Способ изготовления литейных высокоогнеупорных керамических форм

Изобретение относится к области литейного производства и может найти применение при получении точных отливок, в том числе лопаток ГТД. Способ включает приготовление огнеупорной суспензии, послойное формирование из нее огнеупорных слоев на модели, удаление модели, сушку керамической формы, ее пропитку, повторную сушку и обжиг. После обжига на внешнюю поверхность керамической формы наносят водостойкий органический пленкообразователь. С внутренней стороны форму пропитывают гидрозолем, содержащим по меньшей мере одно кислородсодержащее соединение с элементом, выбранным из группы: редкоземельный металл, гафний, цирконий и алюминий. Пропитку осуществляют не менее двух раз с промежуточной сушкой. Достигается уплотнение лицевого слоя керамических форм, повышение химической инертности керамических форм к расплавам жаропрочных сплавов, тугоплавких и химически активных сплавов, повышение механической прочности. 3 з.п. ф-лы, 6 пр.

 

Изобретение относится к области литейного производства и может найти применение при получении точных отливок, в том числе лопаток ГТД, в вакууме методом литья по выплавляемым моделям, а также при изготовлении высокоогнеупорных быстросменных керамических тиглей для плавки жаропрочных сплавов.

Известен способ изготовления бескремнеземных оболочковых форм, включающий послойное нанесение на модельный блок керамической суспензии, в которой в качестве связующего используется диановая эпоксидная смола и органический растворитель - смесь диметилкетона и скипидара - 10-40 мас.%, в качестве металлического порошка - порошок алюминия, титана, циркония и хрома - 0,5-35,0 мас.%, а в качестве огнеупорного наполнителя - порошок тугоплавких соединений, выбранных из группы оксидов алюминия, хрома, титана, циркония, нитридов алюминия, титана, кремния, бора, карбидов кремния, титана, ниобия, циркония, бора, ванадия, боридов титана, циркония, ниобия - остальное. Последующая обсыпка блоков осуществляется крупными фракциями электрокорунда по следующей технологии: первый слой - зерном электрокорунда №20 (F70), второй - зерном №40 (F46), третий и последующие слои оболочки - зерном №63 (F30). Оболочковая бескремнеземная форма подвергается сушке после нанесения каждого слоя, после чего модель удаляется и форма прокаливается (RU 2285575 C2, 20.10.2006).

Недостатком данного способа является возникновение деформации керамической формы при ее прокаливании, что приводит к отклонению геометрических размеров отливаемых деталей от размеров, заданных чертежом.

Известен способ изготовления бескремнеземной керамической формы для литья по выплавляемым моделям, включающий изготовление модельного блока, послойное нанесение на него огнеупорной суспензии, сушку, удаление модели и прокалку керамической формы. На модельный блок наносят по крайней мере два слоя огнеупорной суспензии сначала следующего состава, мас.%: диановая эпоксидная смола - 2-10, отвердитель аминного типа - 0,4-2,0, органический растворитель - 10-30, огнеупорный наполнитель, выбранный из группы: оксиды РЗМ, гафния, циркония или их смесь - остальное, а затем состава на основе алюмоорганического связующего, а сушку проводят при температуре 40-100°C (RU 2502578 C1, 27.12.2013).

Недостатком данного способа является наличие на поверхности лицевого слоя крупных пор, что приводит к их заполнению расплавом и образованию на поверхности отливок случайно распределенной шаровидной сыпи, что требует дополнительной ручной зачистки для ее удаления.

Известен способ изготовления керамических форм по удаляемым моделям, включающий изготовление модели, послойное нанесение на модель огнеупорной суспензии с обсыпкой каждого слоя огнеупорным материалом и сушкой, удаление модели, прокалку керамической формы и пропитку последней раствором. Керамическую форму пропитывают упрочняющим раствором, содержащим кремнийорганический лак, по меньшей мере один фторид металла из группы Al, Cr, Mg, Ba, Zr, Ca и этиловый спирт при следующем соотношении компонентов, мас. %: кремнийорганический лак - 15-25, по меньшей мере один фторид металла из группы Al, Cr, Mg, Ва, Zr, Са - 1,5-5,0, этиловый спирт - остальное. После пропитки керамическую форму просушивают и прокаливают при температуре 1150-1350°C в течение 4-8 ч (RU 2343038 C1, независимый пункт 1 формулы изобретения, 10.01.2009).

