Способ получения полимера с внутренней микропористостью pim-1



Способ получения полимера с внутренней микропористостью pim-1
Способ получения полимера с внутренней микропористостью pim-1
Способ получения полимера с внутренней микропористостью pim-1
Способ получения полимера с внутренней микропористостью pim-1
Способ получения полимера с внутренней микропористостью pim-1
Способ получения полимера с внутренней микропористостью pim-1

 


Владельцы патента RU 2626235:

Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) (RU)

Изобретение относится к способу получения полимера с внутренней микропористостью PIM-1 формулы I, включающему полигетероциклизацию 5,5',6,6'-тетрагидрокси-3,3,3',3'-тетраметил-1,1'-спиробисиндана с тетрафтортерефталонитрилом в присутствии карбоната калия при нагревании, полигетероциклизацию проводят в диметилсульфоксиде с добавкой толуола при интенсивном перемешивании с частотой вращения мешалки (1-10)⋅103 об/мин, и она сопровождается осаждением целевого продукта

. Технический результат – эффективный и экологичный способ получения полимера с внутренней микропористостью PIM-1, обеспечивающий получение продукта лучшего качества. 2 з.п. ф-лы, 1 табл., 3 пр.

 

Изобретение относится к полимерной химии, а именно к полимерам с внутренней микропористостью (polymers of intrinsic microporosity - PIMs), конкретно к способу получения полимера формулы I (известного под названием PIM-1) - пленочного наноматериала с размером пор менее 2 нм, представляющего большой технологический интерес для газоразделительных процессов [McKeown N.B. Polymers of Intrinsic Microporosity. ISRN Mater. Sci. 2012, 2012, Article ID 513986, 16 pages].

Предлагаемое изобретение наиболее эффективно может быть использовано в пилотном и промышленном производстве PIM-1 для нужд мембранных нанотехнологий.

Полимер I относится к лестничным гетероциклическим системам и обладает уникальной комбинацией свойств - высокой микропористостью и хорошей растворимостью в органических растворителях, а также ярко-желтой флуоресценцией, что определяет различные сферы его применения.

Широко исследованы газоразделительные свойства PIM-1, однако отмечены также его гидрофобные и даже омнифобные свойства, позволяющие использовать PIM-1 в первапорационных мембранах для отделения фенола от воды, воды от масел и углеводородов. Предприняты усилия для использования PIM-1 в фотовольтаических устройствах [обзор McKeown N.B. Polymers of Intrinsic Microporosity. ISRN Mater. Sci. 2012, 2012, Article ID 513986, 16 pages, и ссылки, приведенные в нем].

Полимер I обладает исключительно высокой пористостью - от 700 до 875 м2/г (при размере пор менее 2 нм) и выдающейся газопроницаемостью по кислороду, а также азоту, СO2 и другим газам при неплохой газоразделяющей способности. Так, например, РO2=350-1600 Баррер при селективности газоразделения α=3,5-5,0 для пары O2/N2. Такие уникальные свойства объясняются специфической упаковкой полимерных цепей лестничного полимера I и морфологией пленочных мембран на его основе. За счет полной заторможенности вращения элементарных звеньев вокруг спирогруппировок макромолекулы PIM-1, имеющего температуру стеклования выше 400°С, не могут изменить свою конформацию и эффективно упаковаться в твердой фазе [McKeown N.B. Polymers of Intrinsic Microporosity. ISRN Mater. Sci. 2012, 2012, Article ID 513986, 16 pages].

Газопроницаемость PIM-1 и механическая прочность мембран на его основе в значительной степени определяются молекулярной массой и коэффициентом полидисперсности полимера (чем выше молекулярная масса и уже молекулярно-массовое распределение - тем лучше «мембранные» характеристики PIM-1). Можно утверждать, что все необходимые с практической точки зрения свойства PIM-1 зависят от способа его получения.

Все известные способы получения PIM-1 основаны на полигетероциклизации эквимолярных количеств коммерчески доступных 5,5',6,6'-тетрагидрокси-3,3,3',3'-тетраметил-1,1'-спиробмсиндана (мономера А) и тетрафтортерефталонитрила (мономера Б) по механизму двойного ароматического нуклеофильного замещения. Реакцию проводят при нагревании в апротонных растворителях в инертной атмосфере в присутствии основания, в качестве которого чаще всего используют карбонат калия.

