Радиоволновые установки для термообработки сырья

Изобретение относится к сельскому хозяйству, в частности к технологическому оборудованию для проведения теплообменных процессов, например для термообработки и обеззараживания сыпучего сырья в виде фуражного зерна, комбикормов и т.п. Радиоволновая установка для термообработки сырья содержит сверхвысокочастотные генераторы 5 с частотой 2450 МГц и тороидальный резонатор. Резонатор состоит из тора с тремя запредельными волноводами, съемных модулей и жестко закрепленной по внутреннему периметру тора стационарной плоской пластины. Съемные модули содержат дополнительные источники электромагнитных излучений спектра радиоволн, отличающиеся длиной волны. Элементы энергоподводов от этих источников установлены на съемную верхнюю пластину, размещенную в центральной части тороидального резонатора. В запредельном волноводе, закрепленном с нижней стороны тора, расположен шнековый дозатор. Один из верхних запредельных волноводов подключен к штуцеру, соединенному с воздушным фильтром. Третий запредельный волновод соединен с загрузочным бункером. Использование изобретения позволит провести качественную термообработку сырья. 3 ил.

 

Предлагаемое изобретение относится к технологическому оборудованию для проведения теплообменных процессов, например, для термообработки и обеззараживания сыпучего сырья (фуражного зерна, комбикормов и т.п.).

Для повышения кормовой ценности зерна применяют тепловую обработку. Наилучшие показатели декстринизации крахмала получили при обработке зерна инфракрасным (ИК) излучением, но при высоких энергетических затратах.

Имеется установка для обеззараживания и шелушения зерна в электромагнитном поле сверхвысокой частоты, где используется дифракционный тороидальный резонатор [1].

Прототипом является сверхвысокочастотная установка для обеззараживания комбикормов [2], но обеспечить наложение двух волн в сферической резонаторной камере сложно без специальных средств защиты магнетронов от отраженной мощности.

Нами выбрана концепция проектирования СВЧ установок, снабженных маломощными источниками энергии (0,8…1,2 кВт), с воздушным охлаждением и не требующих защиты от отраженной мощности, обеспечивающих равномерность нагрева зерна за счет конструкционных приемов при разработке резонаторных камер, заполненных малым объемом сырья. Создание достаточно эффективных технологий и соответствующих радиоволновых установок, например для повышения кормовой ценности фуражного зерна, актуально.

Технологической задачей изобретения является совершенствование технологии и установок для термообработки фуражного зерна путем наложения на электромагнитное поле сверхвысокой частоты (ЭМПСВЧ, 2450 МГц), электрическое поле другой частоты, спектра радиоволн (фиг.1). Это обеспечивает достаточную напряженность электрического поля в резонаторной камере, при которой снижается микробиологическая обсемененность и активность уреазы соевых бобов до нормативных значений, что повышает кормовую ценность фуражного зерна.

Технический результат достигается тем, что радиоволновые установки для термообработки сырья содержат сверхвысокочастотные генераторы с частотой 2450 МГц, тороидальный резонатор, состоящий из тора с тремя запредельными волноводами и жестко закрепленной по внутреннему периметру тора стационарной плоской пластины, съемные модули с дополнительными источниками электромагнитных излучений спектра радиоволн, отличающиеся длиной волны, при этом элементы энергоподводов от этих источников установлены на соответствующие съемные верхние пластины в центральной части тороидального резонатора, причем в запредельном волноводе, закрепленном с нижней стороны тора, расположен шнековый дозатор, а один из верхних запредельных волноводов подключен к штуцеру, соединяющему с воздушным фильтром, третий запредельный волновод соединен с загрузочным бункером.

На фиг. 1 приведены варианты сочетания источников электромагнитных излучений.