Поскольку фториды имеют низкую температуру плавления, при высоких температурах литья это приведет к образованию жидкой фазы и снижению устойчивости керамической формы к деформации.

Известен способ изготовления керамических форм по удаляемым моделям, включающий изготовление модели, послойное нанесение на модель огнеупорной суспензии с обсыпкой каждого слоя огнеупорным материалом и сушкой, удаление модели, прокалку формы и пропитку последней раствором. Керамическую форму пропитывают упрочняющим раствором, содержащим кремнийорганический лак, мелкодисперсный Al и этиловый спирт в следующем соотношении компонентов, мас.%: кремнийорганический лак - 15-25, мелкодисперсный Al - 2,0-10,0 этиловый спирт - остальное, после пропитки керамическую форму просушивают и прокаливают при температуре 1150-1350°C в течение 4-8 ч (RU 2343038 C1, независимый пункт 4 формулы изобретения, 10.01.2009).

Пропитка кремнийорганическим лаком в сочетании с мелкодисперсным алюминием может приводить к образованию кремния на поверхности формы за счет реакции восстановления оксида кремния алюминием, что приведет к увеличению взаимодействия расплава металла с керамической формой. Значительное увеличение прочности керамической формы может спровоцировать возникновение критических напряжений, приводящих к образованию трещин в отливках из сплавов, склонных к трещинообразованию, например интерметаллидных.

Наиболее близким аналогом является способ изготовления литейных керамических форм, включающий приготовление огнеупорной суспензии на основе этилсиликатного связующего, послойное формирование огнеупорных слоев на модели, выплавление модели, сушку керамической формы, ее пропитку 5-10%-ными водными растворами хлоридов бария, кальция или сернокислого алюминия методом погружения в течение 5-10 с, сушку и обжиг. Для формирования слоев с 5-го по 9-й используют этилсиликатное связующее с пониженным до 8-10 мас.% содержанием условного кремнезема и содержанием поверхностно-активного вещества в количестве 0,2 мас.%, а пропитку форм осуществляют с ее внешней стороны (RU 2531335 C1, 20.10.2014).

Основными недостатками прототипа являются низкая химическая инертность материала керамической формы, приводящая к значительному физико-химическому взаимодействию лицевого слоя формы с расплавленным металлом, а также низкая прочность при высоких температурах.

Задачей предлагаемого изобретения является улучшение качества литья в высокоогнеупорных керамических формах.

Техническим результатом предлагаемого изобретения является уплотнение лицевого слоя материала керамических форм, повышение химической инертности керамических форм к расплавам жаропрочных сплавов, тугоплавких и химически активных сплавов при температурах литья до 1850°С, повышение механической прочности керамических форм и улучшение экологической безопасности производства.

Технический результат достигается предложенным способом изготовления литейной керамической формы, включающим приготовление огнеупорной суспензии, послойное формирование огнеупорных слоев на модели, удаление модели и обжиг керамической формы, при этом после обжига керамической формы на ее внешнюю поверхность наносят водостойкий органический пленкообразователь, пропитывают керамическую форму с внутренней стороны гидрозолем, содержащим по меньшей мере одно кислородсодержащее соединение с элементом, выбранным из группы, включающей редкоземельный металл, гафний, цирконий и алюминий, проводят сушку и окончательный обжиг керамической формы.

Керамическую форму изготавливают методом послойного нанесения керамической суспензии на удаляемую модель с последующей обсыпкой крупнозернистым огнеупорным керамическим материалом и сушкой. В качестве наполнителя керамической суспензии используют микропорошки оксида алюминия, оксида циркония, циркона, оксида иттрия, кианита, дистенсиллиманита и др. В качестве связующего используют водное кремнезольное связующее, гидролизованный раствор этилсиликата, полимерное связующее, алюмоорганическое связующее и др. После формирования требуемого количества слоев керамического покрытия модель детали удаляют из внутренней полости литейной формы одним из общепринятых методов: в кипящей воде, в бойлерклаве, в расплаве модельной массы, струей вода и так далее - в зависимости от состава модельной композиции (восковая композиция, водорастворимая композиция, выжигаемая модель).

