Эжекторное мембранно-сорбционное устройство для разделения газовых смесей

Изобретение относится к мембранно-адсорбционным устройствам с использованием газового эжектора для разделения газовых смесей. Эжекторное мембранно-сорбционное устройство для разделения газовых смесей содержит компрессор, к выходу которого подключен вход эжекционного смесителя, через регулятор давления газа по меньшей мере два адсорбера, заполненных твердым адсорбентом и через регулятор давления газа вход десорбционного эжектора. Выход эжекционного смесителя через регулятор расхода газа подключен к первому распределительному клапану. Входы адсорберов подключены к первому распределительному клапану для переключения потока сжатого газа из компрессора между адсорберами. Выходы адсорберов снабжены управляющими клапанами для отвода газа из адсорберов в сбросной трубопровод и подключены через второй распределительный клапан к мембранному фильтру, один из патрубков отвода которого соединен с потребителем, а второй с эжекционным смесителем. Технический результат - обеспечение стационарного режима работы мембранного фильтра при постоянных потоках питания и продукта и постоянного потока вытеснения с адсорберов для обеспечения максимальных разделительных характеристик устройства в целом. 2 з.п. ф-лы, 1 ил., 2 пр.

 

Эжекторное мембранно-сорбционное устройство для разделения газовых смесей относится к технологии разделения газовых смесей мембранными и адсорбционными методами с целью получения обогащенных компонентов.

Изобретение относится к мембранно-адсорбционным устройствам с использованием газового эжектора для разделения газовых смесей и может быть использован для получения обогащенных компонентов в бинарных и многокомпонентных газовых смесях, в частности при производстве кислорода из атмосферного воздуха в различных областях.

Разделение газовых смесей производится различными физико-химическими методами, включая мембранные и адсорбционные. Адсорбционный метод разделения воздуха опирается на принцип селективного поглощения компонентов газовой смеси. Поглощение осуществляется специальными молекулярными ситами в условиях короткоцикловой адсорбции. В основе процесса лежит зависимость поглощения газа адсорбентом от давления: способность адсорбента к поглощению газа прямо пропорциональна давлению. Таким образом, адсорбция идет при повышенном давлении, а процесс десорбции осуществляется путем сброса давления. Обычно циклы сорбции и десорбции определенных газовых компонентов (например, при обогащении кислорода из воздуха - сорбция азота) чередуются, по меньшей мере, в двух параллельных адсорбционных колоннах на слоях адсорбентов.

Поскольку степень извлечения конечного продукта определяется как отношение количества продукта к исходному потоку питания устройства, критерием повышения степени извлечения при заданной величине обогащения продукта является так называемый относительный отбор, являющийся отношением потока продукта к потоку на входе в компрессор.

Отличительной особенностью эжекторной мембранно-сорбционной установки является сочетание сорбционного блока, работающего в нестационарном режиме и мембранного работающего принципиально в стационарном режиме. Сочетание этих двух блоков возможно только при обеспечении постоянного потока с адсорберов на стадии вытеснения. В этом случае на мембранном блоке можно обеспечить постоянный поток продукта. Это условие можно выполнить только при обеспечении постоянной нагрузки на компрессор, таким образом, чтобы он работал при постоянном давлении и расходе газа.

Мембранный метод разделения воздуха основан на принципе избирательной проницаемости мембран. Принцип действия мембранных газоразделительных установок заключается в различной скорости проникания газов через полимерную мембрану под действием перепада давления на мембране.

Периодичность работы компрессора приводит к циклическому нагружению давлением мембранного аппарата. Известное уменьшение механической прочности мембраны из полимерных материалов при наличии капельной влаги в сочетании с циклическим нагружением приводит к потере надежности работы аппарата, вплоть до преждевременного выхода его из строя.

Из уровня техники известен СПОСОБ И УСТАНОВКА ДЛЯ РАЗДЕЛЕНИЯ И/ИЛИ ОСУШКИ ГАЗОВЫХ СМЕСЕЙ С ПОМОЩЬЮ МЕМБРАННЫХ УСТРОЙСТВ (патент на изобретение RU №2233698, опубл. 10.08.2004, Бюл. №22). Известный способ разделения и/или осушки газовых смесей заключается в том, что поток сжатого газа подают на мембранное газоразделительное устройство в установке для разделения и/или осушки газовых смесей, в котором он разделяется на два потока, при этом осуществляют регулирование давления и/или расхода осушенного газа на выходе установки путем изменения рабочего давления в мембранном устройстве с помощью редуктора-регулятора давления, установленного перед мембранным устройством, совместно с дросселем, установленным на выходе мембранного устройства, который служит для первоначальной настройки степени отбора осушенного газа.