На фиг. 2 приведены схемы разработанных радиоволновых установок, обеспечивающих комплексное воздействие электромагнитных излучений разных длин волн:

1 – тороидальная резонаторная камера, состоящая из тора и центральной части;

2 – стационарное основание центральной части тороидальной резонаторной камеры;

3, 4 – запредельные волноводы, выполняющие функции патрубков (3 – выгрузной патрубок со шнековым дозатором, 4 – загрузочный патрубок);

5 – СВЧ генераторные блоки с частотой 2450 МГц;

6 – съемные модули для ввода электромагнитных излучений другой частоты;

7 – штуцер отвода воздуха с воздушным фильтром;

2.1 – установка с тороидальным резонатором и источниками СВЧ энергии с частотой 2450 МГц (12,24 см);

2.2 – установка с тороидальным резонатором и источниками СВЧ энергии с частотой 2450 МГц, скомплектованная с генератором надтональной частоты (22 кГц или 110 кГц) и электрогазоразрядными лампами;

2.3 – установка с тороидальным резонатором и источниками СВЧ энергии с частотой 2450 МГц, скомплектованная высокочастотным генератором (40,68 МГц, 737 см) и высокопотенциальным электродом;

2.4 – установка с тороидальным резонатором и источниками СВЧ энергии с частотой 2450 МГц, скомплектованная с цилиндрическим излучателем от СВЧ генератора (2350 МГц, 12,6 см);

2.5 – установка с тороидальным резонатором и источниками СВЧ энергии с частотой 2450 МГц, скомплектованная с апертурой от генератора крайне высокой частоты (55,54 ГГц, 5,6 мм; 42,19 ГГц, 7,1 мм).

На фиг. 3 представлены съемные модули разработанных радиоволновых установок: 3.0 – тороидальный резонатор без верхней пластины в центральной части; 3.1 – съемная пластина из неферромагнитного материала; 3.2 – съемная пластина с электрогазоразрядной лампой; 3.3 – съемный высокопотенциальный электрод от высокочастотного генератора; 3.4 – съемная пластина с цилиндрическим рупором и излучателем; 3.5 – съемная пластина с апертурой КВЧ излучателя.

Возможные варианты сочетания электромагнитных излучений разных длин волн в тороидальном резонаторе радиоволновых установок для термообработки и обеззараживания сырья приведены на фиг. 1. Классификация разработанных тороидальных резонаторных камер, обеспечивающих комплексное воздействие электромагнитных излучений разных длин волн, приведена на фиг. 2. Радиоволновая установка для термообработки и обеззараживания сырья состоит из тороидального резонатора 1 со стационарной плоской пластиной 2, выгрузного патрубка 3 со шнековым дозатором, загрузочного патрубка 4, сверхвысокочастотных генератороных блоков 5, съемных модулей 6 для ввода в резонаторную камеру электромагнитного излучения другой частоты; штуцера 7 отвода воздуха с воздушным фильтром.

Разработанные тороидальные резонаторные камеры (рабочие камеры) радиоволновых установок обеспечивают сочетания источников электромагнитных излучений разных длин волн (фиг. 2). С использованием маломощных генераторов СВЧ энергии от микроволновых печей и медицинской аппаратуры спектра радиоволн разработаны схемные решения рабочих камер. Рабочие камеры радиоволновых установок выполнены с комбинированными электродинамическими системами, обеспечивающими непрерывный технологический процесс, высокую напряженность электрического поля и максимальную добротность. Прием излучатели электромагнитного поля сверхвысокой частоты (2450 МГц) направлены в тороидальную часть, а центральная часть резонаторной камеры выполнена в виде съемных модулей.

Тороидальный резонатор 1 выполнен с круглым сечением, а по внутреннему периметру (в центральной части) установлены плоскопараллельные пластины. Причем верхняя пластина съемная, а нижнее основание 2 закреплено к внутреннему периметру тора стационарно. Выгрузной 3 и загрузочный 4 патрубки выполнены в виде трубы с диаметром меньше, чем четверть длины волны (3,08 см). Они выполняют функции запредельных волноводов. Выгрузной патрубок 3 закреплен с нижней стороны тора 1 и внутри трубы установлен шнековый дозатор. Загрузочный патрубок 4 установлен с верхней стороны тора 1. Сверхвысокочастотные генераторные блоки 5 (2450 МГц) закреплены к тороидальной поверхности резонатора так, что излучатели направлены внутрь тора. Съемная часть 6 для ввода электромагнитных излучений другой частоты состоит из 5 модулей.

