Способ теплопрочностных испытаний обтекателей гиперзвуковых летательных аппаратов и установка для его реализации

Изобретение относится к методике теплопрочностных испытаний носовых обтекателей и передних кромок воздухозаборника гиперзвуковых летательных аппаратов (далее ГЛА) с помощью инфракрасных нагревателей по программе гиперзвукового полета и касается способа создания большой величины плотности теплового потока (4-5 МВт/м2) и последующей передачи его на испытываемый объект в очень короткий срок (менее 0,1 с), в частности, на самую переднюю часть носового обтекателя или переднюю кромку воздухозаборника. Способ заключается в том, что с помощью автономного высокотемпературного нагревателя в специальной камере, расположенной перпендикулярно оси носовой части, накапливают тепловую энергию (тепловой поток), а затем через регулируемую диафрагму, определяющую распределение теплового потока по носку обтекателя, создают необходимую плотность теплового потока и совместно с боковыми нагревателями облучают этим тепловым потоком носовую часть обтекателя, раскрывая нижнюю стенку специальной камеры, находящейся непосредственно над фокусирующей диафрагмой и носком испытываемого обтекателя, причем нижняя стенка, состоящая из двух или нескольких частей, раскрывается со скоростью, обеспечивающей полетную скорость нарастания теплового потока на носке обтекателя совместно с боковыми нагревателями. Технический результат - обеспечение теплового удара на носок обтекателя, что имеет место при достижении гиперзвуковых скоростей полета и появлении сверхзвукового скачка в исключительно малый промежуток времени, упрощение процесса нагревания объекта, повышение достоверности и точности воспроизведения температурного поля. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к области теплофизики, в частности к теплопрочностным испытаниям носовых обтекателей и передних кромок воздухозаборников гиперзвуковых летательных аппаратов с помощью инфракрасных нагревателей по программе гиперзвукового полета.

Известны способы для нагревания изделий, в том числе носовых частей летательных аппаратов, путем создания теплового потока с помощью инфракрасного нагревания до высоких температур, когда нагревательные системы располагают параллельно нагреваемой поверхности на эквидистантном расстоянии от них [а.с. №120940, Бюллетень изобретений №13, 1959 г.; Статические испытания на прочность сверхзвуковых самолетов. М.: «Машиностроение», 1974, 344 с.]. Если их дискретно располагать параллельно нагреваемой поверхности, то они начинают нагревать эту поверхность с той или иной неравномерностью, определяемой взаимным расположением излучателей между собой и нагреваемой поверхностью. Следует отметить, что в любом случае нагревательные системы и системы управления настолько инерционны (к примеру, кварцевые инфракрасные излучатели типа КГ имеют величину постоянной времени 0,3-0,4 секунды), что обеспечить нагревание типа «тепловой удар» или «мгновенный старт» не представляется возможным с помощью существующих способов нагревания натурной конструкции. Особенно сложно произвести такой нагрев носка обтекателя с помощью параллельно расположенного инфракрасного нагревателя даже с самой минимальной величиной постоянной времени всей нагревательной системы, так как сконцентрировать тепловой поток на самой крайней части, превращающейся в точку или линию, просто невозможно. Однако при полете с гиперзвуковой скоростью на носке обтекателя возникает скачок уплотнения в сотые доли секунды, вызывающий нагрев его с темпом 100-200 град/с и более.

За прототип принят способ и устройство, описанные в работе «Статические испытания на прочность сверхзвуковых самолетов», авторы Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. М.: «Машиностроение», 1974, стр. 96-98 (рис. 3.20), стр. 115-126 (рис. 4.12), стр. 139-142 (рис. 4.28). Способ заключается в нагреве исследуемой поверхности инфракрасными нагревателями, располагаемыми параллельно исследуемой поверхности. Устройство, реализующее этот способ, содержит корпус, рефлектор или экран, токоподводящие элементы и излучатели различного типа (кварцевые, графитовые, силитовые и из других тугоплавких материалов).

Всем техническим решениям присущи недостатки, заключающиеся в значительной инерционности и достаточной протяженности расположенных параллельно нагреваемой поверхности нагревателей. Существующие нагревательные системы не могут создать в ограниченной зоне (например, носке обтекателя) в очень короткий срок менее 0,1 с тепловой поток с плотностью до 4-5 МВт/м2 и последующей передачей его на испытываемый объект.

Задачей и техническим результатом изобретения является разработка способа и установки, обеспечивающих нагревание носка обтекателя или кромки воздухозаборника тепловым потоком с плотностью до 4-5 МВт/м2 за время не более 0,1 с.