В последнее время находят применение комбинированные установки, в которых используются и адсорбционные колонны, и мембранные блоки, что обеспечивает повышение энергоэффективности при заданных значениях обогащения конечного продукта газовой смеси. Так, из уровня техники известна адсорбционно-мембранная установка, описанная в патенте ЕПВ №266884. Известная установка содержит компрессор для подачи исходной газовой смеси (воздуха), две параллельно расположенные адсорбционные колонны, заполненные твердым адсорбентом, мембранный блок, установленный на выходе из адсорбционных колонн и дополнительный мембранный блок, в который подают поток газа, образующийся на стадиях сброса давления и продувки адсорберов. Несмотря на все преимущества установок такого типа, они обладают существенным недостатком - необходимо использовать компрессор на каждой ступени разделения, что априори делает процесс экономически не выгодным.

Существуют установки и с одним компрессором. Так, из уровня техники известна мембранно-адсорбционная установка (патент на полезную модель RU №95547, опубл. 10.07.2010, Бюл. №19), состоящая из комбинации мембранного и адсорбционного разделительных блоков, отличается тем, что она оснащена дополнительным мембранным блоком, установленным на первой степени разделения, вход которого соединен с патрубком отвода продукта разделения сорбционного блока. В установках такого типа рециркуляционный поток сжимается вместе с потоком питания, что также приводит к увеличению энергетических затрат.

Из уровня техники известна также адсорбционно-мембранная установка, описанная в патенте РФ №4223461. Известная установка также содержит компрессор для подачи исходной газовой смеси (воздуха), две параллельно расположенные адсорбционные колонны, заполненные твердым адсорбентом, и мембранный блок, установленный на выходе из адсорбционных колонн и обеспечивающий дополнительное обогащение конечного продукта. В этой установке также используется только один компрессор. Отличительной особенностью предложенной схемы является то, что остаточным потоком осуществляют продувку адсорбера, находящейся при пониженном давлении, что является малоэффективным способом повышения степени извлечения конечного продукта.

Из уровня техники известно Эжекторное мембранно-сорбционное устройство для разделения газовых смесей (патент на полезную модель RU №139877, опубл. 27.04.2014, Бюл. №12), являющееся наиболее близким аналогом заявленного изобретения.

Известное эжекторное мембранно-сорбционное устройство для разделения газовых смесей, содержит компрессор, по меньшей мере два адсорбера, заполненных адсорбентом, имеющие входные патрубки, которые через первый клапан для переключения потока газа между адсорберами подключены к выходу эжекционного смесителя, который подключен к выходу компрессора, и выходные патрубки адсорберов, которые снабжены клапанами для отвода газа из адсорберов в сбросной трубопровод и подключены через второй распределительный клапан к мембранному фильтру, патрубок которого для отвода проникшей через мембрану фракции разделяемой газовой смеси из полости низкого давления соединен с потребителем, а патрубок для отвода не проникшей через мембрану фракции газовой смеси из полости высокого давления соединен с эжекционным смесителем, Устройство обладает повышенной степенью извлечения продукта за счет использования эжекторного смешения рециркуляционного потока и потока питания на выходе компрессора, в результате которого меняется состав смеси на входах в адсорберы при малом изменении давления на выходе эжектора. На сбросном трубопроводе может быть установлен дополнительный эжекционный смеситель с ресивером, позволяющий увеличить энергоэффективность за счет снижения давления десорбции.

Недостатком прототипа является отсутствие активных элементов управления технологическим процессом разделения в устройстве, содержащем рециркуляционный контур, который объединяет стационарный элемент разделения (мембранный модуль или мембранный фильтр) и нестационарные элементы разделения (адсорберы, заполненные сорбентом). Без управления режимом работы компрессора и потоками в устройстве заявленный результат принципиально не может быть достигнут, поскольку режим вытеснения в адсорбционной колонне не будет стационарным (давление газа и расход резко увеличиваются), что приведет к размыванию фронта адсорбции и, как следствие, к потере разделительной работы. Кроме того, скачки давления и потока в адсорбционной колонне неизбежно приводят к нестационарному режиму работы мембранного фильтра (мембранного модуля), и, как следствие, к скачкам давления и потока в рециркуляционном контуре.

