Устройство распознавания неманеврирующей баллистической цели по фиксированной выборке квадратов дальности

Изобретение относится к области радиолокации. Достигаемым техническим результатом является устранение неоднозначности распознавания неманеврирующей баллистической цели (БЦ). Указанный результат достигается за счет совместного использования обнаружителя маневра на пассивном участке баллистической траектории (ПУТ) и обнаружителя маневра на линейной траектории по выборкам квадратов дальности. Решение об отнесении сопровождаемой цели к классу неманеврирующих БЦ принимают, если обнаружитель маневра на ПУТ выдал сообщение об отсутствии маневра, а обнаружитель маневра на линейной траектории - о наличии маневра. Устройство распознавания содержит цифровой нерекурсивный фильтр, состоящий из запоминающего устройства, двух блоков умножителей квадратов дальности на весовые коэффициенты и двух сумматоров, а также содержит два пороговых устройства, три схемы совпадения и вычислитель среднеквадратической ошибки, определенным образом соединенные между собой. 2 ил., 3 табл.

 

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях (РЛС) для распознавания неманеврирующих баллистических целей (БЦ).

Известны устройства и способы распознавания летательных аппаратов (ЛА) по траекторным признакам, к которым относятся значения скорости, ускорения, высоты, а для БЦ - координаты ожидаемых точек падения. К недостаткам этих способов и устройств следует отнести возможность перекрытия траекторных признаков баллистических и аэродинамических целей (БЦ и АЦ) по высоте и по скорости. Кроме того, к РЛС предъявляются высокие требования к точности измерения параметров движения БЦ и АЦ при ограниченном времени наблюдения. Эти требования проблематично реализовать при грубых измерениях азимута и угла места [1, С. 4-5].

Наиболее близким аналогом заявленному устройству, то есть прототипом, является устройство, описанное в патенте №2510861, в котором реализован способ радиолокационного определения времени окончания активного участка баллистической траектории (АУТ) по фиксированным выборкам квадратов дальности [2].

Достоинством прототипа является высокая вероятность определения времени окончания активного участка баллистической траектории по фиксированным выборкам квадратов дальности в РЛС с грубыми измерениями угла места и азимута. Это позволяет не допустить появления методических ошибок прогноза баллистической траектории (недолет или перелет).

Принцип работы устройства-прототипа поясняется на примере схемы устройства определения времени окончания АУТ по фиксированной выборке из 5-ти квадратов дальности, приведенной в фиг. 1.

В РЛС измеряют дальность в цифровом виде, производят перемножение этих сигналов в блоке 1 и получают квадраты дальности, которые подают на вход запоминающего устройства (ЗУ), состоящего из последовательно соединенных элементов задержки на период обзора T0. С выходов ЗУ эти сигналы подают на входы блока 2.2, где умножают их на весовые коэффициенты оценки второго приращения квадрата дальности. В итоге на входе сумматора 2.3 формируют фиксированную выборку взвешенных сигналов, или «скользящее окно». На выходе сумматора, то есть на выходе цифрового нерекурсивного фильтра (ЦНРФ), получают оценку второго приращения квадрата дальности путем оптимального взвешенного суммирования квадратов дальности. Затем эту оценку делят в блоке 3 на период обзора РЛС во второй степени и получают оценку ускорения по квадрату дальности Далее в блоке 5 вычисляют среднеквадратическую ошибку (СКО) оценки ускорения по квадрату дальности: где σr - СКО измерения дальности.

В каждом новом положении «скользящего окна» сравнивают в пороговом устройстве (блок 4) оценку ускорения по квадрату дальности с СКО. Если , то принимают решение о наличии маневра, то есть о нахождении цели на активном участке траектории. Решение об окончании маневра, то есть об окончании АУТ и начале пассивного участка траектории (ПУТ), принимают в момент времени, когда ускорение становится положительным и больше СКО, то есть .

К недостаткам прототипа следует отнести неоднозначность распознавания. При нахождении летательного аппарата (ЛА) на АУТ его можно отнести как к классу БЦ, так и к классу маневрирующих АЦ на участке разгона, так как ускорение в обоих случаях отрицательно. При нахождении ЛА на ПУТ его можно отнести как к классу БЦ, так и к классу неманеврируюших АЦ на линейной траектории, так как ускорение в обоих случаях положительно.

Техническим результатом изобретения является устранение неоднозначности распознавания неманеврирующей БЦ.

