Погружной дозатор химического реагента

Изобретение относится к нефтедобывающей промышленности, в частности к погружным устройствам для подачи реагента в скважину, на поверхность погружных электродвигателей и вход электроцентробежных насосов. Устройство содержит цилиндрический корпус. С одной стороны корпуса установлен герметичный модуль с интеллектуальным блоком. С другой стороны корпуса установлено основание с камерой смешивания, с управляемым клапаном, с входным и выходным каналами, сообщенными с камерой смешивания. Интеллектуальный блок соединен электрическим проводником в изоляционной оболочке, находящимся в герметичной трубе с управляемым клапаном, а герметичный модуль состоит из соединенных корпусом ниппеля и фланца. В ниппеле герметичного модуля выполнены два канала. В одном канале герметично установлен датчик температуры. В другом канале герметично установлен датчик давления. Во фланце герметичного модуля установлен датчик температуры погружного электродвигателя. Указанные датчики электрически соединены с интеллектуальным блоком. Интеллектуальный блок выполнен с функцией контроля сопротивления изоляции и температуры обмотки электродвигателя посредством соединения с обмоткой электродвигателя через нулевой провод. Повышается надежность погружного дозатора химического реагента. 4 з.п. ф-лы, 1 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к нефтедобывающей промышленности, в частности к погружным устройствам для подачи реагента в скважину, на поверхность погружных электродвигателей и вход электроцентробежных насосов, и может быть использовано для предотвращения коррозии, отложения солей и парафинов на нефтедобывающем оборудовании для повышения надежности работы УЭЦН.

Уровень техники

Известно устройство для дозированной подачи реагента в скважину, включающее контейнер с химическим реагентом и помещенный между ним и штанговым насосом плунжерный насос-дозатор. Плунжер дозирующего насоса прикреплен к штоку, приводимому в движение перепадом давления жидкости во время работы штангового насоса (SU 1617198, F04B 47/00; Е21В 43/00).

К недостаткам устройства можно отнести невозможность его использования с другими видами нефтедобывающих насосов (центробежными, осевыми и т.д.) и неравномерность подачи реагента из-за постепенного разбавления его скважинной жидкостью во время эксплуатации, отсутствие контроля выхода реагента, расположение контейнера с химией под дозирующим насосом затрудняет вынос химреагента, невозможность подключения телеметрической системы.

Известно устройство для дозированной подачи реагента в скважину, емкость для реагента и сообщенный с ней насос-дозатор с собственным приводом и системой управления, которые помещены внутри скважины ниже нефтедобывающего оборудования, питание привода насоса-дозатора подведено от батареи гальванических элементов, расположенных в герметичной полости устройства (RU 2446272, Е21В 37/06).

Недостатком известной конструкции является то, что невозможно удаленно контролировать расход химического реагента, существует необходимость герметичной изоляции батареи от попадания на нее химического реагента и пластовой жидкости, а также данный контейнер должен выдерживать большие пластовые давления, что также создает риск преждевременной разгерметизации герметичной полости, к недостаткам также можно отнести то, что химический реагент расположен в отдельном контейнере, который помещен в дополнительный корпус, что приводит к уменьшению полезного объема химического реагента, а как следствие и уменьшению срока дозировки данного устройства. Также стоит отметить невозможность заполнения химическим реагентом указанной установки через внешний корпус, что создает сложности при сборке дозатора и невозможность подключения телеметрической системы.

Наиболее близким аналогом заявленного технического решения является дозатор погружной интеллектуальный, состоящий из контейнера с поршнем и неподвижной мембраной, заполненный составом для дозирования, расположенный в корпусе в форме трубы, с одной стороны которого установлены концевая деталь и герметичный модуль с электронным блоком, соединенный электрическим проводником в изоляционной оболочке, находящимся в герметичной трубе, и расположенным с другой стороны управляемый клапан, который установлен в основании и соединен внутренними каналами с приемным устройством, имеющим пробойник неподвижной мембраны, электронный блок получает питание и управляющий сигнал по нулевому проводу трехфазного электрического привода погружного насоса и передает его на управляемый клапан (RU 115468, G01F 13/00, Е21В 37/06).