Технический результат достигается при реализации заявленного изобретения и заключается в обеспечении стационарного режима работы мембранного фильтра при постоянных потоках питания и продукта и постоянного потока вытеснения с адсорберов для обеспечения максимальных разделительных характеристик устройства в целом.

Эжекторное мембранно-сорбционное устройство для разделения газовых смесей, содержащее, по меньшей мере, два адсорбера, заполненных твердым адсорбентом, компрессор, выходной патрубок которого соединен с адсорберами через регулируемые клапаны и с входом в эжекционный смеситель, выход которого подключен через первый распределительный клапан к входным патрубкам адсорберов, а выходы адсорберов снабжены управляющими клапанами для отвода газа из адсорберов в сбросной трубопровод и подключены через второй распределительный клапан к мембранному фильтру, один из патрубков отвода которого соединен с потребителем, а второй с эжекционным смесителем, при этом на выходе эжекционного смесителя установлен регулятор расхода газа, на трубопроводе, соединяющем компрессор с регулируемыми клапанами установлен регулятор давления газа, а на сбросном трубопроводе установлен распределительный клапан с двумя выходами, первый выход соединен с атмосферой, второй с десорбционным эжектором, который соединен также с компрессором через регулятор давления.

В частном случае эжекторное мембранно-сорбционное устройство для разделения газовых смесей может на выходе компрессора содержать вспомогательное оборудование для подготовки газа (очистка, осушка, нагрев).

Кроме того, эжекторное мембранно-сорбционное устройство для разделения газовых смесей на входе в мембранный фильтр на трубопроводе соединяющим адсорберы с мембранным фильтром может включать вспомогательное оборудование для усреднения состава газа на входе мембранного фильтра (например, ресивер).

На фиг. 1 представлена схема заявляемого устройства.

Устройство включает в себя компрессор 1, параллельно расположенные адсорберы 2 и 3 заполненные твердым адсорбентом. Входы адсорберов 2 и 3 подключены через трехходовой распределительный клапан 4 и через регулятор расхода газа 5 к эжекционному смесителю 6, который в свою очередь подключен к компрессору 1. Входы адсорберов 2 и 3 подключены также к управляющим клапанам 7 и 8, которые соединены с компрессором 1 через регулятор давления газа 9.

Выходы адсорберов 2 и 3 подключены через трехходовой распределительный клапан 9 и ресивер для усреднения концентрации газа 10 к мембранному фильтру 11. Мембранный фильтр 11 имеет полости высокого и низкого давления, разделенные селективным мембранным элементом, и обеспечивает как повышение концентрации целевого компонента, так и очистку газового потока от органических загрязнителей и твердых частиц, в том числе наночастиц сорбента. Патрубок отвода из полости низкого давления мембранного фильтра 11 соединен с потребителем, а патрубок отвода из полости высокого давления соединен с эжекционным смесителем 6.

Выходы адсорберов 2 и 3 подключены через управляющие клапаны 12, 13 к распределительному клапану 14, который соединен с десорбционным эжектором 15 и сбросным трубопроводом для отвода газа, характеризующегося большей величиной адсорбции, из адсорберов 2 и 3. Десорбционный эжектор 15 соединен также с компрессором 1 через регулятор давления газа 16.

Эжекторное мембранно-сорбционное устройство для разделения газовых смесей работает следующим образом.

Предполагается, что процесс разделения в ступени короткоцикловой адсорбции (КЦА) содержит следующие рабочие стадии: десорбция за счет сброса давления, заполнение адсорбера потоком с компрессора и/или потоком с выхода эжекционного смесителя, адсорбция и вытеснение продукта потоком с выхода эжекционного смесителя. Поскольку потери давления в ступени КЦА на стадии вытеснения в полости высокого давления мембранной ступени невелики, потери давления в эжекторе за счет корректного выбора его параметров тоже можно сделать достаточно малыми.

Исходная газовая смесь (воздух) сжимается с помощью компрессора 1 и под давлением подается по трубопроводу на эжекционный смеситель 6, где происходит повышение концентрации целевого компонента за счет подмешивания потока из полости высокого давления мембранного фильтра.

