Способ восстановления и упрочнения рабочих органов почвообрабатывающих машин, имеющих лучевидный износ

Изобретение относится к способу восстановления изношенных рабочих органов почвообрабатывающих машин, имеющих лучевидный износ. Осуществляют двухслойную наплавку материалов различной твердости вдоль оси лучевидного износа. Первый слой наплавляют электродом с малоуглеродистым стержнем. При наплавке второго слоя используют пасту, в которой содержится 65…70% порошка на основе железа типа ПРХ30СРНДЮ, 20…23% карбида титана, 3…5% никеля и клей БФ-2 – остальное. При этом пасту наносят слоем толщиной 1,6…1,8 мм на поверхность первого наплавленного слоя, высушивают до затвердевания при температуре 80°С в течение 6…8 мин., а наплавку осуществляют электрической дугой прямой полярности с использованием вибрирующего угольного электрода, при этом сила тока составляет 55…60 А, напряжение - 27…30 В, частота и амплитуда вибрации угольного электрода - 8…10 Гц и 2…3 мм соответственно. Использование предлагаемого способа позволяет повысить твердость и износостойкость восстановленных и упрочненных рабочих органов почвообрабатывающих машин в условиях интенсивного абразивного изнашивания. 1 табл.

 

Изобретение относится к способам восстановления и упрочнения изношенных деталей с применением наплавочных технологий и может быть использовано при восстановлении рабочих органов почвообрабатывающих машин, преимущественно лемехов плугов, отвалов и грудей отвалов, имеющих лучевидный износ.

Известен способ упрочнения лемехов плугов из среднеуглеродистых и высокоуглеродистых сталей. Он включает наплавку на лемех малоуглеродистого электродного материала параллельными друг другу валиками, при этом каждый последующий валик наносят со скоростью, обеспечивающей образование закалочной структуры, после остывания предыдущего валика [Патент РФ 2274526, В23К 9/04, В23Р 6/00, опубл. в Б.И. №11, 2006].

Недостатком данного способа является сильное термическое воздействие при наплавке, что приводит к короблению упрочняемых лемехов. Кроме этого наплавленные валики увеличивают тяговое сопротивление плуга при его эксплуатации.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ восстановления и упрочнения плужных лемехов, имеющих лучевидный износ, включающий двухслойную наплавку материалов различной твердости вдоль оси лучевидного износа, при этом первый слой наплавляют электродом с малоуглеродистым стержнем, позволяющим получить пластичный наплавленный металл, а второй слой наплавляют износостойким материалом, в качестве которого используют, например, электроды типа Э37Х9С2-ОЗШ-УОНИИ-13/55-3-УД [Патент РФ 2370351, В23Р 6/00, В23К 9/04, опубл. в Б.И. №29, 2009 - прототип].

Однако при использовании данного способа не обеспечиваются высокие износостойкость и ресурс восстановленных и упрочненных рабочих органов почвообрабатывающих машин при их эксплуатации на почвах, обладающих высокой изнашивающей способностью, прежде всего, песчаных и супесчаных.

Задачей изобретения является повышение долговечности восстановленных и упрочненных рабочих органов почвообрабатывающих машин при их эксплуатации на почвах, обладающих высокой изнашивающей способностью.

Техническим результатом изобретения является повышение твердости и износостойкости восстановленных и упрочненных рабочих органов почвообрабатывающих машин в условиях интенсивного абразивного изнашивания.

Поставленная задача и указанный технический результат достигаются за счет того, что в заявляемом способе восстановления и упрочнения рабочих органов почвообрабатывающих машин, имеющих лучевидный износ, включающем двухслойную наплавку материалов различной твердости вдоль оси лучевидного износа, при этом первый слой наплавляют электродом с малоуглеродистым стержнем, а второй слой наплавляют износостойким материалом, согласно изобретению в качестве износостойкого материала используют пасту, в которой содержится 65…70% порошка на основе железа типа ПРХ30СРНДЮ, 20…23% карбида титана, 3…5% никеля и клей БФ-2 - остальное, при этом пасту наносят слоем толщиной 1,6…1,8 мм на поверхность первого наплавленного слоя, высушивают до затвердевания при температуре 80°C в течение 6…8 мин, а наплавку осуществляют электрической дугой прямой полярности с использованием вибрирующего угольного электрода, при этом сила тока составляет 55…60 А, напряжение - 27…30 В, частота и амплитуда вибрации угольного электрода - 8…10 Гц и 2…3 мм соответственно.

