала до конца сформированного в сумматоре сигнала, по этому распределению вычисляют его оценки математического ожидания, среднеквадратичного отклонения, асимметрии и эксцесса, по совокупности каждого из этих моментов определяют линии регрессии их средних и отклонений от них, сравнивают эти линии с вычисленными на предыдущем шаге и при достижении результатами сравнения установленных значений прогнозируют их поведение с ростом количества суммирования для обеспечения допустимых доверительных границ вычисляемых моментов, по достижению которых судят как о наличии, так и виде изменений в трубопроводной системе в текущий момент времени. Технический результат: повышение надежности обнаружения изменений параметров в трубопроводной системе и распознавание их вида. 1 з.п. ф-лы, 8 ил.

Использование: для внутритрубного обследования трубопроводов. Сущность изобретения заключается в том, что внутритрубный ультразвуковой дефектоскоп оснащен устройством измерения скорости звука в перекачиваемой жидкости V и блоком автоматической регулировки длительности временного окна ΔT во время контроля по формуле: ΔT=ΔT°V°/V, где ΔТ° - длительность окна при контроле в жидкости с минимальной скоростью звука V°. Конструкция носителя п ультразвуковых пьезоэлектрических преобразователей обеспечивает длину пути ультразвукового импульса, от точки отражения от внутренней поверхности трубы до ближайшего элемента носителя, не менее ΔT°V°/2+ΔНп, где ΔНп - максимально допустимый износ полоза носителя ультразвуковых пьезоэлектрических преобразователей. Технический результат: расширение диапазона контролируемых толщин стенки трубы в сторону увеличения при перекачивании разнородных жидкостей и упрощение требований к конструкции носителя ультразвуковых пьезоэлектрических преобразователей. 1 з.п. ф-лы, 5 ил.

Использование: для ультразвукового (УЗ) неразрушающего контроля протяженных металлических изделий. Сущность изобретения заключается в том, что при перемещении вдоль трубопровода периодически возбуждают УЗ колебания в заданной области внешней или внутренней его поверхности, связанной с диагностическим устройством, принимают из этой же области реализации УЗ колебаний от акустических нормальных волн, отраженных от различных нарушений сплошности материала стенок, и в результате обработки принятых реализаций определяют распределение дефектов в стенках трубопровода, при этом возбуждают УЗ колебания касательными к поверхности трубопровода колебательными силами акустических контактов приемно-излучающих элементов диагностического устройства поочередно в каждой точке, а прием колебаний осуществляют одновременно во всех точках в пределах указанной области в выбранном интервале времени, и из реализаций УЗ колебаний, принятых во всех точках поверхности трубопровода при перемещении вдоль него, по предварительно рассчитанным временам задержки для всех типов акустических нормальных волн выбирают эхосигналы от каждой точки поверхности стенок, когерентно суммируют их для каждой точки поверхности отдельно для каждого типа волн, вычисляют амплитуды суммарных сигналов и строят нормированные распределения этих амплитуд в соответствии с координатами точек поверхности стенок трубопровода отдельно для каждого типа акустических волн, после чего составляют одно распределение величины, значения которой равны максимальным значениям амплитуд суммарных сигналов от разных типов акустических волн для совпадающих по координатам точек поверхности стенок трубопровода, и по этому распределению судят о наличии и величине дефектов в стенках трубопровода. Технический результат: обеспечение возможности обнаружения малоразмерных и слабо отражающих дефектов в стенках трубопровода. 2 н. и 8 з.п. ф-лы, 3 ил.

Использование: для оценки ресурса трубы из полиэтилена. Сущность изобретения заключается в том, что пьезоэлектрический преобразователь устанавливают последовательно, равномерно по периметру внешней поверхности полиэтиленовой трубы, и осуществляют последовательно ввод импульсов ультразвуковых колебаний в материал трубы через ее внешнюю поверхность по нормали к внешней ее поверхности продольных колебаний и последовательно прием отраженных ультразвуковых колебаний от внутренней поверхности стенки трубы и последовательно при этом измеряют время прохождения ультразвуковых колебаний в каждой установленной точке пьезоэлектрического преобразователя и запоминают измеренные значения, затем определяют стандартное отклонение измеренных значений, и по величине стандартного отклонения, которое сравнивают со стандартным отклонением трубы из полиэтилена с предельным состоянием материала, полученное аналогично описанному выше при определении стандартного отклонения контролируемой трубы из полиэтилена, определяют возможность дальнейшей эксплуатации трубы из полиэтилена. Технический результат: обеспечение возможности определения дальнейшей эксплуатации трубы из полиэтилена. 2 н.п. ф-лы, 3 ил.