После удаления модели для удаления избыточной влаги проводят сушку керамической формы.

Последующий первичный обжиг (прокалка) при температуре 800-1350°C керамической формы предназначен для удаления остатков модельной массы из внутренней полости и порового пространства материала керамической формы.

После проведения прокалки на внешнюю сторону керамической формы наносят водостойкий органический пленкообразователь, создающий на внешней стороне керамической формы труднопроницаемую полимерную оболочку. Указанную оболочку можно сформировать нанесением пленкообразователя в виде растворов смол, водных дисперсий полимеров, лаков различными методами: напылением, поливом, окунанием, а в случае применения тонкой полимерной пленки обертыванием керамической формы этой пленкой.

Вслед за нанесением пленкообразователя на внешнюю поверхность формы проводят пропитку керамической формы гидрозолем (коллоидным раствором), содержащим по меньшей мере одно кислородсодержащее соединение с элементом, выбранным из группы: редкоземельный металл, гафний, цирконий и алюминий. Пропитку проводят с внутренней стороны «сливным» способом. Пропитывающий золь заливают во внутреннюю полость керамической формы и выдерживают до полного прекращения выделения пузырьков воздуха, после чего раствор выливают из керамической формы.

Нанесение на внешнюю сторону керамической формы органического пленкообразующего вещества после предварительной прокалки и последующая пропитка коллоидным раствором внутренней полости формы позволяют сформировать модифицированный уплотненный лицевой слой, при этом пористость наружных слоев практически не изменяется в связи с условиями, обеспечивающими сушку формы только с внутренней поверхности.

В процессе сушки керамической формы после пропитки коллоидным раствором растворитель испаряется в основном с внутренней поверхности керамической формы, т.к. сушка с наружной поверхности формы затруднена из-за наличия на ней труднопроницаемого пленкообразователя. Таким образом, коллоидный раствор мигрирует по поровому пространству из глубинных слоев керамической формы к ее внутренней поверхности, с которой происходит испарение растворителя. Лицевая поверхность керамической формы уплотняется за счет заполнения порового пространства кислородсодержащими соединениями с элементами, выбранными из группы: редкоземельный металл, цирконий, гафний, алюминий, с образованием мелкопористой структуры керамики на лицевой поверхности. Наряду с этим происходит плакирование огнеупорных частиц материала керамической формы вышеуказанными соединениями. При повторных пропитках керамической формы с внутренней стороны происходит заполнение мелких пор и дальнейшее уплотнение лицевой поверхности керамической формы. После каждого цикла пропитка - сушка происходит последовательное уменьшение размера пор керамики.

В процессе окончательного обжига в электрической печи при температуре 1350-1800°C в наружных слоях последовательно происходит термодеструкция и затем полное выгорание пленкообразователя и упрочнение пористой структуры зернистого строения. Таким образом, исходная пористость наружных слоев, сформированная после обжига, практически не изменяется и является в основном открытой.

Лицевой слой дополнительно уплотняется и упрочняется за счет спекания активных частиц коллоидных размеров, заполняющих поровое пространство. В лицевом слое последовательно происходит термическое разложение кислородсодержащих соединений РЗМ, циркония, гафния, алюминия, с образованием соответствующих оксидов и последующее их спекание с формированием на лицевом слое уплотненного мелкопористого инертного покрытия из спеченных оксидов РЗМ, циркония, гафния или их соединений. Это позволяет добиться высокого качества литья жаропрочных, тугоплавких и химически активных металлов при температурах 1600-1850°C.

Уплотненный лицевой слой, плакированный химически инертными оксидными соединениями после окончательного обжига, обладает высокой степенью химической инертности к расплавленным сплавам и практически исключает пропитку ими стенок керамической формы при увеличении размеров отливки, повышает прочность керамической формы. Пористые наружные слои зернистого строения обеспечивают высокую термостойкость керамической формы, что важно при проведении литья изделий методом направленной кристаллизации в условиях высокого градиента температур.

Термическое разложение соединений РЗМ, циркония, гафния и алюминия происходит без образования токсичных газообразных продуктов, содержащих хлор и серу, что улучшает экологическую безопасность производства керамических форм.