Поставленная задача и технический результат достигаются тем, что способ теплопрочностных испытаний обтекателей гиперзвукового летательного аппарата с помощью инфракрасных нагревателей по программе гиперзвукового полета состоит в том, что размещают высокотемпературный нагреватель в теплоизоляционной камере, располагают теплоизоляционную камеру перпендикулярно оси обтекателя, между теплоизоляционной камерой и обтекателем устанавливают регулируемую в соответствии с величиной и распределением теплового потока диафрагму, определяющую зону нагревания по носку обтекателя, в камере создают необходимый тепловой поток, достаточный для нагрева носка обтекателя, раскрывают нижнюю стенку теплоизоляционной камеры, одновременно включают боковые высокотемпературные инфракрасные нагреватели и совместно с боковыми нагревателями облучают этим тепловым потоком непосредственно носок обтекателя, причем нижнюю стенку теплоизоляционной камеры раскрывают за время 0,07 с, что обеспечивает нагрев носка обтекателя за время не более 0,1 с тепловым потоком с плотностью до 4-5 МВт/м2.

Поставленная задача и технический результат также достигаются тем, что в установке для теплопрочностных испытаний обтекателей гиперзвукового летательного аппарата, содержащей каркас в виде силовой фермы, инфракрасные нагреватели, один из которых расположен параллельно боковым сторонам обтекателя, дополнительно установлены теплоизоляционная камера, термостойкая регулируемая диафрагма, грузы, подвижные подставки, электропривода, система управления нагревом, блок измерения температуры, программное устройство; второй из инфракрасных нагревателей установлен в теплоизоляционной камере, которая расположена в верхней части силового каркаса, перпендикулярно оси испытываемого обтекателя над диафрагмой из термостойкого материала, и выполнена с подвижной, разрезанной на несколько фрагментов и раздвигаемой в нескольких направлениях нижней стенкой, причем каждый из фрагментов нижней стенки закреплен через шарнир на тяге с грузом, располагаемым на подвижной подставке,

На фигуре 1 показана схема установки для теплопрочностных испытаний обтекателей гиперзвуковых летательных аппаратов.

На фигуре 2 приведены экспериментальные графики изменения температуры от времени на разных расстояниях от вершины внешней поверхности обтекателя.

Установка для теплопрочностных испытаний обтекателей гиперзвуковых летательных аппаратов (фиг. 1) содержит силовой каркас 1, инфракрасные нагреватели 2, один из которых расположен параллельно боковым сторонам обтекателя, второй в теплоизоляционной камере 3, расположенной в верхней части силового каркаса 1, перпендикулярно оси испытываемого носового обтекателя 4 над регулируемой диафрагмой 5 из термостойкого материала, и выполнена с подвижной, разрезанной на несколько фрагментов и раздвигаемой в нескольких направлениях нижней стенкой 6. Каждая часть нижней стенки камеры 6 через шарнир 7 тягой 8 соединена с грузом 9, который установлен на подставке 10. Последняя может быть убрана с помощью электропривода 12, управляемым путевым сигналом от системы управления нагревом 13. Команда на подачу электрической мощности на инфракрасные нагреватели 2 выдается управляющими сигналами от программного устройства 14 и блока измерения температуры 11.

Предлагаемый способ реализуется следующим образом. Сначала на основании каркаса 1 устанавливают испытываемый носовой обтекатель 4. Над обтекателем 4 на верхней балке каркаса 1 устанавливают теплоизоляционную камеру 3 с высокотемпературным инфракрасным нагревателем 2 (например, с излучателями из композиционного материала «Углекон», способного работать при температурах до 2500…2700 K). Между камерой 3 и носовым обтекателем 4 располагают рассчитываемую по заданному распределению теплового потока и его величине регулируемую диафрагму 5 так, что подвижная и разделенная на несколько частей нижняя стенка 6 теплоизоляционной камеры имеет возможность раздвигаться и открывать отверстие в диафрагме. Размеры отверстия в диафрагме предварительно рассчитывают для выбора площади облучения передней части обтекателя. Собранную установку помещают в вакуумную камеру, подключают электрическую мощность к нагревателям 2 и проводят теплопрочностные испытания. В начальный момент проводят нагрев теплоизолированной камеры 3 до максимальной температуры, при которой выдерживают некоторое время до установления стационарной (или квазистационарной) температуры. Затем по путевому сигналу на электропривод 12 от системы управления нагревом 13 убирают подставку 10, груз 9 начинает падать со скоростью свободного падения и через тягу 8 увлекает за собой части нижней стенки камеры 6, открывая таким образом отверстие в диафрагме 5. Так, при двух частях нижней стенки 6 и диаметре отверстия в диафрагме не более 100 мм время открытия отверстия в диафрагме 5 составляет не более 0,07 с, что обеспечивает нагрев носка обтекателя за время не более 0,1 с тепловым потоком с плотностью до 4-5 МВт/м2. Одновременно с раскрытием нижней стенки включают боковой инфракрасный нагреватель 2, обеспечивая нагрев всего обтекателя по заданной программе.