Каждый съемный модуль (фиг. 2) обеспечивает ввод энергии электромагнитных излучений частотой, отличающейся от основной частоты 2450 МГц. Съемный модуль в первом варианте содержит плоскопараллельные пластины из неферромагнитного материала (фиг. 2.1). Причем в тороидальной резонаторной камере частота ЭМПСВЧ равна 2450 МГц (в торе и в центральной части резонатора). Напряженность электрического поля в центральной части резонатора, из-за малого расстояния между плоскопараллельными стенками, выше, чем в торе, но недостаточная для уничтожения микробиологической обсемененности сырья при его высокой исходной обсемененности (более 106 КОЕ/г). Поэтому в конструкции тороидального резонатора следует предусмотреть наложение электрических полей разных длин волн

Во втором варианте съемного модуля в межпластинчатом пространстве установлена электрогазоразрядная лампа от дарсонваля (фиг. 2.2). При этом происходит сложение напряженностей электрического поля с частотами 2450 МГц и 110 кГц. Источниками килогерцовой частоты могут служить дарсонваль «Искра» с частотой 110 кГц и мощностью 130 Вт; дарсонваль НТЧ-10-01, с частотой 22 кГц и мощностью 80 Вт; ультратон 03АМП с частотой 19…25 кГц, и мощностью 30 Вт.

В третьем варианте (фиг. 2.3) модуль 6 образован в виде конденсатора с плоскопараллельными электродами, и к ним подводится высокое напряжение от высокочастотного генератора (40,68 МГц). Причем высокопотенциальный электрод установлен внутрь полого диска из фторопласта для обеспечения безопасного обслуживании, а низкопотенциальным электродом служит нижняя пластина центральной части тороидального резонатора. Источниками высокочастотной энергии могут быть ЭХВЧ-500, УВЧ-30, УВЧ-60, УВЧ-88 с частотой 40,68 МГц и длиной волны 737 см. Модель распространения электрического поля предусматривает сложение напряженностей электрических поле двух частот, таких как 2450 МГц и 40,68 МГц.

В четвертом варианте через верхнюю пластину узла направлен цилиндрический резонатор 6 с излучателем (фиг.2.4). Тороидальный резонатор 1 и цилиндрический резонатор 6 образуют резонаторно-лучевую электродинамическую систему. Источником электромагнитных полей другой частоты могут служить Луч 58-1, Луч 11 СМВ-150 -1, Луч 4 СМВ -20-4 с частотой 2350 МГц и длиной волны 12,6 см. При этом происходит сложение напряженностей электрических полей с близкими частотами, такими как: 2450 МГц и 2350 МГц.

В пятом варианте КВЧ излучение (крайне высокочастотное излучение, миллиметровые волны) (фиг. 2.5) при помощи рупорной антенны площадь апертуры 6 направлена в межпластинчатое пространство. При этом происходит сложение напряженностей электрических полей разных частот: 2450 МГц и 55540 МГц. Источниками электромагнитных излучений могут быть Явь - 1-5,6 с частотой 55,54 ГГц, длиной волны 5,6 мм; Явь - 1-7,1 с частотой 42,19 ГГц, длиной волны 7,1 мм и выходной мощностью 25 Вт.

Поведение электромагнитных полей разных частот в замкнутом объеме резонатора представляет собой весьма сложный физический процесс, который не всегда дается корректно описать при помощи математических выражений. При наложении двух волн с произвольными амплитудами и фазами имеем некоторую электромагнитную волну, которая может изменять свою ориентацию относительно направления распространения волн. Пользуясь системой параметрического моделирования трехмерных структур, проведены исследования напряженности электромагнитного поля при наложении стоячих волн разных длин в тороидальном резонаторе. При использовании каждого модуля оптимизированы величины напряженности электрического поля в тороидальном резонаторе, которые позволяют снизить микробиологическую обсемененность в сырье до допустимой нормы 500 тыс. КОЕ/г при достаточно высокой исходной бактериальной загрязненности.

Добротность тороидального резонатора может быть определена разными способами, в том числе с учетом объема и площади поверхности резонатора, зная значение скин-слоя.