Пример 1

Керамическую форму готовили следующим образом. Сначала изготовили восковую модель, на которую послойно наносили керамическую суспензию на основе микропорошков электрокорунда и кремнезольного связующего с обсыпкой каждого слоя крупнозернистым электрокорундом и сушкой. После формирования многослойного покрытия восковую модель удалили в бойлерклаве и прокалили форму при температуре 800°C. Далее наносили пленкообразующий спиртовой раствор поливинилбутераля на наружную поверхность керамической формы методом распыления и сушили форму на воздухе. Для модифицирования лицевого слоя керамическую форму заполнили коллоидным раствором оксида иттрия (Nyacol) и выдержали до прекращения выделения пузырьков воздуха. Затем слили коллоидный раствор и просушили керамическую форму. Операцию пропитка - сушка проводили дважды. Далее провели обжиг при температуре 1500°C.

Открытая пористость, определенная на образцах-свидетелях методом гидростатического взвешивания, для лицевого слоя составила 25%, а для наружного слоя - 35%, что указывает на уплотнение материала лицевого слоя.

Прочность керамической формы, определенная на образцах-свидетелях при изгибе при температуре 1600°C в условиях вакуума, составила 8 МПа, что является технологически приемлемым для ее использования при литье центробежным способом.

Полученную форму использовали для отливки детали из химически активного γ-TiAl сплава при температуре 1650°C. Была проведена оценка химического взаимодействия расплава γ-TiAl сплава с керамической формой на поперечных шлифах отливки при помощи сканирующей микроскопии на приборе JSM-6490 LV. Толщина зоны взаимодействия не превышала 23 мкм, что удовлетворяет требованиям к литым заготовкам деталей ответственного назначения.

Пример 2

Керамическую форму готовили следующим образом. Сначала изготовили восковую модель, на которую послойно нанесли керамическую суспензию на основе микропорошков диоксида циркония и кремнезольного связующего с обсыпкой каждого слоя крупнозернистым электрокорундом и сушкой. После формирования многослойного покрытия удалили восковую модель в бойлерклаве и прокалили форму при температуре 1000°C. Далее нанесли пленкообразующую водную дисперсию поливинилацетата на наружную поверхность керамической формы методом окунания и просушили форму на воздухе. Для модифицирования лицевого слоя керамическую форму заполнили коллоидным раствором диоксида циркония и выдержали до прекращения выделения пузырьков воздуха, а затем слили коллоидный раствор и просушили керамическую форму. Операцию пропитка-сушка провели трижды. Далее провели окончательный обжиг при температуре 1400°C.

Открытая пористость лицевого слоя составила 21%, а наружного 34%, что указывает на уплотнение материала лицевого слоя.

Прочность керамической формы при температуре 1600°C составила 7,5 МПа, что является технологически приемлемым для ее использования при литье центробежным способом.

Полученную форму использовали для отливки детали из химически активного титанового сплава при температуре 1700°C. Проведена оценка химического взаимодействия ниобиевого расплава с керамической формой на поперечных шлифах отливки при помощи сканирующей микроскопии на приборе JSM-6490 LV. Толщина зоны взаимодействия расплава металла с керамической формой на поперечных шлифах отливки не превышала 20 мкм, что удовлетворяет требованиям к литым заготовкам деталей ответственного назначения.

Пример 3

Керамическую форму готовили следующим образом. Сначала изготовили восковую модель, на которую послойно нанесли керамическую суспензию на основе микропорошков электрокорунда и связующего - гидролизованного раствора этилсиликата с обсыпкой каждого слоя крупнозернистым электрокорундом и сушкой. После формирования многослойного покрытия удалили восковую модель в бойлерклаве и прокалили форму при температуре 1100°C. Далее нанесли пленкообразующую водную стиролакриловую дисперсию на наружную поверхность керамической формы методом полива и просушили на воздухе. Для модифицирования лицевого слоя керамическую форму заполнили коллоидным раствором оксида алюминия (Remal 20) и выдержали до прекращения выделения пузырьков воздуха, а затем слили коллоидный раствор и просушили керамическую форму. Операцию пропитка - сушка проводили дважды. Далее провели вторичный обжиг при температуре 1350°C.

Открытая пористость лицевого слоя составила 23%, а наружного - 35%, что указывает на уплотнение материала лицевого слоя.