Недостатком известной конструкции является то, что химический реагент расположен в отдельном контейнере, который помещен в дополнительный корпус, что приводит к уменьшению полезного объема химического реагента, а как следствие, и уменьшению срока дозировки данного устройства, также из рисунка видно, что электрический провод проходит между наружным корпусом и корпусом контейнера химического реагента, что также увеличивает зазор между стенками указанных выше корпусов и, как следствие, приводит к уменьшению срока дозировки данного устройства.

Также стоит отметить невозможность заполнения химическим реагентом указанной установки через внешний корпус, что создает сложности при сборке дозатора и сложность подключения телеметрической системы. Также при установке телеметрической системы и выходе ее из строя становится невозможным работа погружного дозатора химического реагента.

Сущность изобретения

Технической задачей, поставленной в настоящем изобретении, является осуществление постоянного контроля за давлением и температурой и вибрацией, увеличение срока работы погружного дозатора, повышение его надежности, а также расширение его функциональных возможностей.

Технический результат заявленного изобретения заключается в расширении функциональных возможностей погружного дозатора химического реагента.

Технический результат заявленного изобретения достигается за счет того, что погружной дозатор химического реагента, содержащий цилиндрический корпус, с одной стороны которого установлены герметичный модуль с интеллектуальным блоком, с другой стороны установлено основание с камерой смешивания, с управляемым клапаном, с входным и выходным каналами, сообщенными с камерой смешивания, при этом интеллектуальный блок соединен электрическим проводником в изоляционной оболочке, находящимся в герметичной трубе с управляемым клапаном, а герметичный модуль состоит из ниппеля и фланца, соединенных корпусом, причем в ниппеле герметичного модуля выполнены два канала, в одном из которых герметично установлен датчик температуры, а в другом герметично установлен датчик давления, а во фланце герметичного модуля установлен датчик температуры погружного электродвигателя, при этом указанные датчики электрически соединены с интеллектуальным блоком, при этом интеллектуальный блок выполнен с функцией контроля сопротивления изоляции и температуры обмотки электродвигателя посредством соединения с обмоткой электродвигателя через нулевой провод.

В частном случае реализации заявленного изобретения интеллектуальный блок соединен нулевым проводом трехфазного электрического привода погружного насоса.

В частном случае реализации заявленного изобретения цилиндрический корпус выполнен из коррозионно-стойкого материала, например нержавеющей стали.

В частном случае реализации заявленного изобретения цилиндрический корпус выполнен из коррозионно-стойкого композитного материала, например, стеклопластика или пластика.

В частном случае реализации заявленного изобретения внутренняя полость цилиндрического корпуса выполнена с нанесением антикоррозионно-стойкого покрытия

Краткое описание чертежей

Детали, признаки, а также преимущества настоящего изобретения следуют из нижеследующего описания вариантов реализации заявленной установки с использованием чертежей, на которых показано:

На фиг. 1 изображен погружной дозатор химического реагента

На фигуре цифрами обозначены следующие позиции:

1 - основание; 2 - контейнер; 3 - ниппель; 4 - датчик давления; 5 - датчик температуры; 6 - интеллектуальный блок; 7 - кабель; 8 - корпус; 9 - фланец; 10 - датчик температуры ПЭД; 11 - нулевой провод; 12 - герметичный соединитель; 13 - нулевой провод ПЭД; 14 - полость ПЭД; 15 - корпус ПЭД; 16 - кабель; 17 - герметичный модуль; 18 - кабель; 19 - кабель; 20 - разделитель; 21 - электромагнитный клапан; 22 - заливной канал; 23 - канал; 24 - камера смешивания; 25 - входное отверстие; 26 - выходное отверстие; 27 - канал; 28 - канал.

Раскрытие изобретения

Погружной дозатор химического реагента (фиг. 1) выполнен в виде цилиндрического контейнера (8), заполненного химическим реагентом и ограниченного с одной стороны герметичным модулем (17), а с другой - основанием (1).

В основании (1) выполнена камера смешивания (24) с входным (25) и выходным (26) отверстиями.

В основании (1) установлен электромагнитный клапан (21), вход которого соединен через канал (23), выполненный в основании (1), с химическим реагентом из контейнера (8), а выход соединен с камерой смешивания (24), в которой происходит дозирование химического реагента.

В основании (1) выполнен заливной канал (22) посредством которого контейнер (8) заполнен химическим реагентом.