Известные способы получения PIM-1 различаются типом используемого растворителя, концентрацией мономеров, температурой и временем полигетероциклизации, а также интенсивностью перемешивания реакционной смеси.

Так, известен способ получения PIM-1 в N,N-диметилформамиде (ДМФА) при ~65°С при перемешивании с помощью верхнепроводной мешалки, используемой в лаборатории (частота вращения вала порядка 60 об/мин), в течение 72-96 ч. Общая массовая концентрация реагентов составляет 7,5%, количество карбоната калия варьируется от 2 до 4 моль на 1 моль мономера. Продукт высаживают из горячего реакционного раствора в метанол и дважды переосаждают из тетрагидрофуранового раствора в метанол. Выход PIM-1 не превышает 80% [Budd P.M., Ghanem B.S., Makhseed S., McKeown N.B., Msayib K.J., Tattershall C.E. Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materials. Chem. Commun. 2004, (2), 230-231; Budd P.M., Elabas E.S., Ghanem B.S., Makhseed S., McKeown N.B., Msayib K.J., Tattershall C.E., Wang D. Solution-Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity. Adv. Mater. 2004, 16 (5), 456-459]. Недостатками способа являются его длительность, использование токсичного ДМФА, необходимость переосаждения продукта для удаления низкомолекулярных примесей и циклических олигомеров, образование гель-фракции сшитых полимеров, а также сравнительно невысокие молекулярные массы получаемого PIM-1 при довольно широкой полидисперсности, что снижает прочностные характеристики мембран на его основе.

Известен способ получения PIM-1 в смеси токсичного N,N-диметилацетамида (ДМАА) и толуола при 155-160°С в течение 8-40 мин с одновременной азеотропной отгонкой воды (или без нее) при перемешивании с использованием магнитной мешалки (частота вращения ~1000 об/мин) и общей массовой концентрации мономеров 20-25% [Du N., Song J., Robertson G.P., Pinnau L, Guiver M.D. Linear high molecular weight ladder polymer via fast polycondensation of 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethylspirobisindane with 1,4-dicyanotetrafluorobenzene. Macromol. Rapid Commun. 2008, 29, 783-788; Du N., Robertson G.P., Song J., Pinnau L, Thomas S., Guiver M.D. Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone Groups as Materials for Membrane Gas Separation. Macromol. 2008, 41 (24), 9656-9662; Du N., Guiver M.D., Robertson G.P. Ladder Polymers with Intrinsic Microporosity and Process for Production thereof. US 2014/0243441 А1]. Несмотря на более высокие молекулярно-массовые характеристики образующегося PIM-1 и сужение его полидисперсности, а также улучшение прочностных свойств получаемых из него мембран представляется невозможным реально масштабировать подобный процесс в силу его скоротечности и неуправляемости. Кроме того, из-за диффузионных затруднений и гетерогенности в ДМАА наблюдается образование гель-фракции, не растворимой, а лишь набухающей в органических растворителях. Для ее отделения необходимо (как и в первом рассмотренном способе синтеза) переосаждение и фильтрование вязких полимерных растворов. Потери целевого продукта I могут достигать 20%.

Известен способ получения PIM-1 в N-метилпирролидоне или его смеси с толуолом (с одновременной отгонкой воды) при 135-155°С в течение 1-2 ч при перемешивании с частотой вращения 190-450 об/мин (в случае реализации в полупромышленном масштабе - 1000-1500 об/мин) [Visser Т., Gao Y. Process for Synthesizing Polymers wih Intrinsic Microporosity. US 2013/0217799] при общей массовой концентрации реагентов 15-20%. Выделение, выход и молекулярно-массовые характеристики продукта такие же, как в случае использования ДМАА в качестве растворителя. Главный недостаток способа - токсичность N-метилпирролидона, обладающего тератогенными свойствами, который в настоящее время запрещено применять в промышленности.

В качестве прототипа выбран классический способ получения PIM-1 в ДМФА [Budd P.M., Ghanem B.S., Makhseed S., McKeown N.B., Msayib K.J., Tattershall C.E. Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materials. Chem. Commun. 2004, (2), 230-231], который по существенным признакам близок к заявляемому способу.

