Способ повышения прочности детали с покрытием

Изобретение относится к способам повышения прочности деталей с покрытиями. Осуществляют обкатку детали деформирующим элементом и производят последующее упрочнение покрытия ультразвуковой обработкой с частотой ультразвуковых колебаний 18-22 кГц упрочняющим элементом. Расстояние между деформирующим и упрочняющим элементами составляет 10-30 мм, а линейная скорость перемещения пятна деформации деформирующих и упрочняющих элементов 50-100⋅10-3 м/с при продольной подаче 0,08-0,12 мм/об. В результате повышается адгезионная прочность между покрытием и подложкой. 1 з.п. ф-лы, 2 ил., 2 табл.

 

Изобретение относится к области машиностроения, а именно к способам повышения прочности деталей с покрытиями из материалов с эффектом памяти формы.

Аналогом изобретения является патент РФ №2548848, который описывает способ поверхностно-пластического деформирования (ППД), заключающийся в обработке вращающейся заготовки сферическим деформирующим элементом более высокой твердости по сравнению с твердостью материала обрабатываемой заготовки. Сферический деформирующий элемент установлен на опорных шариках в акустическом концентраторе, через осевой канал которого подводят смазочно-охлаждающую жидкость. При этом сообщают деформирующему элементу и смазочно-охлаждающей жидкости амплитудно- или частотно-модулированные колебания ультразвуковой частоты. В результате повышается производительность, снижается усилие деформирования, улучшается теплоотвод из зоны обработки и формируются остаточные напряжения.

Недостатком данного способа является низкие физико-механические свойства детали за счет незначительного уменьшения пористости и отсутствия влияния на адгезионную прочность между покрытием и подложкой, т.к. обработка не затрагивает глубинные слои покрытия и границу контакта покрытия с подложкой вследствие недостаточности пластического деформирования только лишь от внедрения в поверхность сферического деформирующего элемента.

Также известен способ поверхностно-пластического деформирования цилиндрических образцов методом обкатки трехроликовым приспособлением, выбранный в качестве прототипа, который заключается в поверхностно-пластическом деформировании путем обкатки цилиндрических образцов с покрытиями из сплавов с эффектом памяти формы (ЭПФ) трехроликовым приспособлением на токарном и фрезерном станках [Бледнова Ж.М., Махутов Н.А., Чаевский М.И. «Поверхностное модифицирование материалами с эффектом памяти формы» Краснодар, 2009 г. стр. 98]. Способ представляет собой обкатку тремя роликами (диаметром 50 мм, шириной 8 мм) с усилием, создаваемым механическим (пружинным) способом, пружинящие элементы тарируются с помощью динамометра ДОС-0,1. Приспособление позволяет проводить обкатку образцов диаметром 8-20 мм со следующими параметрами обкатки: контактная нагрузка (на каждый ролик) - Р=50-3000 Н, скорость обкатки - v=94⋅10-3 м/с, продольная подача - S=0,08 мм/об.

Недостатком данного способа является низкие физико-механические свойства детали, обусловленные незначительным уменьшением пористости и отсутствием влияния на адгезионную прочность между покрытием и подложкой. Это связано с тем, что пластическое деформирование покрытия не создает достаточного уровня энергетического воздействия на зону контакта покрытия с подложкой для осуществления диффузии материалов, т.к. большая часть энергии затрачивается на пластическую деформацию покрытия, способствующую разогреву материалов.

Задачей изобретения является усовершенствование способа повышения прочности детали с покрытием с эффектом памяти формы, позволяющее обеспечить повышение физико-механических свойств детали с покрытием.

Техническим результатом изобретения является повышение адгезионной прочности между покрытием и подложкой, а также уменьшение пористости покрытия с эффектом памяти формы.

Технический результат достигается тем, что способ повышения прочности детали с покрытием поверхностно-пластическим деформированием путем обкатки деформирующим элементом включает поверхностно-пластическое деформирование с последующим упрочнением покрытия ультразвуковой обработкой с частотой ультразвуковых колебаний 18-22 кГц упрочняющим элементом, при этом расстояние между деформирующим и упрочняющим элементами составляет 10-30 мм, а линейная скорость перемещения пятна деформации деформирующих и упрочняющих элементов 50-100⋅10-3 м/с при продольной подаче 0,08-0,12 мм/об. Сила прижима деформирующего элемента составляет 50-3000 Н, а упрочняющего элемента составляет 100-1000 Н.