На фиг. 2 приведены экспериментальные графики нагрева, полученные при испытании опытного обтекателя из композиционного (керамического) материала. Из графиков видно, что максимальный достигнутый темп нагрева составляет 270 град/с.

Таким образом, использование изобретения позволит выполнить теплопрочностные испытания носового обтекателя или передней кромки воздухозаборника и имитировать нагревание типа «тепловой удар» или «мгновенный старт».

1. Способ теплопрочностных испытаний обтекателей гиперзвукового летательного аппарата с помощью инфракрасных нагревателей по программе гиперзвукового полета состоит в том, что размещают высокотемпературный нагреватель в теплоизоляционной камере, располагают теплоизоляционную камеру перпендикулярно оси обтекателя, между теплоизоляционной камерой и обтекателем устанавливают регулируемую диафрагму, определяющую распределение теплового потока по носку обтекателя, в камере создают необходимый тепловой поток, достаточный для нагрева носка обтекателя, раскрывают нижнюю стенку теплоизоляционной камеры и одновременно включают боковые высокотемпературные инфракрасные нагреватели, и совместно с боковыми нагревателями облучают этим тепловым потоком непосредственно носок обтекателя, причем нижнюю стенку теплоизоляционной камеры раскрывают за время 0,07 с, что обеспечивает нагрев носка обтекателя за время не более 0,1 с тепловым потоком с плотностью до 4-5 МВт/м2.

2. Установка для теплопрочностных испытаний обтекателей гиперзвукового летательного аппарата, состоящая из каркаса в виде силовой фермы, инфракрасных нагревателей, один из которых расположен параллельно боковым сторонам обтекателя, отличающаяся тем, что дополнительно содержит теплоизоляционную камеру, диафрагму, грузы, подвижные подставки, электропривода, систему управления нагревом, блок измерения температуры, программное устройство, второй из инфракрасных нагревателей установлен в теплоизоляционной камере, теплоизоляционная камера расположена в верхней части силового каркаса, перпендикулярно оси испытываемого обтекателя над диафрагмой из термостойкого материала, и выполнена с подвижной, разрезанной на несколько фрагментов и раздвигаемой в нескольких направлениях нижней стенкой, причем каждый из фрагментов нижней стенки закреплен через шарнир на тяге с грузом, располагаемым на подвижной подставке.



 

Похожие патенты:

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля шероховатости поверхностного слоя металла контролируемого изделия.

Изобретение относится к области измерительной техники и может быть использовано для контроля качества композитных броневых преград. Способ включает установку броневой преграды перед пластиной из пластичного материала, направление с заданной скоростью поражающего элемента на броневую преграду.

Изобретение относится к области измерительной техники и может быть использовано для оценки надежности сложных конструкций из композитных материалов на основе результатов теплового контроля.

Изобретение относится к области безопасного применения полимерных композиционных материалов в конструкциях корпуса возвращаемого аппарата пилотируемого космического корабля.

Изобретение относится к измерительной технике и может быть использовано для определения исправности бурового оборудования. Описывается система и способ определения исправности бурового оборудования.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на конструкцию летательного аппарата в наземных условиях и может быть использовано при стендовых испытаниях.

Изобретение относится к способам обнаружения воздушной полости в строительной плите на основе гипса и к способам изготовления строительной плиты на основе гипса. Способ включает формирование строительной плиты на основе гипса с предварительно заданной формой.

Изобретение относится к области измерительной техники и может быть использовано для контроля качества композитных броневых преград. Заявлено устройство теплового контроля качества композитных броневых преград на основе анализа энергии поглощения поражающего элемента, включающее устройство для стрельбы, расположенное между подложкой и устройством для стрельбы на траектории полета поражающего элемента устройство для измерения скорости полета поражающего элемента на выходе устройства для стрельбы, подложку из пластичного материала.

Изобретение относится к области неразрушающего контроля, а именно к инфракрасной диагностике и тепловизионным методам контроля. При проведении тепловизионного контроля теплоизоляции трубопровода движение тепловизионной камеры выполняют по винтовой линии вокруг трубопровода с частотой ее обращения, зависящей от изменения максимума температурного поля на наружной поверхности теплоизоляции трубопроводов в соответствии с законом движения максимума температуры газа наддува по длине трубопровода.

Изобретение относится к аэродинамике летательных аппаратов сверхзвуковых и околозвуковых скоростей. Способ торможения сверхзвукового потока заключается в создании скачков уплотнения, движущихся относительно обтекаемой поверхности в направлении течения, со значениями скоростей меньшими разницы значений скоростей потока и скоростью звука перед скачками уплотнения.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов и может быть использовано при наземных испытаниях элементов летательных аппаратов.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА) и может быть использовано для проектирования аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока углекислого газа в высокоэнтальпийных установках кратковременного действия типа импульсных аэродинамических труб с целью газотермодинамических исследований.