Сжатый воздух из компрессора 1 через регулятор давления газа 9 поступает на управляющий клапан 7 (управляющие клапаны 8 и 12 при этом закрыты) и через него поступает в адсорбер 2, заполнение адсорбера 2 проводят до давления 4-10 атм. После этого клапан 7 закрывается и сжатый и дополнительно обогащенный целевым компонентом поток воздуха, величина которого устанавливается регулятором расхода газа 5 под давлением 4÷10 атмосфер проходит через электромагнитный распределительный клапан 9, открытый в сторону адсорбера 2 и поступает на вход адсорбера 2. При прохождении воздуха через слой адсорбента более сорбируемый компонент с легкостью им поглощается, а менее сорбируемый, обладающий меньшей величиной адсорбции и соответственно поглощаемый с меньшей скоростью, проскакивает в конец слоя и поступает через открытый для него переключающийся электромагнитный распределительный клапан 9 в мембранный фильтр 11, перед которым может быть установлен ресивер для усреднения концентрации газа 10, проникший через мембранный фильтр 11 очищенный от примесей и продуктов истирания сорбентов поток, обогащенный целевым компонентом, поступает к потребителю, а не проникший через мембрану поток выходит через патрубок и подается в эжекционный смеситель 2.

Во время заполнения адсорбера 2 в адсорбере 3 происходит сброс давления и десорбция газа из адсорбента через управляющий клапан 13 (управляющий клапан 12 в это время закрыт). Из управляющего клапана 13 газ попадает на распределительный клапан 14, с помощью которого газ направляется в атмосферу до тех пор, пока давление в адсорбере не достигнет давления 1-3 ата, после этого распределительный клапан 14 переключает поток на десорбционный эжектор 15, который работает как струйный насос, т.е. при помощи высоконапорного потока газа с компрессора 1, который подается в десорбционный эжектор 15, десорбционный эжектор откачивает газ из адсорбера 3 до давления 0,1-0,5 ата.

Через время полуцикла адсорберы 2 и 3 обмениваются своими функциями. Такой цикл повторяется многократно. Таким образом, описанный вариант работы установки обеспечивает стабильный режим работы установки с максимальными разделительными характеристиками.

Примеры реализации

Пример 1

Целью является получение воздуха, обогащенного кислородом до заданной величины концентрации 50% (об.) при заданных параметрах мембранной ступени.

К заданным параметрам мембранной ступени относятся: значение отношение давления в полости низкого к давлению в полости высокого давления; значение селективности (отношение проницаемостей компонентов) равное 7.

При использовании предложенного устройства обогащенный кислородом продуктовый поток поступает потребителю в количестве 0,6 м 3/час при давлении 6 атмосфер и отношении давлений в мембранной ступени равном 6/8. Давление десорбции 0,3 ата.

Постоянный поток на выходе компрессора ТА-100K Durr Technik равен 3,6 м3/час при давлении 8 ата. Поток вытеснения на выходе из адсорбера составляет 1,5 м3/час. При значении отношения давления в полости низкого к давлению в полости высокого давления равном 6/8 и селективности равной 6,3 продуктовый поток величиной 0,975 м3/час поступает потребителю при давлении 6 ата. При этом относительный отбор продуктового кислорода составляет 0,27. Остальной поток с выхода компрессора направляется на заполнение адсорберов и на десорбционный эжектор. Концентрация кислорода в потоке продукта равна 50%. Данный режим при отсутствии новых признаков изобретения принципиально невозможно реализовать. Концентрация кислорода в потоке продукта равна 50%.

Пример 2

При использовании предложенного устройства с параметрами примера 1 при снижении давления десорбции до 0,1 атм. за счет эжектора, продуваемого потоком с компрессора, можно получать продуктовый поток чистотой продукта до 65%. При этом стационарный режим работы по потоку, поступающему на вход мембранного фильтра и потока продукта сохраняется. В примерах в качестве мембранного фильтра использован мембранный модуль фирмы AirLiquide. В качестве сорбента использован цеолит HF-5120 (Hong Kong Chemical Corp.) В качестве компрессора использован компрессор фирмы DurrTechnik модель ТА-100K Durr Technik.