Указанный технический результат достигается тем, что заявленное устройство распознавания неманеврирующей баллистической цели по фиксированной выборке квадратов дальности содержит, как и прототип, последовательно соединенные умножитель входных сигналов и цифровой нерекурсивный фильтр, состоящий из последовательно соединенных запоминающего устройства, блока умножителей квадратов дальности на весовые коэффициенты и сумматора, а также последовательно соединенные вычислитель СКО и пороговое устройство. В отличие от прототипа, согласно изобретению, в ЦНРФ дополнительно введены последовательно соединенные с запоминающим устройством второй блок умножителей квадратов дальности на весовые коэффициенты и второй сумматор. Выход второго сумматора, являющийся вторым выходом ЦНРФ, подключен к первому входу дополнительно введенного второго порогового устройства (ПУ2), второй вход которого подключен к выходу вычислителя СКО. Первый выход ПУ2 подключен ко второму входу дополнительно введенной третьей схемы совпадения, а второй выход соединен со вторыми входами дополнительно введенных первой и второй схем совпадения. Выход сумматора, то есть первый выход ЦНРФ, подключен к первому входу порогового устройства, первый выход которого соединен с первыми входами первой и третьей схем совпадения, а второй выход подключен к первому входу второй схемы совпадения. Выходы схем совпадения являются выходами заявленного устройства.

Сущность заявляемого изобретения поясняется схемой устройства распознавания неманеврирующей БЦ по выборке из 5-ти квадратов дальности, приведенной в фиг. 2, где введены следующие обозначения:

1 - умножитель входных сигналов дальности;

2 - цифровой нерекурсивный фильтр (ЦНРФ);

2.1 - запоминающее устройство (ЗУ);

2.2 - блок умножителей квадратов дальности на весовые коэффициенты;

2.3 - сумматор;

2.4 - второй блок умножителей квадратов дальности на весовые коэффициенты;

2.5 - второй сумматор;

3 - пороговое устройство (ПУ);

4 - второе пороговое устройство (ПУ2);

5 - вычислитель СКО;

6 - третья схема совпадения;

7 - вторая схема совпадения;

8 - первая схема совпадения.

Заявляемое устройство работает следующим образом.

Так же, как в прототипе, в умножителе 1 перемножают поступающие на его вход цифровые сигналы дальности, получают квадраты дальности и подают их на вход запоминающего устройства (блок 2.1) ЦНРФ. Затем умножают эти квадраты дальности на весовые коэффициенты в блоке 2.1 и подают на входы сумматора. В отличие от прототипа, на выходе сумматора получают разность оценок второго приращения квадрата дальности по выборкам из N и N-m квадратов дальности, δN,N-m. При этом начало выборок совпадают с началом «скользящего окна»:

где оценка второго приращения квадрата дальности вычисляется по формуле [3, С. 115]:

По формулам (1) и (2) вычисляют разности оценок при любых объемах N и N-m выборок. Эти разности соответствуют разности оценок второго приращения квадрата дальности в соседних точках «скользящего окна» (траектории), удаленных друг от друга на m обзоров. В качестве примера, в табл. 1 приведены готовые формулы для выборок от 3-х до 7-ми квадратов дальности. По такому алгоритму работает обнаружитель маневра на линейной траектории.

На втором выходе ЦНРФ получают разности оценок второго приращения квадрата дальности в середине «скользящего окна». При этом начало и конец выборки меньшего объема удалены от начала и конца выборки большего объема, то есть от границ «скользящего окна», на равное число k обзоров:

В качестве примера, в табл. 2 приведены готовые формулы для выборок от 3-х до 8-ми квадратов дальности.

Далее значения абсолютных разностей оценок с первого и второго выходов ЦНРФ делят в пороговых устройствах (блоки 3 и 4) на среднеквадратическую ошибку σδ определения этой разности и сравнивают с порогом П, величину которого выбирают в соответствии с заданной вероятностью обнаружения маневра. Например, при П=1 вероятность равна 0,68, а при П=2 - вероятность равна 0,95 [5, С. 92-93]. Формулы вычисления СКО приведены в табл. 2.

По такому же принципу работает обнаружитель маневра БЦ на пассивном участке траектории по фиксированной выборке произведений дальности на радиальную скорость [4].

В заявляемом устройстве распознавание осуществляется за счет совместной работы (комплексировании) этих двух обнаружителей маневра. Оно работает по следующему алгоритму:

Для реализации этого алгоритма в заявленное устройство введены три схемы совпадения (блоки 6, 7 и 8).