Изобретение относится к испытаниям реактивных двигателей. Стенд для определения подъемной силы крыла, установленного на корпусе реактивного двигателя, содержит расположенную в аэродинамической трубе опорную стойку с подвижной платформой.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. Рабочая часть аэродинамической трубы включает камеру давления, перфорированные стенки на границах потока и шумоглушащие сетки.

Изобретение относится к области машиностроения и авиационно-космической отрасли промышленности и может быть использовано при проведении испытаний конструкции летательных аппаратов и их узлов (головных обтекателей) из неметаллических материалов на тепловые, а также комплексные термовибрационные и термовакуумные воздействия.

Изобретение относится к области тепловых испытаний и может быть использовано при наземных испытаниях элементов летательных аппаратов. Способ тепловых испытаний керамических обтекателей ракет включает нагрев и контроль температуры обтекателя в зоне узла соединения керамической оболочки со шпангоутом.
Изобретение относится к области стендовых тепловых испытаний и может быть использовано для диагностики характеристик термопрочности и термостойкости эксплуатируемых металлов.

Изобретение относится к области авиации, в частности к технике экспериментов в аэродинамических трубах кратковременного (импульсного) действия с продолжительностью пуска порядка 40 миллисекунд, работающих при высоких давлениях и температурах газа.

Изобретение относится к экспериментальной аэродинамике, в частности к устройствам для изменения положения испытываемой модели в рабочей части аэродинамической трубы. Устройство содержит узел крепления державки для установки модели и три стойки, соединенные с одной стороны с шарнирами, установленными в двух точках, разнесенных по длине узла крепления державки, а с другой стороны - с тремя шарнирами, установленными на ползунах, размещенных на закрепленной в рабочей части продольной направляющей, и взаимодействующих с автономными приводами. Дополнительно оно снабжено дополнительной направляющей, установленной в рабочей части симметрично относительно вертикальной плоскости к основной, с дополнительными тремя ползунами и установленными на них дополнительными шарнирами, дополнительными шарнирами в двух точках на узле крепления державки, симметричными относительно вертикальной плоскости к основным, и дополнительными тремя стойками, соединяющими соответствующие дополнительные шарниры на узле крепления державки и ползунах. При этом соответствующие пары основных и дополнительных ползунов соединены перпендикулярными к вертикальной плоскости каретками, взаимодействующими с автономными приводами. Основной и дополнительный шарниры, размещенные на хвостовой части узла крепления державки, смещены по вертикали относительно продольной оси узла крепления державки на расстояние, соответствующее ее максимальному повороту в вертикальной плоскости. Части стоек, размещаемые в потоке аэродинамической трубы, выполнены обтекаемой формы, а части стоек, находящиеся вне потока и размещенные на одинаковых каретках, соединены перемычками. Технический результат заключается в повышении жесткости устройства и точности позиционирования модели в рабочей части аэродинамической трубы и расширении его функциональных возможностей. 2 з.п. ф-лы, 6 ил.

Изобретение относится к методике теплопрочностных испытаний носовых обтекателей и передних кромок воздухозаборника гиперзвуковых летательных аппаратов с помощью инфракрасных нагревателей по программе гиперзвукового полета и касается способа создания большой величины плотности теплового потока и последующей передачи его на испытываемый объект в очень короткий срок, в частности, на самую переднюю часть носового обтекателя или переднюю кромку воздухозаборника. Способ заключается в том, что с помощью автономного высокотемпературного нагревателя в специальной камере, расположенной перпендикулярно оси носовой части, накапливают тепловую энергию, а затем через регулируемую диафрагму, определяющую распределение теплового потока по носку обтекателя, создают необходимую плотность теплового потока и совместно с боковыми нагревателями облучают этим тепловым потоком носовую часть обтекателя, раскрывая нижнюю стенку специальной камеры, находящейся непосредственно над фокусирующей диафрагмой и носком испытываемого обтекателя, причем нижняя стенка, состоящая из двух или нескольких частей, раскрывается со скоростью, обеспечивающей полетную скорость нарастания теплового потока на носке обтекателя совместно с боковыми нагревателями. Технический результат - обеспечение теплового удара на носок обтекателя, что имеет место при достижении гиперзвуковых скоростей полета и появлении сверхзвукового скачка в исключительно малый промежуток времени, упрощение процесса нагревания объекта, повышение достоверности и точности воспроизведения температурного поля. 2 н.п. ф-лы, 2 ил.

Наверх