При формировании многослойных композитных поверхностных слоев с увеличением толщины слоя основным показателем качества композиции является адгезионная прочность. Повышение адгезионной прочности достигают формированием переходных слоев. При нанесении на стальную основу многокомпонентных материалов в качестве переходного слоя могут использоваться металлы, имеющие неограниченную растворимость в материале-основе и других напыляемых материалах.

Для повышения качества композитных поверхностных слоев как по критерию адгезии, так и по критерию эксплуатационных и функциональных свойств, перспективным является использование интенсивных технологических полей (силовых, термических, электрических и др.). К числу наиболее универсальных технологических воздействий относится ультразвуковая обработка (УЗО), отличающаяся высокой адаптивностью к существующим технологиям, возможностью применения в широком диапазоне частот, позволяющая интенсифицировать технологический процесс и существенно повысить физико-механические характеристики композиции, а также повысить адгезионную прочность.

Сущность предлагаемого способа заключается в том, что к вращающемуся валу с нанесенным поверхностным покрытием подводят ролик и нагружают в радиальном направлении с усилием обкатки Р1 (фиг. 1). В результате у боковых поверхностей ролика образуются пластически деформированные зоны - "волны", а сам ролик погружается на определенную глубину в обкатываемый слой. После включения продольной подачи суппорта станка волна сгоняется по направлению движения деформирующего и упрочняющего элементов (фиг. 1). Непосредственно за деформирующим роликом на расстоянии 10-30 мм с той же скоростью продольной подачи (из диапазона 0,08-0,12 мм/об) движется упрочняющий элемент, в виде рабочего наконечника ультразвукового магнитострикционного преобразователя из твердого сплава, и производит доуплотнение материала с частотой ультразвуковых колебаний 18-22 кГц. Эту операцию можно выполнить за один или несколько поступательных проходов.

При комбинированном упрочнении инструмент ультразвукового воздействия 4 (фиг. 2) под действием статической силы Р2 и значительной ударной силы, создаваемой колебательной системой, пластически деформирует покрытие 2. При этом покрытие в зоне контакта с роликом деформирующего элемента 3 пластически деформируется, происходит устранение остаточной пористости, сглаживание вершин микронеровностей и упрочнение нанесенного слоя с формированием сжимающих остаточных напряжений. В процессе ППД происходит повышение температуры покрытия и накопление внутренней потенциальной энергии, а последующая ультразвуковая обработка упрочняющим элементом способствует интенсификации процесса диффузии материала покрытия в материал-основу, что повышает адгезионную прочность связи покрытия с основой. При этом для достижения технического результата расстояние между деформирующим и упрочняющим элементами должно составлять 10-30 мм. Ультразвуковая обработка создает значительные остаточные напряжения как в продольном, так и в поперечном направлениях, что препятствует зарождению и развитию трещин.

К параметрам совместно-последовательного ППД и УЗО относятся: сила прижатия роликов к детали, продольная подача, скорость перемещения пятна деформации, статическая сила прижатия ультразвукового наконечника и частота его колебаний.

В процессе ППД в покрытии возрастают остаточные напряжения, увеличивается плотность дислокаций, а также формируется развитие субструктуры. В результате ультразвуковой обработки происходит измельчение зеренной структуры до субмикрокристаллических и наноразмеров. Таким образом, при комплексной обработке, включающей ППД и УЗО, создаются условия диффузионного массопереноса атомов внедрения вглубь материала как по границам зерен, протяженность которых увеличивается, так и по телу кристаллов, за счет образования легкоподвижных комплексов с вакансиями и повышенной диффузионной проницаемости в искаженных областях решетки вблизи ядер дислокаций. Дополнительное множественное скольжение зеренной структуры увеличивает торможение дислокации. Плотность дислокаций намного больше, чем при простой обкатке роликом. В результате степень наклепа повышается в 1,5-2 раза и соответственно увеличивается уровень остаточных сжимающих напряжений.

Ультразвуковое воздействие упрочняющим элементом также способствует уменьшению шероховатости поверхности обрабатываемого покрытия, на котором образуется новый специфический микрорельеф, характеризующийся однородностью свойств по всем направлениям. При продолжительной обработке он постоянно воспроизводится.

Кроме того, обработка поверхности механическими методами оказывает заметное влияние на величину энергии активации поверхностных слоев покрытия для последующего нанесения многослойных покрытий. Пластические деформации, возникающие в процессе обработки, порождают многочисленные дефекты в кристаллической решетке материала. Атомы в несовершенной кристаллической решетке обладают более высокой потенциальной энергией, что приводит к уменьшению энергии активации. Важным преимуществом УЗО является образование в поверхностном слое деталей с покрытиями остаточных напряжений сжатия значительной силы, а также уменьшение разброса твердости на поверхности материала, свидетельствующего об образовании более однородной структуры.