1. Эжекторное мембранно-сорбционное устройство для разделения газовых смесей, содержащее, по меньшей мере, два адсорбера, заполненных твердым адсорбентом, компрессор, выходной патрубок которого соединен с адсорберами через регулируемые клапаны и с входом в эжекционный смеситель, выход которого подключен через первый распределительный клапан к входным патрубкам адсорберов, а выходы адсорберов снабжены управляющими клапанами для отвода газа из адсорберов в сбросной трубопровод и подключены через второй распределительный клапан к мембранному фильтру, один из патрубков отвода которого соединен с потребителем, а второй с эжекционным смесителем, отличающееся тем, что на выходе эжекционного смесителя установлен регулятор расхода газа, на трубопроводе, соединяющем компрессор с регулируемыми клапанами, установлен регулятор давления газа, а на сбросном трубопроводе установлен распределительный клапан с двумя выходами, первый выход соединен с атмосферой, второй с десорбционным эжектором, который соединен также с компрессором через регулятор давления.

2. Эжекторное мембранно-сорбционное устройство для разделения газовых смесей по п. 1, отличающееся тем, что на выходе компрессора установлено вспомогательное оборудование для подготовки газа (очистка, осушка, нагрев).

3. Эжекторное мембранно-сорбционное устройство для разделения газовых смесей по п. 2, отличающееся тем, что на входе в мембранный фильтр на трубопроводе, соединяющем адсорберы с мембранным фильтром, установлено вспомогательное оборудование для усреднения состава газа на входе мембранного фильтра.



 

Похожие патенты:

Изобретение относится к химической промышленности и может быть использовано при производстве азота, кислорода и аргона из атмосферного воздуха. Способ включает использование нескольких адсорбционных колонн.

Описаны способ и устройство для повышения степени извлечения гелия. Поток, содержащий гелий и по меньшей мере один способный окисляться компонент, вводят в зону окисления в присутствии кислорода для окисления способного окисляться компонента с образованием первого потока паров и первого потока жидкости.

Изобретение относится к способам разделения газовых смесей короткоцикловой безнагревной адсорбцией. Способ реализуется на установке, которая состоит, в частности, из источника давления, трех идентичных адсорбционных колонн, системы переключающих клапанов.

Изобретение относится к системе для получения кислорода в учреждении, содержащей по меньшей мере одно устройство для получения медицинского воздуха, блок адсорбции с перепадом давления, который служит для получения потока кислорода, и учреждение, содержащее сеть трубопроводов для медицинского воздуха и вакуумную систему, причем по меньшей мере одно устройство для получения медицинского воздуха присоединено к сети трубопроводов для медицинского воздуха, при этом по меньшей мере первая часть потока получаемого медицинского воздуха подается из по меньшей мере одного устройства для получения медицинского воздуха к сети трубопроводов для медицинского воздуха.
Изобретение относится к способу эксплуатации коксовой печи. Согласно способу возникающий в процессе коксования коксовый газ в виде полезного газа подается на материальную переработку, при этом от коксового газа отделяют водород, а для создания части необходимой для процесса коксования тепловой энергии в качестве горючего газа подается синтез-газ, который получают из ископаемого топлива посредством процесса газификации, при этом в качестве горючего газа используют первую долю полученного синтез-газа, при этом дополнительную долю полученного синтез-газа используют для дальнейшего синтеза с отделенным от коксового газа водородом.

Изобретение относится к способу и устройству для отделения по меньшей мере одного газообразного компонента из отработанного газа установки для изготовления жидкого чугуна, жидкого стального полуфабриката или губчатого железа.

Изобретение относится к области химии и биотехнологии. Способ непрерывного выделения и концентрирования водорода из биосингаза, состоящего из пяти и более компонентов, включающий подачу биосингаза из реактора (пиролизного реактора или биореактора) с помощью компрессора в мембранный модуль для предконцентрирования водорода в пермеате или ретентате и последующую подачу пермеата (после дополнительного компремирования) или ретентата (без дополнительного компремирования) в блок короткоцикловой адсорбции с получением на выходе концентрата водорода.

Изобретение относится к области химии. Сырьевой поток 209 разделяют в первой адсорбционной системе с переменным давлением (PSA1) на первую фракцию 210, включающую в значительной степени адсорбированные компоненты и на вторую фракцию 212, включающую в значительной степени неадсорбированные компоненты, при этом первая фракция 210 включает большую часть СН4 и CO2 из сырьевого потока, а вторая фракция 212 включает большую часть Н2 и СО из сырьевого потока.

Изобретение относится к области химии. .