Корпус (8) соединен с ниппелем (3) и фланцем (9) с образованием герметичного модуля (17). В герметичном модуле установлен интеллектуальный блок (6).

Интеллектуальный блок (6) с помощью кабеля (7), герметично проходящего через ниппель (3), контейнер (2) и основание (1), соединен с электромагнитным клапаном (21).

В ниппеле (3) выполнены канал (28), в котором герметично установлен датчик температуры (5), и канал (27), в котором герметично установлен датчик давления (4).

Датчик температуры (5) соединен с интеллектуальным блоком (6) через кабель (18).

Датчик давления (4) соединен с интеллектуальным блоком (6) через кабель (19).

Внутри фланца (9) герметично установлен разделитель (20), в котором герметично установлен соединитель (12) и датчик температуры ПЭД (10), чувствительный элемент которого расположен в маслонаполненной полости ПЭД (14).

Фланец (9) крепится к корпусу ПЭД (15), внутри которого расположен нулевой провод ПЭД (13), который посредством герметичного соединителя (12) и нулевого провода (11) соединен с интеллектуальным блоком (6).

Датчик температуры ПЭД (10) соединен с интеллектуальным блоком (6) посредством кабеля (16).

Через нулевой провод ПЭД (13), который посредством силового кабеля подключен к наземной части, происходит передача управляющего сигнала на интеллектуальный блок (6).

За счет того, что в состав интеллектуального блока введены датчики температуры пластовой жидкости, давления пластовой жидкости, температуры ПЭД, а также функции контроля сопротивления изоляции и температуры обмотки электродвигателя, а также функции определения уровня виброускорений возможно значительно расширить технический функционал погружного дозатора, отказаться от сложного подключения к существующим телеметрическим системам, что делает работу погружного дозатора более стабильной, надежной и не зависящей от работы сторонней телеметрической системы.

Устройство работает следующим образом.

На заводе-изготовителе или непосредственно на скважине перед спуском контейнер (2) заполняют химическим реагентом против коррозии, или солеобразования, или парафинообразования через заливной канал (22). Перед спуском в скважину нулевой провод (11) с помощью герметичного соединителя (12) подключают к нулевому проводу ПЭД (13), а с помощью фланца (9) погружной дозатор прикрепляют к корпусу ПЭД (15).

После того как наземная часть интеллектуального блока передаст сигнал о начале работы по нулевому проводу ПЭД (13), а затем по нулевому проводу (11) в интеллектуальный блок (6), расположенный в герметичном модуле (17), погружная часть интеллектуального блока выдаст сигнал по проводу (7) на электромагнитный клапан (21) об его открытии/закрытии. Химический реагент из контейнера (2) поступает по каналу (23) в электромагнитный клапан (21), а в случае его открытого состояния в камеру смешивания (24), находящуюся в основании (1).

Через входное отверстие (25) в камеру смешивания (24) поступает пластовая жидкость, которая, смешиваясь с химическим реагентом, поступающим в камеру через электромагнитный клапан (21), выносится из камеры смешивания через выходное отверстие (26) и далее с восходящим потоком поступает в нефтедобывающий насос, тем самым полностью защищая все погружное оборудование, в том числе и погружной электродвигатель, от солеобразования, парафинообразоования и коррозии.

Во время работы погружного дозатора с датчика температуры (5), герметично установленного в ниппеле (3) и соединенного с пластовой жидкостью, через канал (28) поступает сигнал на интеллектуальный блок (6), где происходит его обработка и усиление, а затем через нулевой провод ПЭД (13) сигнал передается на наземный интеллектуальный блок.

Во время работы погружного дозатора с датчика давления (4), герметично установленного в ниппеле (3) и соединенного с пластовой жидкостью, через канал (27) поступает сигнал на интеллектуальный блок (6) где происходит его обработка и усиление, а затем через нулевой провод ПЭД (13) сигнал передается на наземный интеллектуальный блок.

Во время работы погружного дозатора с датчика температуры (10), герметично установленного в разделителе (20) и соединенного с маслонаполненной полостью ПЭД (14) поступает сигнал через кабель (16) на интеллектуальный блок (6), где происходит его обработка и усиление, а затем через нулевой провод ПЭД (13) сигнал передается на наземный интеллектуальный блок.

Во время работы погружного дозатора интеллектуальный блок (6) постоянно соединен с обмоткой электродвигателя через нулевой провод ПЭД (13), что позволяет реализовать функцию контроля сопротивления изоляции и температуры обмотки электродвигателя.