Обработка детали поверхностно-пластическом деформированием с последующим упрочнением ультразвуковой обработкой, при указанных параметрах, позволит достичь желаемый технический результат.

Пример.

На специальный цилиндрический стальной образец (Сталь 45) диаметром 10 мм было нанесено покрытие из TiNi методом высокоскоростного газопламенного напыления толщиной 0,8 мм, предварительно образцы были обезжирены. После чего образец подвергли ППД путем обкатки и испытаниям на адгезионную прочность, которая определялась методом сдвига. Параметры обработки представлены в табл. 1, а результаты испытаний представлены в табл. 2.

3 других аналогичных образца подвергли совместно-последовательной обработке, включающей ППД путем обкатки трехроликовым приспособлением с последующей УЗО упрочняющим элементом, при этом расстояние между деформирующим и упрочняющим элементами 15 мм, с различными параметрами за один рабочий проход. После чего эти образцы также были подвергнуты испытаниям на адгезионную прочность методом сдвига.

Параметры обработки образцов с покрытием представлены в табл. 1.

Результаты испытаний представлены в табл. 2.

Предложенный способ повышения прочности детали с покрытием с эффектом памяти формы обеспечивает повышение физико-механических свойств детали за счет повышения адгезионной прочности между покрытием и подложкой, а также уменьшения пористости покрытия с эффектом памяти формы.

1. Способ обработки детали с покрытием поверхностно-пластическим деформированием путем обкатки деформирующим элементом, отличающийся тем, что поверхностно-пластическое деформирование совмещают с последующим упрочнением покрытия ультразвуковой обработкой с частотой ультразвуковых колебаний 18-22 кГц упрочняющим элементом, при этом расстояние между деформирующим и упрочняющим элементами составляет 10-30 мм, а линейная скорость перемещения пятна деформации деформирующих и упрочняющих элементов 50-100⋅10-3 м/с при продольной подаче 0,08-0,12 мм/об.

2. Способ по п. 1, отличающийся тем, что сила прижима деформирующего элемента составляет 50-3000 Н, а упрочняющего элемента составляет 100-1000 Н.



 

Похожие патенты:

Изобретение относится к способам повышения прочности деталей с покрытиями. Осуществляют обкатку детали деформирующим элементом с одновременным пропусканием через зону контакта деформирующего элемента с обрабатываемой поверхностью импульсного электрического тока силой 2-5 кА, напряжением 2-3 В, с длительностью импульсов 0,08-0,2 с и с частотой импульсов 0,16-0,4 Гц.

Изобретение относится к ультразвуковой обработке круглой пластины. Закрепляют пластину на опоре по ее краю, устанавливают источник ультразвуковых колебаний на пластине и осуществляют ее деформирование.

Изобретение относится к области раскатки дорожек качения колец шариковых подшипников. Установка содержит шариковую оправку с деформирующими элементами в виде шариков, механизм нагружения и механизм для установки и вращения заготовки.

Изобретение относится к упрочнению металлических втулок. Осуществляют фиксацию торцов полой заготовки.

Изобретение относится к упрочняющей обработке деталей. Обеспечивают пропускание в месте контакта деформирующего инструмента с деталью импульсов электрического тока.

Изобретение относится к технологии машиностроения и может быть использовано при финишной обработке поверхностей прецизионных деталей. Способ включает предварительную обработку заготовки с обеспечением макрогеометрии ее поверхности и последующее формирование на ней маслоудерживающего рельефа, который формируют на станке с ЧПУ путем нанесения сферической фрезой взаимно перпендикулярных канавок с параметрами, обеспечивающими получение толщины смазочной пленки не менее 5 мкм, приходящейся на единицу площади обрабатываемой поверхности.

Изобретение относится к отделочно-упрочняющей обработке цилиндрических поверхностей деталей выглаживанием. Осуществляют вращательное движение детали и продольное перемещение алмазного выглаживающего инструмента.

Изобретение относится к машиностроению и может быть использовано при обработке щеточными машинами. Последняя содержит вращающийся от привода держатель щетки, кольцевую щетку, имеющую фланец с направленной наружу щетиной, и стопорное устройство, погруженное во вращающийся фланец со щетиной.

Изобретение относится к устройствам для пластического деформирования кромок двутавров. Устройство содержит обминающие ролики, имеющие галтель для пластического деформирования каждой кромки двутавра и выполненные из материала с твердостью выше, чем материал заготовки двутавра.