Прочность керамической формы при температуре 1600°C составила 7 МПа, что является технологически приемлемым для ее использования при литье методом направленной кристаллизации.

Полученную форму использовали для отливки детали из жаропрочного сплава на никелевой основе при температуре 1620°C. Проведена оценка химического взаимодействия ниобиевого расплава с керамической формой на поперечных шлифах отливки при помощи сканирующей микроскопии на приборе JSM-6490 LV. Толщина зоны взаимодействия ниобиевого расплава с керамической формой на поперечных шлифах отливки не превышала 10 мкм, что удовлетворяет требованиям к литым заготовкам деталей ответственного назначения.

Пример 4

Керамическую форму готовили следующим образом. Сначала изготовили водорастворимую модель, на которую послойно нанесли керамическую суспензию на основе микропорошков электроплавленного оксида иттрия и полимерного связующего - раствора эпоксидной смолы с отвердителем с обсыпкой каждого слоя крупнозернистым электроплавленным оксидом иттрия и сушкой. После формирования многослойного покрытия удалили водорастворимую модель струей воды и прокалили форму при температуре 1350°C. Далее керамическую форму обернули тонкой полиолефиновой термоусадочной пленкой и нагрели форму на воздухе до 130°C. Для модифицирования лицевого слоя керамическую форму заполнили коллоидным раствором оксида иттрия (Nyacol, США) и выдержали до прекращения выделения пузырьков воздуха, а затем слили коллоидный раствор и просушили керамической формы. Далее удалили полиолефиновую пленку с керамической формы и провели вторичный обжиг при температуре 1800°C.

Открытая пористость лицевого слоя составила 25%, а наружного - 37%, что указывает на уплотнение материала лицевого слоя.

Прочность керамической формы при температуре 1600°C составила 6,5 МПа, что является технологически приемлемым для ее использования при литье методом направленной кристаллизации.

Полученную форму использовали для отливки детали из тугоплавкого ниобиевого сплава на основе системы Nb-Si. Была проведена оценка химического взаимодействия ниобиевого расплава с керамической формой на поперечных шлифах отливки при помощи сканирующей микроскопии на приборе JSM-6490 LV. Толщина зоны взаимодействия ниобиевого расплава с керамической формой на поперечных шлифах отливки не превышала 15 мкм, что удовлетворяет требованиям к литым заготовкам деталей ответственного назначения.

Пример 5

Керамическую форму готовили следующим образом. Сначала изготовили восковую модель, на которую послойно наносили керамическую суспензию на основе микропорошков электрокорунда и кремнезольного связующего с обсыпкой каждого слоя крупнозернистым электрокорундом и сушкой. После формирования многослойного покрытия восковую модель удалили в бойлерклаве и прокалили форму при температуре 800°C. Далее наносили пленкообразующий спиртовой раствор поливинилбутераля на наружную поверхность керамической формы методом распыления и сушили форму на воздухе. Для модифицирования лицевого слоя керамическую форму заполнили коллоидным раствором смеси оксида иттрия (Nyacol) и оксида циркония в соотношении 5:1 и выдержали до прекращения выделения пузырьков воздуха. Затем слили коллоидный раствор и просушили керамическую форму. Далее провели обжиг при температуре 1500°C.

Открытая пористость, определенная на образцах-свидетелях методом гидростатического взвешивания, для лицевого слоя составила 27%, а для наружного слоя - 34%, что указывает на уплотнение материала лицевого слоя.

Прочность керамической формы, определенная на образцах-свидетелях при изгибе при температуре 1600°C в условиях вакуума, составила 7,8 МПа, что является технологически приемлемым для ее использования при литье центробежным способом.

Полученную форму использовали для отливки детали из химически активного γ-TiAl сплава при температуре 1650°C. Была проведена оценка химического взаимодействия расплава γ-TiAl сплава с керамической формой на поперечных шлифах отливки при помощи сканирующей микроскопии на приборе JSM-6490 LV. Толщина зоны взаимодействия не превышала 27 мкм, что удовлетворяет требованиям к литым заготовкам деталей ответственного назначения.