Приведенные технические решения, а именно: включение в состав интеллектуального блока функций телеметрической системы, использование в составе погружной установки дозирования химического реагента датчика температуры пластовой жидкости, давления пластовой жидкости, температуры ПЭД, а также функции контроля сопротивления изоляции и температуры обмотки электродвигателя, а также функции определения уровня виброускорений, - позволяют значительно повысить надежность оборудования за счет того, что все функции тмс включены в погружной дозатор химического реагента, а также размещение блока тмс в жидкостно-наполненной камере позволяет тем самым выровнять давления внутри и снаружи, а также за счет использование силиконовой жидкости увеличивается надежность от коротких замыканий и пробоя по дорожке плат и в местах припоя соединительных проводов. Данное техническое решение также позволяет значительно расширить технический функционал погружного дозатора, отказаться от сложного подключения к существующим телеметрическим системам, что делает работу погружного дозатора более стабильной, надежной и не зависящей от работы сторонней телеметрической системы.

1. Погружной дозатор химического реагента, содержащий цилиндрический корпус, с одной стороны которого установлены герметичный модуль с интеллектуальным блоком, с другой стороны установлено основание с камерой смешивания, с управляемым клапаном, с входным и выходным каналами, сообщенными с камерой смешивания, при этом интеллектуальный блок соединен электрическим проводником в изоляционной оболочке, находящимся в герметичной трубе с управляемым клапаном, а герметичный модуль состоит из ниппеля и фланца, соединенных корпусом,

отличающийся тем, что

в ниппеле герметичного модуля выполнены два канала, в одном из которых герметично установлен датчик температуры, а в другом герметично установлен датчик давления, а во фланце герметичного модуля установлен датчик температуры погружного электродвигателя, при этом указанные датчики электрически соединены с интеллектуальным блоком,

при этом интеллектуальный блок выполнен с функцией контроля сопротивления изоляции и температуры обмотки электродвигателя посредством соединения с обмоткой электродвигателя через нулевой провод.

2. Дозатор по п. 1, отличающийся тем, что интеллектуальный блок соединен нулевым проводом трехфазного электрического привода погружного насоса.

3. Дозатор по п. 1, отличающийся тем, что цилиндрический корпус выполнен из коррозионно-стойкого материала, например нержавеющей стали.

4. Дозатор по п. 1, отличающийся тем, что цилиндрический корпус выполнен из коррозионно-стойкого композитного материала, например стеклопластика или пластика.

5. Дозатор по п. 1, отличающийся тем, что внутренняя полость цилиндрического корпуса выполнена с нанесением антикоррозионно-стойкого покрытия.



 

Похожие патенты:

Изобретение относится к нефтедобывающей промышленности, в частности к погружным устройствам для подачи реагента в скважину, на поверхность погружных электродвигателей и вход электроцентробежных насосов, и может быть использовано для предотвращения коррозии, отложения солей и парафинов.

Изобретение относится к нефтяной промышленности, в частности к погружным устройствам для внутрискважинной подачи ингибитора солеотложений на вход погружных установок для добычи пластовой жидкости.

Изобретение относится к нефтяной промышленности и предназначено для снижения асфальтеносмолопарафиновых отложений (АСПО) на внутрискважинном оборудовании и разрушения водонефтяной эмульсии в скважине при эксплуатации скважины, добывающей высоковязкую нефть.

Изобретение относится к устройствам, дозирующим реагент, и может использоваться в нефтяной отрасли промышленности для подачи в пластовую жидкость ингибитора солеотложений.

Изобретение относится к погружным контейнерам преимущественно с порошкообразным реагентом и предназначено для предупреждения отложения солей на нефтепогружном оборудовании.

Изобретение относится в нефтедобывающей промышленности и может быть использовано при эксплуатации скважин, в лифтовых трубах которых образуются различного рода отложения.

Изобретение относится к области трубопроводного транспорта, в частности к способам очистки внутренней поверхности магистральных нефтепроводов. Осуществляют химическую очистку внутренней поверхности нефтепровода, предварительного разделенного на очищаемые участки, путем пропуска по всей длине очищаемого участка пробки растворителя асфальтосмолопарафиновых отложений.