При выполнении неравенств (3а) на выходе 1-й схемы совпадения (блок 8) выдается сообщение о том, что наблюдаемая цель является неманеврирующей баллистической целью. При этом левое неравенство обеспечивает однозначную селекцию неманеврирующей БЦ от всех маневрирующих ЛА, в том числе от маневрирующих БЦ. Правое неравенство обеспечивает однозначную селекцию неманеврирующей БЦ от всех неманеврирующих ЛА на линейной траектории.

При выполнении неравенств (3б) на выходе 2-й схемы совпадения (блок 7) выдается однозначное сообщение о том, что наблюдаемая цель является неманеврирующим небаллистическим ЛА. В зависимости от высоты и скорости это могут быть самолеты, гиперзвуковые крылатые ракеты (ГЗКР), искусственные спутники Земли (ИСЗ) и т.д.

При выполнении неравенств (3в) на выходе 3-й схемы совпадения (блок 6) выдается сообщение о том, что наблюдаемая цель является маневрирующим ЛА. При этом выявляются все типы маневра (по скорости, по курсу, по высоте, по скорости и курсу и др.). Для уточнения типа объекта нужно использовать дополнительные траекторные или сигнальные признаки.

Для доказательства реализуемости заявленного технического результата в табл. 1 приведены результаты оценки вероятности распознавания тактической баллистической ракеты (ТБР) по выборкам из 7-ми и 5-ти квадратов дальности в РЛС метрового диапазона с грубыми измерениями угла места (σε=1,5°), и высокоточными измерениями дальности (σr=50 м).

Вероятности отсутствия маневра на ПУТ и обнаружения маневра на линейной траектории определяются по таблицам интеграла вероятностей [5, С. 92-93]:

Вероятность распознавания неманеврирующей БЦ вычисляется по правилу умножения вероятностей: pрасп=pлин⋅(1-pПУТ).

Как видно, из 1-й и 2-й строк таблицы, значения высоты и скорости ТБР, самолетов и ГЗКР перекрываются. Поэтому использовать известные способы нельзя. В заявляемом устройстве обеспечивается высокая вероятность распознавания (pрасп=0,8-0,9) через 30 секунд после окончания активного участка траектории. При малых высотах вероятность распознавания уменьшается из-за сопротивления воздуха.

На больших высотах сопротивление воздуха практически не оказывает влияния на вероятность распознавания. Поэтому баллистические ракеты средней дальности (БРСД) распознаются на фоне неманеврирующих и маневрирующих искусственных спутников Земли и других низкоорбитальных космических объектов.

Таким образом, введение в устройство, содержащее умножитель входных сигналов, ЦНРФ, состоящий из запоминающего устройства, блока умножителей квадратов дальности на весовые коэффициенты и сумматора, вычислитель СКО и пороговое устройство, второго умножителя и второго сумматора, входящих в ЦНРФ, а также второго порогового устройства и трех схем совпадения с соответствующими связями, позволило достичь заявленного технического результата: устранение неоднозначности распознавания неманеврирующей баллистической цели.

Список использованных источников

1. Методы радиолокационного распознавания и их моделирование / Я.Д. Ширман, С.А. Горшков, С.П. Лещенко, Г.Д. Братченков, В.М. Орленко // Зарубежная радиоэлектроника, №11, 1996 г. - С. 3-63.

2. Патент RU №2510861. Способ радиолокационного определения времени окончания активного участка баллистической траектории. Опубликовано 05.02.2014.

3. Кузьмин С.З. Основы проектирования систем цифровой обработки радиолокационной информации. - М.: Радио и связь, 1986. - 352 с.

4. Патент RU №2524208. Способ радиолокационного обнаружения маневра баллистической цели на пассивном участке траектории. Опубликовано 03.06.2014.

5. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. М:. «Наука», 1980. - 544 с.