Способ осуществляют следующим образом.

Вначале для устранения лучевидного износа рабочего органа его изношенную область наплавляют первым слоем, используя при этом электроды с содержанием углерода в стальном стержне не более 0,1%, например электроды Э42А-УОНИИ-13/45-3,0-УО ГОСТ 9466. Наплавку первого слоя ведут валиками, высоту которых устанавливают в зависимости от глубины лучевидного износа, постоянным током прямой полярности. Наплавку первого слоя производят вдоль примерной оси лучевидного износа, сила тока при наплавке составляет 130…140 А. Полученный слой металла является подслоем для последующей наплавки износостойкого слоя. Так как первый слой обладает высокой пластичностью, это обеспечивает невысокий уровень остаточных напряжений и достаточную ударную вязкость восстановленного и упрочненного рабочего органа, а также снижает склонность к трещинообразованию поверхностного износостойкого слоя. Последнее обусловлено отсутствием контакта износостойкого слоя с металлом рабочего органа, содержащим не менее 0,55% углерода, что при сплавлении металла электрода с основным металлом создает хрупкие структуры с высокими остаточными напряжениями, особенно в зоне термического влияния.

После наплавки первого слоя производят наплавку второго слоя толщиной, меньшей, чем толщина первого слоя. Второй слой наплавляют износостойким материалом, в качестве которого используют пасту. Пасту готовят путем смещения следующих компонентов: порошок на основе железа типа ПРХ30СРНДЮ ТТ 08-113-2012) - 65…70%, карбид титана - 20…23%, никель - 3…5%, клей БФ-2 - остальное. Предварительно порошок типа ПРХ30СРНДЮ и карбид титана измельчают до наноразмерного состояния с фракцией 20…30 нм, что приводит к существенному увеличению механических свойств данных материалов (в частности, их твердости и износостойкости). Пасту наносят шпателем на первый наплавленный слой, толщина накладываемого слоя - 1,6…1,8 мм. После нанесения пасту высушивают до затвердевания при температуре 80°C в течение 6…8 мин.

Наплавку износостойкого материала осуществляют электрической дугой прямой полярности с использованием вибрирующего угольного электрода. Между электродом и поверхностью первого наплавленного слоя с нанесенным слоем пасты зажигают электрическую дугу, в результате чего на упрочняемой поверхности из компонентов пасты образуется наплавленный слой высокой твердости и износостойкости. Использование при наплавке прямой полярности позволяет улучшить стабильность горения электрической дуги, что существенно повышает сплошность и качество наплавленного износостойкого слоя. Наплавку ведут на следующих режимах: сила тока - 55…60 А, напряжение - 27…30 В, частота и амплитуда вибрации угольного электрода - 8…10 Гц и 2…3 мм соответственно. Твердость наплавленного слоя составляет 78…80 HRC. Наплавка износостойкого слоя на первый слой (подслой) позволяет избежать появления высоких остаточных напряжений и образования поверхностных трещин в износостойком слое, а также снизить вероятность поломки упрочненных рабочих органов при их эксплуатации.

Благодаря тому, что второй износостойкий слой имеет в своем составе сверхтвердые керамические соединения, образующиеся из компонентов пасты при наплавке, восстановленные и упрочненные рабочие органы почвообрабатывающих машин имеют высокие твердость и износостойкость в условиях интенсивного абразивного изнашивания. Использование в составе пасты никеля способствует повышению ударной вязкости износостойкого слоя. Вибрация угольного электрода в указанном диапазоне позволяет, с одной стороны, получить более прочный и плотный износостойкий слой, а с другой - не ухудшить горение электрической дуги, т.к. при увеличении вибрации электрода свыше 10 Гц дуга горит нестабильно. При этом тяговое сопротивление рабочего органа, залипание и крошение им почвы не будут отличаться от случая, когда используются рабочие органы в состоянии поставки, т.к. износостойкий слой находится на одном уровне с режущей поверхностью рабочего органа. Все это приводит к существенному увеличению долговечности восстановленных и упрочненных рабочих органов почвообрабатывающих машин при их эксплуатации на почвах, обладающих высокой изнашивающей способностью (таблица).