Группа изобретений относится к нефтяной промышленности и может быть использована для ремонтных работ нефтегазового оборудования и хранилищ нефтепродуктов с целью ликвидации и предотвращения образования гидратопарафиновых и асфальтосмолистых отложений и пробок.

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны горизонтальных стволов скважин, вскрывших карбонатную породу.

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны горизонтальных стволов скважин, вскрывших карбонатный коллектор.

Изобретение относится к скважинной добыче нефти, осложненной выпадением асфальтосмолопарафиновых веществ на поверхности глубинного оборудования скважин. Техническим результатом является повышение эффективности эксплуатации скважин, осложненных образованием отложений из тяжелых компонентов нефти внутри частей глубинного насоса и колонны НКТ. Способ определения массы растворителя в нефтедобывающей скважине заключается в измерении давления столба жидкости на площадь известной величины. Причем датчик давления располагают в межтрубном пространстве скважины в зоне глубинного насоса, информация с датчика давления с необходимой частотой поступает на станцию управления скважины, а масса растворителя после его подачи в межтрубное пространство скважины определяется как произведение величины кратковременного изменения (скачка) давления на площадь межтрубного пространства по математической формуле. 3 ил.

Изобретение относится к нефтедобывающей промышленности, в частности к погружным устройствам для подачи реагента в скважину, на поверхность погружных электродвигателей и вход электроцентробежных насосов. Устройство содержит цилиндрический корпус, с одной стороны которого установлены герметичный модуль с интеллектуальным блоком, с другой стороны установлено основание с камерой смешивания, с управляемым клапаном и с выходным каналом, сообщенным с камерой смешивания. Интеллектуальный блок соединен электрическим проводником в изоляционной оболочке, находящимся в герметичной трубе, с управляемым клапаном. Внутренняя полость цилиндрического корпуса выполнена герметичной с возможностью заполнения пластовой жидкостью и химическим реагентом и герметично разделена поршнем. Герметичная труба является направляющей для поршня и расположена по оси цилиндрического корпуса. В основании дозатора дополнительно выполнен заливной канал химического реагента с клапаном. В качестве управляемого клапана установлен электромагнитный клапан, выполненный с возможность открытия/закрытия по управляющему сигналу. Электромагнитный клапан установлен в выходном канале. Дозатор дополнительно содержит компенсатор, расположенный в полости корпуса, заполненной пластовой жидкостью. Внутренняя полость компенсатора соединена с полостью герметичной емкости посредством канала, выполненного в ниппеле герметичной емкости. Интеллектуальный блок соединен нулевым проводом трехфазного электрического привода погружного насоса. Повышается надежность конструкции. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области нефтяной и газовой промышленности, в частности к способам предупреждения образования гидратов в углеводородах, и может быть использовано при их добыче, транспортировке и переработке. Способ включает ввод в углеводороды антигидратного реагента. Дополнительно подают один или несколько газов, в каждом из которых гидраты образуются при давлении большем и температуре меньшей, чем в углеводородах, и получают смесь, в которой образование гидратов не происходит при исходных давлении и температуре углеводородов. При ликвидации гидратов, помимо газов, подают еще и антигидратный реагент, причем газы и реагент подают с расходами, обеспечивающими необходимую скорость разложения гидратов, определяемую по формуле. Уменьшаются энергетические затраты. 6 з.п. ф-лы, 2 ил., 6 пр.

Группа изобретений относится к области нефтедобычи, в частности к способам подачи реагентов в скважину и наземное оборудование. Способ включает размещение устройства с реагентом в стволе скважины или во внутритрубном пространстве поверхностного нефтепромыслового оборудования, растворение реагента добываемой жидкостью. В качестве устройства для подачи реагента используется камерный контейнер, состоящий по меньшей мере из одной камеры с установленными в каждой камере по меньшей мере одним наружным и по меньшей мере одним внутренним дозатором, одни из которых, внутренние или наружные, выполняются регулируемыми, а вторые нерегулируемыми, при этом указанные камеры заполнены реагентом. Обеспечивается возможность применения регулируемого способа подачи реагента в скважины, выводимые из бурения, или после гидроразрыва пласта, или после капитального ремонта скважин, или в другие скважины, где для настройки устройства ограниченно используются параметры глубинно-насосного оборудования и/или скважины, повышается надежность, снижаются временные затраты на настройку. 2 н. и 8 з.п. ф-лы, 2 ил.