Устройство распознавания неманеврирующей баллистической цели по фиксированной выборке квадратов дальности, содержащее последовательно соединенные умножитель входных сигналов дальности, цифровой нерекурсивный фильтр (ЦНРФ), состоящий из последовательно соединенных запоминающего устройства, блока умножителей квадратов дальности на весовые коэффициенты и сумматора, а также вычислитель среднеквадратической ошибки (СКО), вход которого подключен к входным сигналам дальности, а выход - ко второму входу порогового устройства, отличающееся тем, что в ЦНРФ дополнительно введены последовательно соединенные с запоминающим устройством второй блок умножителей квадратов дальности на весовые коэффициенты и второй сумматор, выход которого, являющийся вторым выходом ЦНРФ, подключен к первому входу дополнительно введенного второго порогового устройства, второй вход которого подключен к выходу вычислителя СКО, первый выход подключен ко второму входу дополнительно введенной третьей схемы совпадения, а второй выход соединен со вторыми входами дополнительно введенных первой и второй схем совпадения, выход сумматора, то есть первый выход ЦНРФ, подключен к первому входу порогового устройства, первый выход которого соединен с первыми входами первой и третьей схем совпадения, а второй выход подключен к первому входу второй схемы совпадения, выходы схем совпадения являются выходами заявляемого устройства.



 

Похожие патенты:

Изобретение относится к способу детектирования колеса (1). Техническим результатом является повышение надежности детектирования и эффективности процесса оценки сигнала.

Изобретение относится к области радиолокации. Техническим результатом изобретения является повышение точности определения курса неманеврирующей аэродинамической цели.

Изобретение относится к активным импульсным радиолокационным системам обнаружения и наблюдения воздушно-космических целей и предназначено для надежного обнаружения движущихся целей с различением их скоростных и маневренных характеристик, позволяющим осуществлять своевременную перенастройки системы вторичной обработки радиолокационного сигнала на работу по маневрирующей цели.

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях (РЛС) для обнаружения маневра баллистических объектов (БО). Достигаемый технический результат - повышение вероятности обнаружения маневра БО как на активном, так и на пассивном участках траектории их полета.

Изобретение относится к области радиолокации. Достигаемый технический результат изобретения - повышение вероятности обнаружения маневра баллистической ракеты.

Изобретение относится к вычислительной технике и предназначено для вычисления на основе корреляционного принципа радиальной скорости движущегося объекта; может использоваться в автоматизированных системах управления воздушным движением для обнаружения и измерения скорости летательных аппаратов.

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн.

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн.

Изобретение относится к способам и устройствам обработки радиолокационных (РЛ) сигналов в радиолокационных станциях (РЛС) и может быть использовано для измерения скорости полета воздушного объекта (ВО).

Изобретение относится к области радиолокационного наблюдения траекторий баллистических объектов и может быть использовано в прицельных системах летательных аппаратов.

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерений. Указанный результат достигается тем, что в способе измерения путевой скорости и угла сноса летательного аппарата, заключающемся в облучении радиоволнами подстилающей поверхности двумя антенными системами, каждая из которых ориентирована под углом θ с каждой из сторон от его оси в горизонтальной плоскости и под углом β0 в вертикальной, приеме отраженных волн, смешивании с частью излучаемой волны и выделении двух сигналов разностной частоты, частоту радиоволн модулируют по симметричному линейному закону, по каждому из двух сигналов разностной частоты вычисляют пары спектров на растущем и падающем по частоте участках модуляции, соответственно S11, S12 и S21, S22, затем определяют частотные сдвиги, соответствующие максимумам взаимно-корреляционной функции для первой и второй пары спектров - ƒD1 и ƒD2, определяют частотный сдвиг dƒ максимума взаимно-корреляционной функции между суммами спектров S11 и S12, сдвинутых по частотной шкале на fD1 в сторону увеличения и уменьшения соответственно и вычисленных через промежуток времени dt, по величинам ƒD1, ƒD2 и dƒ вычисляют путевую скорость W и угол сноса ϕ. 6 ил.

Изобретение относится к области испытания боеприпасов. Способ определения глубины проникания бронебойных цельнокорпусных калиберных и подкалиберных снарядов в толстостенную преграду включает выстрел снарядом по преграде и последующее определение его скорости доплеровским локатором до и после поражения преграды. Ось диаграммы направленности антенны локатора ориентируется под максимально малым углом к завершающей части траектории движения снаряда. Скорость снаряда определяется по сигналу, отраженному от его донной хвостовой части. Глубина проникания определяется путем интегрирования полученной по результатам измерений зависимости скорости движения снаряда от начала торможения до нулевого значения. Способ позволяет повысить точность измерения скорости снаряда, получить более достоверную информацию при оценке пробивного действия снарядов. 2 ил.