Рабочий процесс термообработки сырья в радиоволновой установке (фиг. 2) происходит следующим образом. Установить соответствующий съемный модуль 6 для ввода электромагнитных излучений частотой, отличающейся от основной частоты (2450 МГц), в центральную часть резонаторной камеры 1. Включают пневмотранспортную установку (на фигуре не приведен), которая через загрузочный патрубок 4 подает сыпучее сырье из загрузочного бункера (не показан) в тороидальный резонатор 1. После чего включают СВЧ генераторные блоки 5 на соответствующие мощности, что создает поток энергии электромагнитных излучений СВЧ диапазона в тороидальной резонаторной камере 1. Включить дополнительный источник электромагнитных излучений другой частоты 6. Под комплексным воздействием электромагнитных излучений разных длин волн поля сырье подвергаются эндогенному нагреву, обеззараживается за счет высокой напряжённости электрического поля, и выводятся с помощью шнекового дозатора через выгрузной патрубок 3. Процесс термообработки и обеззараживания сырья происходит в непрерывном режиме. Отвод воздуха из резонаторной камеры 1 осуществляется через штуцер 7 посредством воздушного фильтра 2. Штуцер отвода воздуха 7, патрубки для загрузки сырья 4 и выгрузки обработанного продукта 3 (труба определенной длины и диаметром меньше 3 см, куда установлен шнековый дозатор) одновременно выполняют функции запредельных волноводов, обеспечивая радиогерметичность установки.

Такая установка со съемными модулями позволяет подобрать рациональные значения напряженностей электрических полей, комплексное воздействие которых снижает микробиологическую обсемененность сырья в процессе термообработки. С помощью одной установки определенной мощности генератора с длиной волны 12,24 см и несколькими съемными модулями, содержащими индивидуальные источники энергии других длин волн, можно обслуживать цех по переработке фуражного зерна в фермерских хозяйствах.

Источники информации

1. Патент РФ № 2584029, МПК A23N17/00. Установка для обеззараживания и шелушения зерна в электромагнитном поле сверхвысокой частоты / А.А. Белов, Г.В. Новикова, О.В Михайлова; заявитель и патентообладатель АНО ВО «АТУ»(RU). – № 2015102653; заявл. 29.01.2015. Бюл. № 14, 15 с.

2. Патент РФ №. 2535146 РФ, МПК А23N 17/00. СВЧ установка для обеззараживания комбикормов / Г.Л. Долгов, М.В. Белова, Т.В. Шаронова, Г.В. Новикова; заявитель и патентообладатель ЧГСХА (RU). – № 2013121131/13; заявл. 07.05.2013. Бюл. № 34 от 10.12.2014, 8 с.

Радиоволновая установка для термообработки сырья, характеризующаяся тем, что она содержит сверхвысокочастотные блоки с частотой 2450 МГц, тороидальный резонатор, состоящий из тора с тремя запредельными волноводами и жестко закрепленной по внутреннему периметру тора стационарной плоской пластины, съемные модули с дополнительными источниками электромагнитных излучений спектра радиоволн, отличающиеся длиной волны, при этом элементы энергоподводов от этих источников установлены на съемной верхней пластине, размещенной в центральной части тороидального резонатора, причем в запредельном волноводе, закрепленном с нижней стороны тора, расположен шнековый дозатор, один из верхних запредельных волноводов подключен к штуцеру, соединенному с воздушным фильтром, а третий запредельный волновод соединен с загрузочным бункером.



 

Похожие патенты:

Изобретение относится к кормопроизводству, а именно экструдированию смеси кормовых продуктов. Смеситель-дозатор пресс-экструдера содержит бункер (смесительную емкость), в нижней части которого крепится подающий шнек.

Изобретение относится к области сельского хозяйства, а именно к устройствам для приготовления комбикормов. Пресс-экструдер состоит из загрузочного бункера 1, полого корпуса 2 с профилированной внутренней поверхностью 3, оснащенной винтообразными рифлями, выполненными в направлении, противоположном вращению шнека.

Изобретение относится к области сельского хозяйства, а именно к технологиям тепловой сушки сыпучих кормов для животных и птицы. Способ комбинированной инфракрасной и кондуктивной сушки движущихся сыпучих кормов для животноводства и птицеводства включает применение принудительно вентилируемой камеры сушки, регулируемых регулятором мощности инфракрасного излучателя и кондуктивного нагревателя для комбинированной сушки со всех направлений действия тепловых потоков на сыпучие корма.