Изобретение относится к области внутрипромыслового сбора газа, а именно к системам ввода ингибитора образования гидратов в газовые шлейфы. Система содержит емкость с ингибитором, трубопроводы подачи ингибитора к защищаемым точкам, исполнительный механизм, обеспечивающий прямую управляемую программную подачу ингибитора, преобразователи температуры и давления, установленные в защищаемых точках и соединенные со станцией управления и исполнительным механизмом беспроводным каналом связи, устройства дозирования ингибитора, состоящие из обратного и управляемого прямого клапанов и регулирующей шайбы, которые установлены в защищаемых точках и соединены с трубопроводом подачи ингибитора. Емкость с ингибитором выполнена в виде гидроаккумулятора с датчиком давления, соединенным со станцией управления беспроводным каналом связи. Исполнительный механизм выполнен в виде регулирующего редуктора. Обеспечивается диагностирование образования гидратной пробки в режиме реального времени и оперативная подача ингибитора непосредственно на тот участок, в котором начинается образование гидратной пробки. 2 ил.

Группа изобретений относится к нефтедобывающей промышленности, а именно к устройствам для дозирования реагента-ингибитора в жидкую среду. Контейнер по обоим вариантам состоит из корпуса 1, в стенках которого выполнены перфорационные отверстия 2. Отверстия 2 в корпусе 1 выполнены в его верхней 3 и/или в средней 4 частях. Корпус 1 снабжен по торцам перфорированными нижней 5 и верхней 6 заглушками, или перфорированной нижней и глухой 20 верхней заглушками. Внутри контейнера размещена, по меньшей мере, одна цилиндрическая емкость 7, заполненная ингибитором 8 и снабженная по торцам глухими крышкой 9 и днищем 10. Емкость 7 выполнена перфорированной в радиальном направлении. Диаметр отверстий 11 составляет 1-7 мм. По второму варианту емкость 7 выполнена в виде капсулы с торцевыми выступами, имеющими закругленную форму, преимущественно, подобно полусферической, с глухой крышкой и глухим днищем, выполненным заодно с телом капсулы. Капсула выполнена перфорированной в боковых областях, отверстия могут быть чуть смещены к торцевым выступам и их размер составляет 1-7 мм. По обоим вариантам емкости не закреплены в корпусе 1 и образуют зазоры между их наружными стенками и внутренней поверхностью корпуса 1. Соотношение суммарной площади отверстий 2 в корпусе 1 контейнера к суммарной площади отверстий 11 (или 19) во всех емкостях 7, находящихся внутри корпуса 1, должно составлять 1 к (0,003-70) соответственно. Повышается продолжительность дозирования ингибитора за счет равномерности растворения ингибитора при различных температурных скважинных условиях и при различном, в том числе повышенном, содержании мехпримесей в пластовой жидкости 2 н. и 14 з.п. ф-лы; 1 табл.; 2 ил.

Изобретение относится к частице сшитого препятствующего образованию отложений вещества для операций добычи нефти, для источника воды охлаждающей колонны, способу изготовления частицы и ее использованию. Частица сшитого препятствующего образованию отложений вещества для операций добычи нефти, для источника воды охлаждающей колонны, содержащая препятствующее образованию отложений вещество и сшивающий реагент. Препятствующее образованию отложений вещество сшивается сшивающим реагентом. Способ изготовления частиц согласно настоящему изобретению. Способы осуществления операции механического гидроразрыва для уменьшения образования отложений в нефтяной скважине и в охлаждающей колонне с использованием частиц согласно настоящему изобретению. Изобретение развито в зависимых пунктах формулы. Технический результат – повышение эффективности обработки при использовании указанных частиц. 9 н. и 32 з.п. ф-лы, 35 пр., 13 табл., 1 ил.

Изобретение относится к скважинным устройствам дозированной подачи реагента в пластовую жидкость с целью защиты насосного оборудования от солей, коррозии и парафинов. Устройство содержит контейнер с дыхательным отверстием, в который помещена деформируемая оболочка, заполненная жидким реагентом, и дозирующий перистальтический насос с эластичной трубкой, взаимодействующей с ротором посредством прижимных роликов. Приводом перистальтического насоса служит гидротурбина, вал которой соединен через редуктор с ротором перистальтического насоса. Гидротурбина охвачена снизу уплотнительным элементом, упирающимся в стенку скважины, и приводится во вращение пластовой жидкостью. Повышается надежность дозированной подачи реагента за счет обеспечения его автономным источником энергии. 2 ил.