Изобретение относится к способу детектирования вращающегося колеса транспортного средства. Предложен способ детектирования вращающегося колеса (1) транспортного средства (2), характеризующийся тем, что детектируют колесо (1) путем оценки допплеровского сдвига частоты отраженного колесом (1) и возвращенного с допплеровским сдвигом измерительного луча (6), испускаемого детекторным блоком (5), мимо которого проходит указанное транспортное средство (2). В относительном положении (R), относительно колеса (1), транспортное средство (2) содержит бортовое устройство (15), способное устанавливать радиосвязь (23) с приемопередатчиком (24), установленным в известном положении (L) в детекторном блоке. Способ включает: измерение направления (δ) и расстояния (z) до бортового устройства (15) от приемопередатчика (24) посредством радиосвязи (23) между указанными устройствами и управление направлением излучения (δ, β, γ) или положением (A) излучения измерительного луча (6) в соответствии с измеренными направлением (δ) и расстоянием (z) и с учетом вышеуказанных относительного положения (R) и положения (L). Относительное положение (R) сохраняют в бортовом устройстве (15) и считывают из бортового устройства (15) с помощью радиосвязи (23) для учета при вышеуказанном управлении. Достигается создание усовершенствованного способа детектирования колес, основанного на допплеровских измерениях. 14 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к области радиолокации. Достигаемым техническим результатом изобретения является упрощение способа и устройства обнаружения маневра баллистического объекта (БО) при сохранении высокой вероятности обнаружения маневра. Указанный результат достигается за счет того, что абсолютную разность между оценкой первого приращения произведения дальности на радиальную скорость, полученной по выборке большего объема, и оценкой первого приращения произведения дальности на радиальную скорость, полученной по выборке меньшего объема, определяют только по выборке большего объема. Для этого в блоке оценивания первого приращения произведения дальности на радиальную скорость фиксированную выборку произведений дальности на радиальную скорости большего объема умножают на заранее рассчитанные весовые коэффициенты определения абсолютной разности между оценками, полученными по выборкам большего и меньшего объема, что позволяет упростить способ обнаружения маневра баллистического объекта и устройство, его реализующее. 2 н.п. ф-лы, 2 ил.

Изобретение предназначено для определения модуля скорости баллистического объекта (БО) с использованием выборки произведений дальности на радиальную скорость и относится к радиолокации. Достигаемый технический результат изобретения - повышение точности определения модуля скорости БО в наземных радиолокационных станциях (РЛС) с грубыми измерениями угла места, азимута и дальности и уменьшение объема хранимых предыдущих измерений. Указанный технический результат достигается тем, что через интервалы времени, равные периоду обзора Т0, в РЛС измеряют дальность, угол места, радиальную скорость и формируют выборку значений высоты БО и произведений дальности на радиальную скорость. Определяют оценку высоты БО в середине интервала наблюдения и оценку первого приращения произведения дальности на радиальную скорость в конце интервала наблюдения с помощью α, β фильтров. Вычисляют геоцентрический угол между РЛС и БО в середине интервала наблюдения по формуле , где rcp - дальность до БО в середине интервала наблюдения, RЗ - радиус Земли, и ускорение силы тяжести в середине интервала наблюдения по формуле , где - ускорение силы тяжести на поверхности Земли. Далее вычисляют сглаженное значение модуля скорости БЦ в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле , где N - число измерений на интервале наблюдения. Устройство для реализации способа состоит из двух α, β фильтров и вычислителей геоцентрического угла, ускорения силы тяжести и модуля скорости. 2 н.п. ф-лы, 3 ил., 4 табл.