Изобретение относится к сельскому хозяйству, в частности к устройствам для приготовления кормов на животноводческих фермах и комплексах. Устройство для смешивания сухих кормов и сухих добавок состоит из бункера для сухих кормов, в котором установлен выгрузной шнек, выполненный в виде спирали круглого сечения, в зоне выгрузки выгрузной шнек выполнен в виде П-образных лопастей круглого сечения, изготовленных из прутка диметром 4…10 мм и повернутых относительно оси вращения на угол α=5…15° по ходу витков спирали в бункере, при этом под П-образными лопастями круглого сечения расположена сетка, выполненная в виде пластины с прямоугольными пробивными отверстиями шириной поперек вала шнека 15…30 мм и длиной 30…70 мм с перемычками 2…4 мм, параллельно с бункером для сухих кормов расположен многокомпонентный бункер-дозатор сухих добавок, имеющий в двух-семи секциях на общем валу лопастные барабаны с плоскими радиальными лопастями в количестве 6…20 шт.

Изобретение относится к сельскому хозяйству, а именно к оборудованию для обработки кормового зерна консервантом перед закладкой его на хранение, и может быть использовано в кормопроизводстве.

Изобретение относится к способу получения комбикормов. В процессе способа производят очистку, шелушение и измельчение сыпучих компонентов, а также подготавливают жидкие компоненты.

Изобретение относится к оборудованию для прессования кормов в гранулы. Пресс содержит бункер с уплотнителем и корпус с расположенными по обе стороны от его оси входным и выходным окнами.

Изобретение относится к устройствам для смешивания компонентов кормов и других сыпучих материалов. Машина содержит винтовой барабан, средство для загрузки, средство для выгрузки и вмонтированными в машину загрузочными и разгрузочно-сепарирующими приспособлениями.

Изобретение относится к сельскому хозяйству, а именно к устройствам для приготовления соломенной муки. Установка для приготовления соломенной муки включает устройство для загрузки и жестко соединенные друг с другом: секцию резки соломы, секцию измельчения, секцию разделения соломенной муки на фракции и выгрузки готовой соломенной муки.

Изобретение представляет систему получения органического удобрения из экскрементов домашних животных, полученного в результате переваривания личинками, принадлежащими к отряду двукрылых, таких как муха комнатная, муха мясная и слепень, и для получения выращенных личинок, которые могут быть использованы в качестве корма для искусственного выращивания рыбы и разведения кур.

Изобретение относится к отрасли сельского хозяйства, в частности к способу производства кормовых высокоэнергетических жировых добавок жвачным животным. Способ включает барогидротермическую обработку масложировой кормовой смеси, содержащей (в %) ячменя дробленого - 86, фуза-отстоя – 8, стеариновой жирной кислоты - 2 и минеральной добавки – 4, путем гранулирования в рабочем режиме при давлении 10 мПа и температуре 100-120°C выше температуры плавления стеариновой кислоты - 70°C и кавитационную обработку фуза-отстоя подсолнечного масла частотой 22 кГц±10% с экспозицией 10 мин. Дозировка при откорме молодняка крупного рогатого скота составила 3,5-3,7% от сухого вещества. Изобретение позволяет повысить переваримость сухого вещества при кишечном пищеварении. 2 н. и 1 з.п. ф-лы, 9 табл.

Изобретение относится к сельскому хозяйству. Предложена установка с движущимися источниками СВЧ энергии для термообработки сыпучего сырья, которая содержит внутри экранирующего корпуса тороидальный резонатор, по внутреннему периметру которого имеется щель, куда направлены излучатели от сверхвысокочастотных генераторов, расположенных равномерно на круглой платформе по периферии, вращающейся с помощью мотора-редуктора. При этом тороидальный резонатор собран из торов малого диаметра без поверхности внутреннего периметра, посредством плотного монтажа на диэлектрический ободок, диаметром меньше, чем четверть длины волны. Внутри ободка размещен диэлектрический тросошайбовый транспортер. Максимальное количество сверхвысокочастотных генераторов не может превышать половины количества торов малого диаметра, а запредельные волноводы пристыкованы к диэлектрическому ободку через экранирующий корпус и торов малых диаметров. Установка обеспечивает высокое качество обеззараживания сырья. 2 ил.