Использование: для неразрушающего дистанционного контроля различных силовых конструкций и ответственных деталей. Сущность изобретения заключается в том, что неконтактное возбуждение ультразвуковой волны в объекте осуществляется мощным наносекундным объемным электрическим разрядом с заданным фронтом и длительностью и синхронно производится ее регистрация до и после прохождения объекта оптическим устройством, сигнал с которого передается на фотоприемник, подключенный к цифровому осциллографу. При этом эффективное неконтактное возбуждение ультразвуковой волны в объекте достигается мощным наносекундным объемным электрическим разрядом в газовом потоке водорода или гелия, который также заполняет газовый промежуток между генератором объемного электрического разряда и объектом. Технический результат: обеспечение возможности создания неконтактного способа ультразвуковой диагностики, увеличивающего глубину контроля. 1 табл., 1 ил.

Изобретение относится к области неразрушающего контроля технического состояния рельсовых путей. Согласно способу мониторинга рельсового пути в рельсы передают акустический сигнал, отраженный сигнал принимают акустическими датчиками, обрабатывают сигнал с помощью системы обработки сигналов. По результатам анализа полученных данных судят о состоянии рельсового пути. В качестве источника акустического сигнала используют деформационную волну, возникающую в рельсе при движении подвижного состава. Прием отраженных сигналов осуществляют непрерывно в движении состава. В качестве акустических датчиков используют электромагнитно-акустические преобразователи. В результате расширяются функциональные возможности и повышается надежность способа мониторинга рельсового пути. 3 ил.

Изобретение относится к области минералогического анализа тонковкрапленных зерен благородных металлов и может быть использовано в горнодобывающей отрасли. При осуществлении способа производится дробление кернового материала до крупности -1+0,0 мм, первичная классификация материала по классам крупности -1+0,5 мм, -0,5+0,2 мм, -0,2+0,0 мм, взвешивание каждого класса крупности, гравитационное обогащение каждого класса крупности с использованием лотка для промывки проб с получением первичного шлихового материала, первичный просмотр под бинокуляром с диагностикой всех минералов и выборка выделенных тонкодисперсных частиц благородных металлов, ультразвуковая обработка по классам крупности гидросмеси первичного шлихового материала с соотношением Т:Ж 1:3, посредством размещения гидросмеси в цилиндрообразном излучателе осуществляется при частоте 22 кГц, средней интенсивности звука 15 Вт/см2, вторичная классификация шлихового материала каждого класса крупности и гравитационное обогащение каждого класса крупности с использованием лотка для промывки проб с получением вторичного шлихового материала, взвешивание каждого класса крупности, вторичный просмотр под бинокуляром с диагностикой всех минералов по каждому классу крупности и выборка выделенных тонкодисперсных частиц свободных частиц благородных металлов, электронно-микроскопическое исследование состава благороднометалльных частиц в остатке вторичного шлихового материала. Достигается повышение эффективности определения тонковкрапленных зерен благородных металлов путем раскрытия тонкодисперсных включений в минеральных сростках. 2 ил.

Предложены способ и устройство испытания испытуемого объекта (204). Способ испытания прочности соединений композитного объекта (204) включает: генерирование волны (228) напряжения в текучей среде (306) в полости (302) в конструкции (300) генератора волн; направление волны (228) напряжения через текучую среду (306) в полости (302) в композитный объект (204) и задание определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн. Устройство для испытания прочности соединений композитного объекта (204) содержит: источник (304) энергии и конструкцию (300) генератора волн, имеющую полость (302), выполненную с возможностью удержания текучей среды (306), причем источник энергии (304) выполнен с возможностью генерирования волны (228) напряжения, которая проходит через текучую среду (306) в полости (302) в композитный объект (204), причем конструкция (300) генератора волн выполнена с возможностью задания определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн. Технический результат – уменьшение габаритов устройства, возможность испытания объектов больших размеров и сложных форм. 2 н. и 11 з.п. ф-лы, 15 ил.

Предложены способ и устройство испытания испытуемого объекта (204). Способ испытания прочности соединений композитного объекта (204) включает: генерирование волны (228) напряжения в текучей среде (306) в полости (302) в конструкции (300) генератора волн; направление волны (228) напряжения через текучую среду (306) в полости (302) в композитный объект (204) и задание определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн. Устройство для испытания прочности соединений композитного объекта (204) содержит: источник (304) энергии и конструкцию (300) генератора волн, имеющую полость (302), выполненную с возможностью удержания текучей среды (306), причем источник энергии (304) выполнен с возможностью генерирования волны (228) напряжения, которая проходит через текучую среду (306) в полости (302) в композитный объект (204), причем конструкция (300) генератора волн выполнена с возможностью задания определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн. Технический результат – уменьшение габаритов устройства, возможность испытания объектов больших размеров и сложных форм. 2 н. и 11 з.п. ф-лы, 15 ил.
Наверх