Изобретение относится к области радиолокации. Достигаемым техническим результатом изобретения является упрощение схемы обнаружителя маневра (ОМ) баллистической ракеты (БР) при повышении вероятности обнаружения маневра. Указанный результат достигается за счет того, что фиксированную выборку произведений дальности на радиальную скорости умножают на заранее рассчитанные весовые коэффициенты определения абсолютной разности между оценками, полученными по выборкам большего и меньшего объемов, что обеспечивает примерно в два раза сокращение количества блоков ОМ. 2 ил., 3 табл.
Изобретение относится к области радиолокации и может быть использованы для обнаружения и завязывания трассы цели. Достигаемый технический результат по первому варианту способа сопровождения цели - сокращение временных затрат на завязывание трасс целей и увеличение надежности сопровождения за счет уменьшения размеров стробов, а также возможность обнаружения в первом обзоре особо опасных высокоскоростных целей. Указанные технические результаты достигаются тем, что в способе сопровождения цели, основанном на установке строба первичного захвата по измеренной при ее обнаружении дальности с использованием зондирующего сигнала с однозначной дальностью с последующей выработкой строба сопровождения, зондируют области стробов сигналами, обеспечивающими измерение допплеровской скорости цели. Достигаемым техническим результатом по второму варианту способа излучения и приема сигнала является использование той же структуры сигнала для измерения (разрешения) допплеровской скорости, что и для измерения дальности. Указанный технический результат достигается тем, что в способе излучения и приема сигнала при измерении (разрешении) допплеровской скорости, основанном на формировании сигнала с внутриимпульсной модуляцией, сигнал излучают отдельными частями, а при приеме их отражений сжимают их в допплеровских каналах. 2 н. и 5 з.п. ф-лы.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС). Достигаемый технический результат - обеспечение электронного сканирования лучом фазированной антенной решетки (ФАР) в азимутально-угломестном секторе для РЛС с одномерным электронным сканированием при остановке вращения антенны в азимутальной плоскости. Технический результат достигается тем, что в способе радиолокационного обзора пространства, заключающемся в электронном и механическом сканировании лучом фазированной антенной решетки по углу места и механическом по азимуту, изменяют плоскость электронного сканирования ФАР путем вращения или качания ФАР вокруг оси, перпендикулярной ее плоскости, с возможностью обеспечения электронного сканирования лучом ФАР в азимутально-угломестном секторе для РЛС с одномерным электронным сканированием при остановке вращения или качания антенны в азимутальной плоскости. 1 ил.

Изобретение относится к способам с использованием двойной метки для определения местоположения движущихся объектов в шахте. Достигаемый технический результат – повышение точности определения местоположения движущегося объекта в шахте. Указанный результат достигается за счет того, что высокоточный способ определения местоположения с использованием двойной метки включает в себя способ определения местоположения движущегося объекта первого типа в шахте и способ определения местоположения движущегося объекта второго типа в шахте; способ включает в себя этапы, на которых: осуществляют установку двух меток определения местоположения по горизонтали или по вертикали на движущемся объекте и выполняют их с возможностью осуществления связи с двумя базовыми станциями определения местоположения, установленными вдоль потолка выработки, и получают местоположение движущегося объекта в реальном времени с помощью построения функции оптимизации между расстоянием, определенным по показателю уровня принимаемого сигнала, и расчетным расстоянием между меткой и базовой станцией определения местоположения и поиска минимального значения; решают функцию оптимизации с помощью итерационного процесса, включающего этап определения начального итерационного значения и шага итерации в левом/правом направлении. Способ применим для определения местоположения объектов с профилем в виде полосы, параллельным плоскости выработки (например, шахтная тележка или врубовая машина), или объектов с профилем в виде полосы, перпендикулярным плоскости выработки (например, рабочий). 1 з.п. ф-лы, 2 ил.

Изобретение относится к радиолокации протяженных целей, в частности к радиолокационным измерителям высоты, скорости и наклона вектора скорости летательного аппарата (ЛА) относительно земной поверхности, и может быть использовано при пикирующих траекториях ЛА, в том числе на беспилотных летательных аппаратах и снарядах. Результаты измерений высоты и вектора скорости ЛА могут быть использованы в интересах автономной навигации ЛА или коррекции инерциальной системы управления. Достигаемый технический результат - измерение высоты, истинной скорости ЛА и угла между направлением вектора скорости и плоскостью горизонта (угла пикирования) при использовании однолучевой антенной системы, ориентированной в направлении, совпадающем с продольной осью ЛА. Указанный результат достигается тем, что производится зондирование земной поверхности радиолокационным сигналом в направлении продольной оси ЛА, когерентный прием отраженного сигнала с получением двумерного радиолокационного изображения (РЛИ) местности в координатах дальность - доплеровская частота, нахождение зависимости максимальной доплеровской частоты (МДЧ) от дальности по данным РЛИ, формирование исходной гипотезы о координатах ЛА по имеющимся априорным данным, при этом итерационно уточняют гипотезу о значениях измеряемых параметров за счет расчета гипотетической кривой МДЧ, соответствующей гипотезе, формируют сигнал ошибки гипотетической кривой МДЧ относительно кривой МДЧ по данным РЛИ, преобразуют сигнал ошибки кривой МДЧ в сигнал ошибки измеряемых параметров, суммируют его с уточняемой гипотезой, повторяют итерации и выдают в режиме слежения измеренных параметров высоты, истинной скорости и угла наклона вектора скорости ЛА относительно горизонта потребителю. 2 н. и 1 з.п. ф-лы, 4 ил.
Наверх