Изобретение относится к пищевой промышленности, в частности к технологическому оборудованию для термомеханического разрушения и обеззараживания сырья в непрерывном режиме. Сверхвысокочастотная установка с резонатором, образованным между двумя сферами для термомеханического разрушения сырья, содержит концентрически соосно расположенные сферы из неферромагнитного материала. На наружную сферу по вершинам условного равностороннего треугольника установлены СВЧ-генераторы так, что излучатели направлены в пространство между сферами, средний периметр которого равен кратной половине длины волны. Внутренняя вращающаяся сфера установлена на вал электродвигателя и выполнена с шероховатой поверхностью, покрытой абразивным материалом. Диаметр внутренней сферы чуть больше вписанной сферы в условный равносторонний треугольник. К наружной сфере пристыкован шнековый нагнетатель-измельчитель с загрузочным патрубком и выгрузной патрубок с электроприводным ударным элементом. Верхняя и нижняя части наружной сферы перфорированы. В резонаторной камере частично измельченное сырье равномерно нагревается в электромагнитном поле сверхвысокой частоты и дополнительно дробится за счет многократного удара о шероховатую поверхность внутренней сферы. Испаренная влага удаляется через мелкоячеистую перфорацию в верхней части наружной сферы. Диаметр отверстий перфорации дна наружной сферы согласован с размерами частиц готового продукта. Ударный элемент обеспечивает сепарирование частиц продукта через отверстия перфорации сферы. Использование изобретения позволит повысить надежность работы установки. 3 ил.

Изобретение относится к сельскому хозяйству, в частности к устройствам для приготовления кормов на животноводческих фермах и комплексах. Устройство состоит из бункера для сыпучих кормов, в котором установлен выгрузной шнек, выполненный в виде спирали круглого сечения, закрепленной на валу. В зоне выгрузки выгрузной шнек выполнен в виде радиальных плоских лопастей, также закрепленных на валу и изготовленных из пластин толщиной 1…3 мм, концы которых отогнуты на угол α=2…10° противоположно направлению вращения вала. Под плоскими лопастями расположена сетка, выполненная из пересекающихся и скрепленных между собой круглых стержней диаметром 2…4 мм с промежутками поперек вала шнека 15…30 мм и вдоль вала 30…70 мм. Параллельно с бункером для сухих кормов расположен многокомпонентный бункер-дозатор сухих добавок, имеющий в двух-семи секциях на общем валу лопастные барабаны с плоскими радиальными лопастями в количестве 6…20 шт. и выгрузными отверстиями в виде щелей, перекрываемых регулировочными заслонками. Под всеми указанными бункерами расположена камера предварительного смешивания, в нижней части которой имеется распределительный конус, под которым размещена камера основного смешивания. Камера основного смешивания представляет собой вертикальный цилиндр с вертикальным смотровым окном. По оси камеры основного смешивания на приводном валу крепятся 3…12 мешалок, представляющих собой ступицу с крепящимися к ней 5…10 радиальными лопастями круглого сечения. В нижней части камеры основного смешивания расположено выгрузное отверстие с регулировочной заслонкой и выгрузным лотком. Использование изобретения позволит повысить качество готового продукта. 1 ил.

Изобретение относится к устройствам для смешивания и дозированной выдачи кормов и может быть использовано для подачи кормов на ленточные, скребковые и винтовые кормораздатчики. Сущность: устройство состоит из закрепленного шарнирно с возможностью регулирования угла наклона загрузочного бункера (1) с секциями (2-4) для компонентов кормовой смеси. В загрузочном бункере (1) размещен смесительный шнек (6), на полом валу (7) которого закреплены витки (8) и лопатки (9). Внутри полого вала (7) установлен неподвижный шнек (10). Витки (8) выполнены ленточными и состоят из наложенных друг на друга неподвижной и подвижной лент. Подвижная лента закреплена на неподвижной ленте с возможностью смещения по ней. При этом неподвижная лента жестко связана с полым валом (7) с возможностью изменения зазора между внутренней кромкой витка (8) и наружной поверхностью полого вала (7). Лопатки (9) смесительного шнека (6) выполнены составными из двух частей, одна из которых закреплена на другой. Причем неподвижная часть жестко соединена с полым валом (7) с возможностью смещения по ней подвижной части и регулировки площади лопатки (9). Технический результат: повышение равномерности смешивания кормовой смеси. 3 ил.