При осуществлении всех вышеуказанных способов получения PIM-1, пригодного для формирования качественных газоразделительных мембран (молекулярная масса не меньше 35-40 кДа, коэффициент полидисперсности менее 3-4), возникает проблема выделения целевого высокомолекулярного линейного полимерного продукта. Так как PIM-1 растворим в средах, используемых для проведения полигетероциклизации, всегда необходимо осаждать его из реакционной смеси и дополнительно очищать от циклических олигомеров и гель-фракции (сшитых полимеров). При этом потери достигают 30% синтезированного дорогостоящего продукта.

Задачей настоящего изобретения является разработка экологически безопасного, технологичного, легко масштабируемого способа получения высокомолекулярного PIM-1 с низким коэффициентом полидисперсности, не содержащего циклических олигомеров и сшитых полимеров, пригодного для изготовления механически прочных газоразделительных мембран.

Поставленная задача решается заявляемым способом получения РIМ-1_(1), включающим полигетероциклизацию 5,5',6,6'-тетрагидрокси-3,3,3',3'-тетраметил-1,1'-спиробисиндана с тетрафтортерефталонитрилом в присутствии карбоната калия при нагревании, которую проводят при 60-120°С в диметилсульфоксиде с добавкой толуола при интенсивном перемешивании с частотой вращения мешалки (1-10)⋅103 об/мин в течение 2-8 ч, при этом происходит осаждение целевого продукта - высокомолекулярного полимера I с низким коэффициентом полидисперсности, свободного от олигомерных примесей.

В качестве основного растворителя для проведения полигетероциклизации мономеров А и Б был выбран диметилсульфоксид (ДМСО), поскольку он является нетоксичным (входит в официальный список «зеленых» растворителей) высококипящим апротонным растворителем, широко используемым в реакциях ароматического нуклеофильного замещения.

Неожиданно оказалось, что высокомолекулярный PIM-1 в ДМСО нерастворим, в отличие от циклических олигомеров, образующихся в результате полициклоконденсации, и выпадает из реакционной смеси в виде мелкодисперсного осадка, то есть полигетероциклизация в ДМСО является осадительной. В результате отпадает необходимость осаждения целевого высокомолекулярного продукта I и его последующей очистки трудоемким переосаждением - достаточно просто отфильтровать его.

Добавка толуола обусловлена необходимостью быстрого отведения из реакционной смеси воды, выделяющейся в результате реакции фенольных групп с карбонатом калия и способной вызвать при повышенной температуре гидролиз нитрильных групп.

Одним из важнейших факторов успешного осуществления заявляемого способа является интенсивное перемешивание реакционной массы с частотой вращения мешалки (1-10)⋅103 об/мин, которое не только ускоряет гетерогенный процесс, но и позволяет избежать образования гель-фракции и уменьшить размер частиц образующегося полимера.

Полигетероциклизация мономеров А и Б по изобретению в присутствии полутораэквивалентного количества карбоната калия в смеси ДМСО с толуолом при высокоинтенсивном перемешивании приводит к получению PIM-1 с выходом 93-99% в удобных температурно-временных условиях - при 60-120°С в течение 2-8 ч. Молекулярная масса продукта Mw=37,2-115,0 кДа при Кn=2,2-2,9 (расчет для основного пика на хроматограмме).

Предлагаемый в заявляемом изобретении способ получения PIM-1 имеет значительные преимущества перед известными способами, а именно:

- гетероциклизацию проводят в экологически безвредном («зеленом») растворителе - ДМСО, тогда как в известных способах (прототипе и аналогах) используют весьма токсичные ДМФА, ДМАА или N-метилпирролидон;

- целевой PIM-1 выпадает из реакционного ДМСО-раствора в виде мелкодисперсного порошка, что исключает отдельную стадию осаждения полимера и позволяет упростить процесс;

- сокращается время проведения процесса и при этом повышается выход целевого продукта;

- образуется целевой продукт лучшего качества (с низким коэффициентом полидисперсности);

- полученный продукт не содержит гель-фракции и циклических олигомеров, поэтому не требует дополнительной очистки и может быть сразу переработан в пленки и мембраны из растворов в хлорированных растворителях.