Изобретение относится к устройствам для разделения смеси газов адсорбцией при переменном давлении и может быть использовано при разделении воздуха путем короткоцикловой безнагревной адсорбции с получением газовой смеси с повышенным содержанием кислорода. Адсорбционная установка состоит из электропривода 1, редуктора 2, роторно-пластинчатого адсорбционного модуля 3. Роторно-пластинчатый адсорбционный модуль состоит из следующих конструктивных элементов: статора 4, внутренний криволинейный профиль которого образован двумя окружностями с меньшим и большим радиусом, переход между которыми осуществляет через криволинейные сопрягающие поверхности, в котором имеются впускное отверстие с фильтрующим элементом 5 для разделяемой газовой смеси и выпускное отверстие, оборудованное глушителем 6 и фильтром 7 для удаления газа при регенерации; вращающегося ротора 8 цилиндрической формы с радиальными пазами, на внешней поверхности которого между радиальными пазами имеются полости, заполненные адсорбентом 9, повторяющим по форме внешнюю поверхность ротора, от каждой полости к центру ротора радиально отходит канал, соединяемый с одной из торцевых поверхностей ротора; свободнодвижущихся уплотнительных пластин 10, установленных в пазы ротора; двух торцевых крышек, одна из которых изготовлена как крышка ресивера и имеет два отверстия, одно отверстие служит для установки однонаправленного регулируемого клапана 11 и подачи обогащенного кислородом воздуха, второе отверстие служит для установки дросселя 12 и обеспечивает дросселирование газа при регенерации в рабочий объем роторно-пластинчатого модуля; ресивера 13; регулировочного устройства расхода продуктового газа потребителю 14. Технический результат изобретения заключается в упрощении конструкции, уменьшении массовых и габаритных характеристик, повышении удельной производительности и надежности адсорбционной установки. 9 ил.

Изобретение относится к области отделения кислорода. Способ отделения кислорода из кислородсодержащего газа содержит этапы, по меньшей мере, первого и второго периодов отделения кислорода, где каждый первый и второй периоды отделения кислорода содержат этапы направления кислородсодержащего газа на первичную сторону устройства (12, 14) отделения кислорода, содержащего сорбент (16, 18) для отделения кислорода, и генерирования потока обогащенного кислородом газа из устройства (12, 14) отделения кислорода путем создания разности давлений между первичной стороной и вторичной стороной устройства (12, 14) отделения кислорода. Способ содержит этап охлаждения между первым и вторым периодами отделения кислорода, где данный период охлаждения содержит этапы направления добавляемого сорбата через устройство (12, 14) отделения кислорода, причем добавляемый сорбат имеет энергию адсорбции е1 в отношении сорбента (16, 18) для отделения кислорода, и направления охлаждающего сорбата через устройство (12, 14) отделения кислорода. Охлаждающий сорбат имеет энергию адсорбции е2 в отношении сорбента (16, 18) для отделения кислорода. Энергия адсорбции е2 меньше, чем энергия адсорбции е1. Изобретение позволяет обеспечить улучшение отделения кислорода, особенно при высоких температурах. Изобретение также предлагает сепаратор кислорода (10). 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к кислородному сепаратору, включающему в себя по меньшей мере одно отделяющее кислород устройство, содержащее кислородоотделяющий сорбент для отделения кислорода от кислородсодержащего газа, причем отделяющее кислород устройство имеет газовый впуск на первичной стороне, присоединенный к впускному трубопроводу для направления потока кислородсодержащего газа в отделяющее кислород устройство, и имеет газовый выпуск на вторичной стороне, присоединенный к выпускному трубопроводу для направления потока обогащенного кислородом газа из отделяющего кислород устройства, причем вторичная сторона отделяющего кислород устройства дополнительно соединена с источником продувочного газа для направления продувочного газа через отделяющее кислород устройство, и при этом первичная сторона отделяющего кислород устройства соединена с отводным трубопроводом для направления отходящего газа из кислородного сепаратора, причем кислородный сепаратор дополнительно включает в себя регулирующее давление устройство (40) для создания перепада давления между первичной стороной и вторичной стороной отделяющего кислород устройства, и при этом в отводном трубопроводе предусмотрен газовый датчик для определения концентрации по меньшей мере одного компонента отходящего газа. Изобретение обеспечивает улучшенную управляемость. 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение раскрывает способ удаления тяжелых углеводородов из потока природного газа, включающий: направление исходного потока природного газа, содержащего воду и углеводороды С5+, в слой адсорбента блока нагревательной короткоцикловой адсорбции (НКА) таким образом, чтобы адсорбировать по меньшей мере часть воды и углеводородов C5+ из указанного исходного потока природного газа для создания первого итогового газового потока, имеющего уменьшенный уровень воды и углеводородов С5+ по сравнению с указанным исходным потоком, регенерацию названного слоя адсорбента при помощи нагрева для удаления адсорбированной воды и углеводородов С5+ и создания второго газового потока, имеющего повышенное содержание воды и углеводородов C5+ по сравнению с указанным исходным потоком; охлаждение указанного второго газового потока для создания жидкой воды и жидких С5+ углеводородов и разделения указанных жидкостей из указанного второго газового потока для создания третьего газового потока; направление указанного третьего потока природного газа в слой адсорбента блока безнагревной короткоцикловой адсорбции (БНКА) таким образом, чтобы адсорбировать углеводороды C5+ из указанного третьего газового потока, и выход второго итогового газового потока высокого давления, имеющего содержание углеводородов C5+ меньшее, чем в указанном третьем газовым потоке; причем указанный блок НКА адсорбирует при температуре по меньшей мере 65°С и давлении по меньшей мере 500 psia; и регенерацию указанного слоя адсорбента в указанном блоке БНКА с помощью уменьшения давления и создания загрязненного газового потока низкого давления, содержащего углеводороды C5+. Также раскрывается способ удаления тяжелых углеводородов из потока природного газа, содержащего метан и тяжелые углеводороды. Технический результат заключается в удалении загрязнителей из газов с помощью сочетания адсорбции и конденсации. 2 н. и 19 з.п. ф-лы, 5 ил., 7 пр., 7 табл.