Изобретение относится к сельскохозяйственному производству, а именно к способам подготовки кормолекарственных смесей. Способ включает получение первичного премикса путем одновременного измельчения и смешивания в измельчителе-смесителе для первичных премиксов и приготовление кормовой смеси посредством смешивания первичного премикса с наполнителем в смесителе кормолекарственных смесей в режиме псевдоожиженного слоя. Кормолекарственную смесь получают перемещением массы смешиваемого материала швырком снизу вверх по всему периметру внутренней сферической поверхности рабочей камеры, по внутренней поверхности направляющего обтекателя и плавным изменением направления движения потока сверху вниз. Устойчивость псевдоожиженного слоя усиливается за счет избыточного давления в зоне внутренней поверхности рабочей камеры и направляющего обтекателя, а в зоне вертикальной оси - разрежения. Использование изобретения позволит обеспечить высокую однородность смешивания путем выравнивания фракционного состава смешиваемых материалов и повысить качество лечебных кормов. 2 ил.

Изобретение относится к сельскому хозяйству, а именно к устройствам для цикличной (порционной) подготовки кормолекарственных смесей, а также минеральных и витаминных кормовых добавок. Установка включает измельчитель-смеситель для первичных премиксов, смеситель для премиксов и кормовых смесей, устройства загрузки и выгрузки. Смеситель для премиксов и кормовых смесей является смесителем кормолекарственных смесей и состоит из двух частей, рабочей камеры, выполненной в виде усеченной сферы, и направляющего обтекателя, образующая поверхность которого представлена эвольвентой с началом координат у нижней части загрузочного шлюза. В нижней части рабочей камеры на расстоянии δ к внутренней поверхности закреплены лопасти, плоскости и концы которых повторяют ее внутреннюю поверхность. Каждая лопасть снабжена бортиком, направленным противоположно бортику другой лопасти. Длина каждой лопасти и уровень стыка направляющего обтекателя с рабочей камерой ограничены радиусом, проведенным из центра сферы под углом 45°. Использование изобретения позволит повысить качество готового продукта. 2 ил.

Изобретение относится к области сельского хозяйства, а именно к устройствам для приготовления комбикормов. Пресс-экструдер состоит из загрузочного бункера, полого корпуса с профилированной внутренней поверхностью, выполненной в виде винтообразных рифлей с направлением, противоположным вращению шнека. В корпусе с возможностью вращения расположен конусообразный шнек, включающий зоны смешивания и баротермической обработки материала. Витки навивки шнека имеют трапецеидальные вырезы в зоне смешивания. На выгрузном конце шнека выполнен формующий конус в виде матрицы, поверхность которой оснащена равномерно расположенными конусообразными отверстиями для выхода готовой продукции. Использование изобретения позволит снизить энергоемкость процесса экструдирования и повысить качество готового продукта. 3 ил.

Изобретение относится к области сельского хозяйства, частности к устройствам для приготовления кормов. Кормораздатчик-измельчитель содержит корпус с загрузочным и разгрузочным элементами, вращающийся диск (4) с рабочими измельчающими органами, установленными кольцевыми рядами, и противорежущий орган. Каждый измельчающий орган выполнен в виде цилиндрической втулки со штоком (7), в верхней части которого жестко установлен зубчатый режущий элемент под углом 30-45° к продольной оси цилиндрической втулки. Противорежущий орган изготовлен в виде подпружиненной деки с противорежущими сегментами. Дека одной стороной шарнирно закреплена на боковой стенке корпуса посредством подпружиненной шпильки с возможностью изменения зазора между зубчатыми режущими органами и противорежущими сегментами с целью изменения средневзвешенной длины резки измельчаемого материала. Повышается качество измельчения. 4 ил.

Изобретение относится к сельскохозяйственному машиностроению и может быть использовано для очистки сточных вод, содержащих твердые и органические загрязнения, в т.ч. навоз КРС, свиной и помет птиц. Устройство содержит корпус, шнек загрузки обезвоживаемого материала, разгрузочный шнек с режущей пластиной, установленный с возможностью осевого перемещения на валу, приемник обезвоживаемого материала, патрубки для вывода жидкой и твердой фракций, привод. Устройство дополнительно содержит приемник фильтрующего материала и шнек его загрузки, установленный с возможностью осевого перемещения. Все шнеки размещены на одном валу. Между смежными участками шнеков выполнен разрыв витков. Перед шнеком загрузки обезвоживаемого материала на валу размещена режущая пластина, а его витки выполнены увеличивающегося шага навивки. Использование изобретения позволит повысить качество отжима жидкости путем дополнительной фильтрации. 1 ил.
Наверх