Группа изобретений относится к нефтедобывающей промышленности, в частности к предотвращению отложений на глубинно-насосном оборудовании. Способ включает приготовление гидрофобной термопластичной смеси, содержащей ингибитор, размещение ее в цилиндрическом корпусе с отверстиями на торцах, спуск корпуса в скважину, нагрев смеси до температуры окружающей среды, растворение гидрофобной части смеси на поверхности проницаемого материала, перекрывающего дозировочное отверстие в днище корпуса, скапливающейся под ним нефтью с последующим растворением частичек водорастворимого ингибитора водой (при наличии ингибитора в смеси), частично содержащейся в нефти на поверхности проницаемого материала, и окончательным растворением упавшего ингибитора в гидрозатворе нижерасположенной секции. Растворение осуществляют со скоростью, меньшей скорости оседания смеси на поверхность проницаемого материала, с последующим постоянным во времени переносом растворенного ингибитора в пластовую жидкость независимо от изменения обводненности пластовой жидкости во времени. Устройство включает по меньшей мере одну секцию в виде полого цилиндрического корпуса с днищем для размещения термопластичной смеси и перекрыто снизу перфорированной заглушкой. Корпус выполнен с непроницаемой боковой поверхностью, обладающей адгезией к гидрофобной смеси. Днище снабжено дозировочным отверстием, перекрытым проницаемым материалом. Под днищем расположенного выше нижнего торца корпуса скапливается нефть для растворения смеси независимо от обводненности пластовой жидкости. Газ, скапливающийся под днищем, отводится с помощью трубки за пределы корпуса. Для образования гидрозатвора над термопластичной смесью секция открыта со стороны верхнего торца и размещена с образованием зазора в цилиндрическом кожухе. Повышается эффективность и экономичность процесса подачи ингибитора. 2 н. и 13 з.п. ф-лы, 2 ил.

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для глушения и промывки скважин. Состав полисахаридной жидкости для промывки скважин или промысловых трубопроводов или глушения скважин, полученный растворением биоцида «Биолан» в пресной или минерализованной воде, представленной преимущественно раствором одновалентных катионов, растворением и гидратацией в полученном растворе гуарового загустителя, последующим введением комплексного реагента Нефтенол УСП с перемешиванием до получения мицеллярной дисперсии, с последующим добавлением борного сшивающего агента СП-РД и перемешиванием до полного сшивания, при следующем соотношении компонентов, мас.%: гуаровый загуститель 0,2-1,0, указанный сшивающий агент 0,2-1,0, реагент Нефтенол УСП 6,0-10,0, биоцид «Биолан» 0,004-0,01, указанная вода - остальное. Способ промывки скважин и очистки интервала перфорации от асфальтосмолопарафиновых отложений в скважинах с аномально низким пластовым давлением, включающий закачку указанного выше состава в затрубное пространство скважины в качестве блокирующей пачки, выдержку для размещения ее на забое скважины, последующую обратную промывку скважины закачкой в затрубное пространство скважины промывочной жидкости, в качестве которой используют подогретый до 30-40°C водный раствор реагента Нефтенол УСП с концентрацией 60-100 л на 1 м3 пресной или минерализованной воды, объем блокирующей пачки определяют расчетным путем с учетом объема зумпфа и оставления стакана, перекрывающего интервал перфорации на 100-200 м, и ее плотность превышает на 20-50 кг/м3 плотность указанной промывочной жидкости. Способ промывки скважин, включающий закачку в скважину указанного выше состава и его циркулирование в полном объеме скважины. Способ промывки промысловых трубопроводов, включающий закачку в промысловый трубопровод подогретой до 30-40°C промывочной жидкости, в качестве которой используют водный раствор реагента Нефтенол УСП с концентрацией 60-100 л на 1 м3 пресной или минерализованной воды, и затем продавку указанного выше состава. Способ промывки промысловых трубопроводов, включающий закачку в промысловый трубопровод указанного выше состава. Технический результат – повышение эффективности обработки. 5 н.п. ф-лы, 2 табл.
Наверх