Пример 6

Керамическую форму готовили следующим образом. Сначала изготовили водорастворимую модель, на которую послойно нанесли керамическую суспензию на основе микропорошков электроплавленного оксида иттрия и полимерного связующего - раствора эпоксидной смолы с отвердителем с обсыпкой каждого слоя крупнозернистым электроплавленным оксидом иттрия и сушкой. После формирования многослойного покрытия удалили водорастворимую модель струей воды и прокалили форму при температуре 1350°C. Далее керамическую форму обернули стрейч-пленкой толщиной 17 мкм. Для модифицирования лицевого слоя керамическую форму заполнили коллоидным раствором оксида гафния и выдержали до прекращения выделения пузырьков воздуха, а затем слили коллоидный раствор и просушили керамической формы. Операцию пропитка сушка проводили трижды. Далее удалили стрейч-пленку с керамической формы и провели вторичный обжиг при температуре 1800°C.

Открытая пористость лицевого слоя составила 24%, а наружного - 35%, что указывает на уплотнение материала лицевого слоя.

Прочность керамической формы при температуре 1600°C составила 7,5 МПа, что является технологически приемлемым для ее использования при литье методом направленной кристаллизации.

Полученную форму использовали для отливки детали из тугоплавкого ниобиевого сплава на основе системы Nb-Si. Была проведена оценка химического взаимодействия ниобиевого расплава с керамической формой на поперечных шлифах отливки при помощи сканирующей микроскопии на приборе JSM-6490 LV. Толщина зоны взаимодействия ниобиевого расплава с керамической формой на поперечных шлифах отливки не превышала 18 мкм, что удовлетворяет требованиям к литым заготовкам деталей ответственного назначения.

1. Способ изготовления литейной керамической формы, включающий приготовление огнеупорной суспензии, послойное формирование огнеупорных слоев на модели, удаление модели и обжиг керамической формы, отличающийся тем, что после обжига керамической формы на ее внешнюю поверхность наносят водостойкий органический пленкообразователь, пропитывают керамическую форму с внутренней стороны гидрозолем, содержащим по меньшей мере одно кислородсодержащее соединение с элементом, выбранным из группы, включающей редкоземельный металл, гафний, цирконий и алюминий, проводят сушку и окончательный обжиг керамической формы.

2. Способ по п. 1, отличающийся тем, что керамическую форму пропитывают с внутренней стороны не менее двух раз с промежуточной сушкой между пропитками.

3. Способ по п. 1, отличающийся тем, что обжиг керамической формы после удаления модели проводят при температуре 800-1350°С.

4. Способ по п. 1, отличающийся тем, что окончательный обжиг керамической формы проводят при температуре 1350-1800°С.



 

Похожие патенты:

Изобретение относится к литейному производству и может быть использовано для получения отливок, имеющих пространственно-сложные отверстия, из титановых сплавов. Механическим путем изготавливают основную графитовую форму, затем изготавливают пространственно сложный фрагмент формы путем нанесения на модель в виде сектора огнеупорной облицовки методом литья по выплавляемым моделям.

Изобретение относится к области литейного производства и может быть использовано для получения сложнопрофильных и тонкостенных отливок для авиационной техники и машиностроения.
Изобретение относится к области литейного производства. Способ включает нанесение на поверхность модели из пенополистирола легирующей композиции, которую готовят путем смешивания порошкообразной смеси с клеевым связующим, содержание которого не превышает 90% от массы порошкообразной смеси, при этом порошкообразная смесь имеет состав: 5÷80% мас.
Изобретение относится к области литейного производства. Способ включает нанесение на поверхность модели из пенополистирола легирующей композиции, которую готовят путем смешивания порошкообразной смеси с клеевым связующим, содержание которого не превышает 90% от массы порошкообразной смеси, при этом порошкообразная смесь имеет состав: 60÷90 мас.% титана и 40÷10 мас.% элементарного углерода.

Изобретение относится к литейному производству, а именно к получению отливок по удаляемым (выплавляемым, выжигаемым, газифицируемым) моделям. Способ включает послойное нанесение на модель оболочек путем погружения модели в суспензию из огнеупорного наполнителя и раствора связующего и последующей обсыпки зернистым материалом.
Изобретение может быть использовано для изготовления отливок способом литья по выплавляемым моделям. Состав содержит жидкую керамическую массу и керамический материал для обсыпки.