Изобретение относится к машиностроению и может быть использовано для ультразвукового упрочнения деталей типа тел вращения на станках с ЧПУ. Устройство содержит корпус, акустическую систему, состоящую из преобразователя, соединенного с волноводом, на торцевой части которого закреплен излучатель ультразвука.

Изобретение относится к изменению изгибной жесткости цилиндрических стержневых изделий. Осуществляют формирование остаточных напряжений при осесимметричном пластическом деформировании изделия с помощью деформирующего инструмента с конической рабочей частью. Остаточные напряжения формируют при относительном обжатии величиной 1,0%. Формируют остаточные напряжения сжатия в периферийных слоях изделия до глубины 0,3R, где R – радиус изделия и остаточные напряжения растяжения в центральной области изделия путем создания растягивающего усилия, превышающего по величине осевое усилие сжатия. В результате: повышается жесткость изделий. 3 ил.

Изобретение относится к наноструктурирующему упрочнению поверхностного слоя прецизионных деталей выглаживанием. Используют выглаживающий инструмент, содержащий индентор, изготовленный из сверхтвердого инструментального материала, и модуль охлаждения индентора жидким теплоносителем. Выглаживающий инструмент устанавливают в динамометре, три выхода которого соединяют с микропроцессором, связанным с регулируемым источником тока, который соединяют с упомянутым модулем охлаждения индентора. В процессе обработки задают силу выглаживания и поддерживают коэффициент трения. В результате повышается скорость обработки. 2 ил.

Изобретение относится к способу механической обработки заготовки из титанового сплава. Осуществляют предварительное локальное пластическое деформирование вращающейся заготовки и ее лезвийную обработку путем снятия припуска. Локальное пластическое деформирование заготовки осуществляют непрерывно движущимся с подачей шариком на величину, не превышающую значение снимаемого припуска лезвийной обработкой. При этом осуществляют постоянное давление шарика по винтовой траектории с углом наклона деформационного слоя по отношению к торцевой части заготовки. В результате повышается точность и качество механической обработки. 4 ил, 2 табл.

Изобретение относится к упрочнению изделий, преимущественно валов со шлицевыми головками, и предназначено для обработки деталей, работающих на статическое и циклическое кручение. Для повышения качества упрочняемых изделий и стабильности процесса термомеханического упрочнения. К нагретому валу 1, имеющему шлицевые головки, через разрезные втулки 2 прикладывают усилие Poc1 осевого растяжения величиной, необходимой только для исправления кривизны вала, полученной при его нагреве, и для совмещения осей шлицевых головок и шлицевых втулок 3. К торцу головок вала 1 подводят подпружиненные шлицевые втулки 3, которые имеют возвратно-вращательное движение n у торцов вала, но не совершают осевого перемещения. При совмещении шлицев вала и втулки подпружиненная втулка 3 «заскакивает» на головку, после чего к ней прикладывают большее усилие P1 для полного сопряжения шлицевых втулок и шлицевых головок вала, затем к нижней шлицевой втулке 3 прикладывают крутящий момент Мкр, необходимый для осуществления деформации кручением, а к разрезным втулкам 2 - осевое усилие Рос.2 растяжения, превышающее по величине усилие Poc1 и необходимое для осевой деформации вала с требуемым удлинением и степенью деформации 0,5-1,0%. При этом нижние разрезные втулки 2 движутся вниз с определенной скоростью Voc.p. на длине Δl (необходимое удлинение вала), что позволяет во все время закручивания поддерживать осевое усилие растяжения. 3 ил.

Изобретение относится к ультразвуковой упрочняющей обработке металлической детали. Осуществляют воздействие на поверхность детали индентором, колеблющимся с ультразвуковой частотой. Индентор прижимают к обрабатываемой поверхности под углом 60-80 градусов. Обработку проводят в безокислительной атмосфере, создаваемой аргоном или азотом, или гелием, или углекислым газом, или их смесью. В результате повышается твердость поверхностного слоя и увеличивается глубина упрочненного слоя металлических деталей. 5 ил., 2 табл.

Изобретение относится к области холодного пластического деформирования металлов. На обрабатываемой поверхности металлической заготовки выполняют латунирование в направлении, противоположном направлению последующего выполнения регулярной микрогеометрии. При этом холодное пластическое деформирование заготовки выполняют в направлении, совпадающем с направлением латунирования при подаче металлоплакирующей смазки в очаг деформации под давлением. Интенсифицируется «эффект Браушингера» и снижается сила трения. 1 ил.
Наверх