Изобретение относится к области селективации адсорбентов для разделения газов, в частности к способу разделения газов. Способ включает приведение адсорбента или мембраны, содержащих цеолит с 8-членными кольцами или микропористый материал с 8-членными кольцами, в контакт с барьерным соединением, при условиях, эффективных для селективации адсорбента или мембраны, включающие температуру от 50 до 350°C и полное давление от 690 до 13,8 МПа изб., где селективация адсорбента или мембраны включает диффузию молекулы барьерного соединения через пористую структуру микропористого материала с 8-членными кольцами, приведение селективированного адсорбента или мембраны в контакт с входящим потоком газа, содержащим первый компонент и второй компонент, с образованием первого потока газа, обогащенного первым компонентом по отношению к входящему потоку газа, и сбор второго потока газа, обогащенного вторым компонентом по отношению к входящему потоку газа. При этом барьерное соединение имеет минимальный размер молекулы, который на 0,4 Å превышает размер наибольшей твердой сферы, которая может диффундировать вдоль любого направления в адсорбенте, и максимальный размер, составляющий 25 Å или менее. Причем барьерное соединение присутствует либо в виде жидкости, либо в виде газа с парциальным давлением барьерного соединения 10% от давления насыщенного пара. Изобретение обеспечивает повышение селективности адсорбирующего материала. 2 н. и 13 з.п. ф-лы, 8 ил., 3 табл., 7 пр.

Изобретение относится к мембранно-адсорбционным устройствам с использованием газового эжектора для разделения газовых смесей. Эжекторное мембранно-сорбционное устройство для разделения газовых смесей содержит компрессор, к выходу которого подключен вход эжекционного смесителя, через регулятор давления газа по меньшей мере два адсорбера, заполненных твердым адсорбентом и через регулятор давления газа вход десорбционного эжектора. Выход эжекционного смесителя через регулятор расхода газа подключен к первому распределительному клапану. Входы адсорберов подключены к первому распределительному клапану для переключения потока сжатого газа из компрессора между адсорберами. Выходы адсорберов снабжены управляющими клапанами для отвода газа из адсорберов в сбросной трубопровод и подключены через второй распределительный клапан к мембранному фильтру, один из патрубков отвода которого соединен с потребителем, а второй с эжекционным смесителем. Технический результат - обеспечение стационарного режима работы мембранного фильтра при постоянных потоках питания и продукта и постоянного потока вытеснения с адсорберов для обеспечения максимальных разделительных характеристик устройства в целом. 2 з.п. ф-лы, 1 ил., 2 пр.

Наверх