Изобретение относится к литейному производству и может быть использовано в авиационной технике и автомобилестроении. Способ литья включает сборку газифицируемых моделей отливки и элементов литниковой системы, при этом в газифицируемой модели литниковой системы создают полость, в которую засыпают наноструктурированный алмазный порошок (НАП), предварительно обработанный в поле электрического разряда напряженностью 800…1200 В/м.

Изобретение относится к литейному производству. Газифицируемую модель из пенополистирола с литниково-питающей системой, включающей прибыль, окрашивают противопригарной краской.

Изобретение относится к области литейного производства. Изготавливают форму из сыпучего огнеупорного магнитного материала в литейном корпусе с разовой моделью путем воздействия вакуума и электромагнитного поля для уплотнения материала.

Изобретение относится к часовой промышленности. Предлагается способ изготовления корпуса часов, в котором отливают внутреннюю часть корпуса, механически обрабатывают внутреннюю часть корпуса с получением двух канавок, для последующей фиксации в них декоративной вставки, изготавливают кокиль для отливки декоративной вставки, формирующий геометрию требуемого корпуса часов, причем частью формы кокиля является внутренняя часть корпуса, полученная раньше. Затем производят воскование; отливку и фрезеровку декоративной вставки; окончательную фрезеровку и полировку корпуса часов. Обеспечивается уменьшение веса драгоценного металла в изделии при одновременной жесткости изделия. 4 з.п. ф-лы, 2 ил.

Изобретение относится к литейному производству и может быть использовано для литья отливок из тугоплавких химически активных сплавов, в частности жаропрочных никелевых и титановых сплавов, сложнолегированных сталей в условиях вакуума. Способ включает формирование на токопроводной модели из легкоплавкого металлического сплава форетического осадка, его сушку и удаление модели. Форетический осадок формируют из раствора алюмоборфосфатного концентрата с наполнителем из наноструктурированного алмазного порошка и возвратных отходов электродного производства, содержащих карбид кремния и графит. Наполнитель предварительно подвергают воздействию тихого разряда напряженностью 500…800 В/м. Сушку форетического осадка и удаление модели осуществляют одновременно под действием токов высокой частоты мощностью 8…20 кВт. Обеспечивается ускорение формирования форетического осадка при снижении энергозатрат, повышение прочности и термохимической устойчивости керамических форм к жаропрочным сплавам и улучшение качества сложнопрофильных отливок. 2 табл., 2 пр.

Изобретение относится к литейному производству и может быть использовано для получения точных отливок из химически активных тугоплавких жаропрочных сплавов. Способ включает формирование на модельном блоке оболочки с использованием кремнезольного связующего, огнеупорного наполнителя и обсыпочного материала, сушку слоев оболочки, вытопку модельного состава и прокалку оболочки. В качестве связующего используют кремнезоль основной, а в качестве огнеупорного наполнителя и обсыпочного материала - оксид иттрия. После нанесения каждого слоя осуществляют его пропитку водным раствором алюмоборфосфатного концентрата при одновременном воздействии на указанный раствор ультразвуком с интенсивностью 10…15 кВт/м2. Достигается ускорение цикла формообразования и повышение термохимической устойчивости керамических оболочковых форм к заливаемым в вакууме жаропрочным сплавам, в том числе интерметаллидным сплавам системы «титан-алюминий». 2 табл., 1 пр.

Изобретение относится к области литейного производства. Способ включает внедрение в предварительно вспененные гранулы пенополистирола частиц модификатора или легирующих добавок, которые ускоряются до скорости выше 0,5 м/с. Для ускорение частиц применяется поток газа, который подают импульсно или непрерывно. Предварительно вспененные гранулы пенополистирола размещают в коробе из сетки с размерами ячейки от 0,4 до 0,7 от среднего размера гранул, а сам короб наполняется на 0,5-0,9 объема. Обеспечивается повышение качества отливок за счет равномерного распределения модификаторов и легирующих добавок в модели. 2 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к литейному производству, в частности к получению методом направленной кристаллизации литых постоянных магнитов из магнитотвердых материалов типа Al-Ni-Co-Ti-Fe со столбчатой структурой. Комбинированная литейная форма состоит из керамической формы, обернутой огнеупорным теплоизоляционным материалом в виде ткани толщиной 15-20 мм на основе керамического волокна, имеющего следующий состав, мас %: диоксид кремния 52-56, оксид алюминия 28-30, диоксид циркония 14-18. Керамическая форма и теплоизоляционный материал закреплены снаружи металлическими полосами из никелевой проволоки. Обеспечивается повышение основных магнитных характеристик изделий за счет улучшения качества столбчатой структуры. 1 ил., 1 табл.