Как видно из таблицы, предлагаемый способ восстановления и упрочнения рабочих органов почвообрабатывающих машин, имеющих лучевидный износ, позволяет в среднем на 40% увеличить твердость второго (поверхностного) наплавленного слоя восстановленного и упрочненного рабочего органа. Износостойкость рабочего органа в условиях интенсивного абразивного изнашивания увеличивается на 50%. В результате долговечность восстановленных и упрочненных рабочих органов почвообрабатывающих машин при их эксплуатации на почвах, обладающих высокой изнашивающей способностью, увеличивается в среднем в 1,4 раза.

Способ восстановления рабочих органов почвообрабатывающих машин, имеющих лучевидный износ, включающий двухслойную наплавку материалов различной твердости вдоль оси лучевидного износа, при этом первый слой наплавляют электродом с малоуглеродистым стержнем, а второй слой наплавляют износостойким материалом, отличающийся тем, что в качестве износостойкого материала используют пасту, в которой содержится 65…70% порошка на основе железа типа ПРХ30СРНДЮ, 20…23% карбида титана, 3…5% никеля и клей БФ-2 - остальное, при этом пасту наносят слоем толщиной 1,6…1,8 мм на поверхность первого наплавленного слоя, высушивают до затвердевания при температуре 80°С в течение 6…8 мин, а наплавку осуществляют электрической дугой прямой полярности с использованием вибрирующего угольного электрода, при этом сила тока составляет 55…60 А, напряжение - 27…30 В, частота и амплитуда вибрации угольного электрода - 8…10 Гц и 2…3 мм соответственно.



 

Похожие патенты:

Изобретение относится к области соединения металлов и может быть использовано при ремонте изготовленного из суперсплава компонента газотурбинного двигателя. Способ включает изъятие компонента из эксплуатации, удаление поврежденной части компонента для открытия ремонтируемой поверхности, покрытие ремонтируемой поверхности слоем порошка, включающим материал суперсплава и флюс, воздействие энергетическим лучом на часть поверхности сформированного слоя порошка для плавления выбранной части и образование структурированного первого слоя материала суперсплава, присоединенного к ремонтируемой поверхности и покрытого слоем шлака, удаление слоя шлака с первого слоя материала суперсплава, покрытие, по меньшей мере, первого слоя материала суперсплава дополнительным количеством упомянутого порошка, воздействие энергетического луча на дополнительное количество порошка для изготовления второго слоя материала суперсплава, присоединенного к первому слою и покрытого последующим слоем шлака, удаление последующего слоя шлака.
Изобретение относится к области металлургии и может быть использовано при восстановлении рабочей поверхности стенок кристаллизатора без его разборки. Способ включает очистку рабочей поверхности стенок кристаллизатора, дробеструйную обработку изношенных участков, примыкающих к углам кристаллизатора и расположенных в нижней части рабочих поверхностей стенок, изготовленных из меди или ее сплавов, и высокоскоростное газопламенное напыление на них жаропрочного износостойкого покрытия в виде механически активированного порошка cBN-Ni3Al-Si-C-Co-Y при следующем соотношении компонентов, мас.%: cBN 21-34, Ni3Al 37-40, Si 9-12, С 3-5, Со12-15,Y 5-7, начиная с глубины износа не менее 250-450 мкм, толщиной, не превышающей величину износа.

Изобретение относится к способу модификации железосодержащих поверхностей трения и может быть использовано для снижения механических потерь на трение, увеличения долговечности трущихся металлических поверхностей в двигателях внутреннего сгорания, агрегатов трансмиссий, ходовой части транспортных средств и может быть использовано для одновременного восстановления металлических трущихся поверхностей.

Настоящее изобретение относится к области машиностроения, а более конкретно к способу ремонта узлов силового агрегата. Способ ремонта ведущих дисков узла сцепления включает восстановление опорных поверхностей пазов маховика и шипов ведущих дисков.

Изобретение относится к машиностроению и может быть использовано для ремонта деталей, содержащих шлицевые соединения, в частности шлицов каретки синхронизатора. В способе наплавляют проволоку из материала с высокой твердостью на изношенную поверхность в среде углекислого газа, при этом после наплавки поверхность шлицов каретки синхронизатора восстанавливают до номинального размера, требуемой формы и чистоты поверхности готовой детали путем электроэрозионной обработки наплавленного высокотвердого материала с использованием шаблонного графитового электрода-инструмента, изготовленного по форме шлицов каретки синхронизатора с поверхностью в виде копии поверхности сопряжения ответной детали.

Изобретение относится к смазочным композициям, в частности к составам для обработки пар трения, и может быть использовано в машиностроении для обработки пар трения, а также при эксплуатации механизмов и машин для продления межремонтного ресурса или во время ремонтно-восстановительных работ.

Изобретение относится к машиностроению и может быть использовано при ремонте деталей, в частности зубьев каретки синхронизатора. В способе наплавляют с помощью проволоки из материала с высокой твердостью слой в среде углекислого газа, затем восстанавливают поверхность зубьев до номинального размера, требуемой формы и чистоты поверхности путем электроэрозионной обработки слоя наплавленного высокотвердого материала с использованием шаблонного графитового электрода-инструмента, поверхность которого представляет собой копию поверхности сопряжения ответной детали.

При оптимизации газовой турбины, имеющей лопатки с первым керамическим теплоизоляционным покрытием, к области ее применения извлекают лопатки из газовой турбины, после чего удаляют, по меньшей мере, частично первое керамическое теплоизоляционное покрытие с извлеченных из турбины лопаток и/или берут новые лопатки.

Изобретение относится к области ремонта, выполненного как единое целое моноколеса турбореактивного двигателя летательного аппарата, и предназначено для ремонта любой лопатки турбомашины.

Изобретение относится к области ремонта и восстановления трубопроводов, в частности к ремонту без выкапывания трубопровода из земли с обеспечением на его внутренней кольцевой поверхности облицовки с помощью сегмента.

Предложенное техническое решение относится к способу восстановления изношенной поверхности головки трамвайного рельса электродуговой наплавкой. Проводят подготовку изношенной боковой поверхности головки трамвайного рельса.

Изобретение может быть использовано для нанесения наплавкой металлокерамических покрытий на изделия, работающих при повышенных температурах в условиях абразивного износа и воздействия коррозионной среды.

Изобретение может быть использовано при дуговой наплавке тонкостенных деталей плавящимся электродом. Электрод и деталь подключают к сварочному источнику постоянного тока по схеме обратной полярности.
Изобретение может быть использовано для изготовления или восстановения наплавкой деталей металлургической и машиностроительной техники, работающих в условиях окисления и циклического термомеханического нагружения, в частности, для системы вторичного охлаждения установок непрерывной разливки сталей.

Изобретение может быть использовано при изготовлении или восстановлении деталей из закаливающихся сталей с содержанием углерода не менее 0,20%, работающих в условиях высоких температур, воздействия агрессивных сред, износа или их сочетаний.

Изобретение может быть использовано для получения коррозионно-стойкого медно-никелевого покрытия на уплотнительном поле узла затвора арматуры из алюминиево-никелевой бронзы.

Изобретение может быть использовано при наплавке двумя плавящимися электродами дугой косвенного действия на металлические изделия из сплавов с особыми свойствами.

При обработке детали газовой турбины, включающей металлическую подложку с дефектом поверхности, наносят посредством сварки на дефект поверхности первый слой, содержащий первый наплавочный материал, а затем на первый слой посредством сварки наносят второй слой, содержащий второй наплавочный материал.

Изобретение может быть использовано при обработке и горячем формовании слитков из сплавов. На слиток наносят слой металлического материала в виде наплавленного покрытия толщиной от 0,64 до 1,27 см, металлургически связанного с по меньшей мере участком боковой поверхности цилиндрического слитка из сплава и с по меньшей мере одним торцом цилиндрического слитка из сплава.

Изобретение может быть использовано при восстановлении наплавкой крупногабаритных деталей типа валов, в частности судовых гребных и промежуточных валов. После предварительного контроля восстанавливаемой поверхности на наличие дефектов в виде несплошностей металла исследуют неразрушающим методом контроля макроструктуру металла в поперечном сечении детали на предполагаемом участке перехода от металла наплавки к основному металлу, соответствующем опасному сечению детали.

Изобретение может быть использовано для наплавки алюминиевых деталей турбомашины посредством сварочного оборудования MIG, например, при ремонте картера удержания. Наплавку осуществляют с использованием проволоки присадочного металла из алюминиевого сплава, состав которого идентичен составу алюминиевого сплава наплавляемой детали с получением валиков большого сечения. Тепловой цикл наплавки выбирают из условия минимального времени пребывания наплавленного металла в интервале хрупкости алюминиевого сплава детали за счет регулирования скорости импульсной подачи присадочной проволоки и скорости наплавки. Способ обеспечивает осуществление наплавки без горячего растрескивания. 2 н. и 3 з.п. ф-лы, 7 ил.
Наверх