Изобретение относится к области литейного производства. Способ включает внедрение в предварительно вспененные гранулы пенополистирола частиц модификатора и легирующих добавок и спекание из них газифицируемых моделей. Модификаторы и легирующие добавки в виде микро- и наночастиц измельчаются и внедряются вовнутрь предварительно вспененных гранул пенополистирола путем воздействия на эти частицы ударной волны электрического разряда. Обеспечивается более равномерное распределение модификаторов и легирующих добавок в газифицируемой модели отливки и, как следствие, повышение качества модифицирования и легирования металла отливки. 3 з.п. ф-лы, 2 ил., 4 пр.

Изобретение относится к литейному производству. Поверхности модельного блока очищают от смазок и загрязнителей водным раствором моющих средств. Наносят на модельный блок керамическую суспензию на основе кремнезоля. Обсыпают огнеупорным зернистым материалом. Сушат лицевой слой в потоке воздуха с влажностью 45-55%. Повторяют циклы нанесения слоя керамической суспензии, обсыпки и сушки каждого из них в потоке осушенного воздуха с влажностью 30-40%. Осуществляют последующую вытопку модельной массы и термическую обработку керамической формы методом прокаливания в диапазоне температур от 700 до 850°С с последующим охлаждением в печи в течение 8-12 ч. Формы извлекают из печи при температуре не более 100°С и охлаждают на воздухе. Обеспечивается повышение качества литейных керамических форм. 2 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к области литья и, в частности, к модели (12) для литья по разовой модели, выполненной в форме лопатки газотурбинного двигателя с хвостовиком (15) и пером (14) с обеих сторон полки (20), которая перпендикулярна основной оси лопатки. Перо лопатки (14) имеет внутреннюю поверхность (17), спинку (16), входную кромку (18) и выходную кромку (19). Модель (12) также включает расширительную полосу (21), смежную выходной кромке (19), и огнеупорный стержень (21), заделанный в модель (12), и имеющий как на корыте (17), так и на спинке (16) соответствующую выровненную лакированную поверхность (31) между выходной кромкой (19) и расширительной полосой (21). Перегородка (24) продолжается между полкой (20) и указанной расширительной полосой (21) и имеет свободную кромку (25) между ними. Изобретение также относится к способу изготовления оболочковой формы из модели (12) и способу литья с использованием оболочковой формы. В результате обеспечивается устранение образования зерен на пересечениях выходной кромки или расширительной полосой с полкой лопатки газотурбинного двигателя. 4 н. и 7 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к литейному производству. Изготавливают оболочковую форму путем послойного нанесения суспензии на модель и обсыпку каждого слоя зернистым материалом. Осуществляют сушку и отверждение ее. Модель выплавляют. Обсыпку слоев зернистым материалом и сушку совмещают. Сушку проводят в слое опорного зернистого материала основы под действием градиента давления воздуха. Разность давлений воздуха над и под слоем опорного зернистого материала создают вакуумированием пространства под слоем зернистого материала. Обеспечивается повышение качества производимых оболочковых форм. 1 ил., 1 табл.

Изобретение относится к области литья, а более конкретно к оболочковой форме, а также к способам изготовления и использования такой оболочковой формы. Оболочковая форма содержит центральный цилиндр, формовочные полости, расположенные в узле вокруг центрального цилиндра, и по меньшей мере один теплозащитный экран, выполненный перпендикулярно упомянутой главной оси. Центральный цилиндр продолжается вдоль главной оси между разливочной чашей и основанием. Каждая формовочная полость соединена с разливочной чашей по меньшей мере одним подающим каналом, а также посредством литника-селектора со стартером в основании. По меньшей мере один теплозащитный экран полностью окружает каждую упомянутую формовочную полость в плоскости, которая является, по существу, перпендикулярной упомянутой главной оси. В результате обеспечивается направленная кристаллизация расплавленного металла в формовочных полостях оболочковой формы. 3 н. и 5 з.п. ф-лы, 6 ил., 1 табл.
Наверх