Технический результат изобретения состоит в разработке удобного, эффективного и экологичного, легко поддающегося масштабированию способа получения полимера с внутренней микропористостью PIM-1, представляющего большой практический интерес для мембранных нанотехнологий.

Химическое строение получаемого заявляемым способом PIM-1 подтверждается данными элементного анализа и 1Н ЯМР-спектроскопии.

Изобретение иллюстрируется приведенными ниже примерами.

Пример 1. Получение полимера с внутренней микропористостью формулы I. В трехгорлую колбу, снабженную высокоскоростной мешалкой и трубкой для подачи сухого аргона, загружают 5,11 г (15 ммоль) 5,5',6,6'-тетрагидрокси-3,3,3',3'-тетраметил-1,1'-спиробмсиндана, 3,00 г (15 ммоль) тетрафтортерефталонитрила, 6,20 г (45 ммоль) K2СО3, 40 мл ДМСО и 5 мл толуола. Смесь перемешивают 1-2 мин со скоростью 5000 об/мин в токе аргона, затем переносят в предварительно разогретую до 60°С силиконовую баню и поддерживают при этой температуре скоростное перемешивание на уровне 1000 об/мин, периодически (1 раз в час) ускоряя перемешивание до 5000-10000 об/мин на 1-2 мин. Через 8 ч нагревания мешалку останавливают, полученный осадок отфильтровывают, а затем последовательно промывают горячим 50%-ным этиловым спиртом и горячей водой для удаления фторида калия, образовавшегося в процессе поликонденсации. После сушки в вакууме получают 6,4 г PIM-1 (93%) в виде мелкодисперсного сыпучего желтого порошка со среднемассовой молекулярной массой 52100 Да.

Примеры 2 и 3 осуществляют аналогично примеру 1. Условия реакции, выходы, молекулярные массы и коэффициенты полидисперсности полученных полимеров I приведены в таблице.

1. Способ получения полимера с внутренней микропористостью PIM-1 формулы I, включающий полигетероциклизацию 5,5',6,6'-тетрагидрокси-3,3,3',3'-тетраметил-1,1'-спиробисиндана с тетрафтортерефталонитрилом в присутствии карбоната калия при нагревании, отличающийся тем, что полигетероциклизацию проводят в диметилсульфоксиде с добавкой толуола при интенсивном перемешивании с частотой вращения мешалки (1-10)⋅103 об/мин, и она сопровождается осаждением целевого продукта

.

2. Способ по п. 1, отличающийся тем, что полигетероциклизацию проводят при 60-120°C в течение 2-8 ч.

3. Способ по п. 1 или 2, отличающийся тем, что целевой продукт представляет собой высокомолекулярный PIM-1 с низким коэффициентом полидисперсности.



 

Похожие патенты:

Изобретение относится к полимерным материалам с улучшенными барьерными свойствами на основе полиэтилентерефталата, предназначенного для изготовления тары, обладающим улучшенными значениями по показателям газопроницаемости.

Настоящее изобретение относится к полиэфирформалям блочного строения. Описаны ароматические блок-сополиэфиры формулы: где n=1-20; m=2-50; z=2-30.

Изобретение относится к ароматическим блок-сополиэфиркетонам формулы: где n, m и z равны 1-20, 20-50 и 2-50 соответственно. Данные блок-сополимеры могут быть использованы в качестве высокопрочных, термо- и теплостойких конструкционных и пленочных материалов.

Изобретение относится к области полимерной химии, конкретно к полимерам, содержащим в основной цепи между фенильными ядрами простые эфирные связи, метиленовый мостик, кето-группы и кетоксимные фрагменты, и к способу их получения.

Настоящее изобретение относится к ароматическим полиэфирсульфонкетонам конструкционного и пленочного назначения. Описаны ароматические полиэфирсульфонкетоны формулы где n=1-20; z=2-100; R= .

Настоящее изобретение относится к ароматическим полиэфирсульфонкетонам конструкционного и пленочного назначения. Описаны ароматические полиэфирсульфонкетоны формулы: где n=1-20; z=2-50; R=, .

Настоящее изобретение относится к ароматическим полиэфирам конструкционного и пленочного назначения. Описаны ароматические полиэфиры формулы где n=2-20; z=2-100; R= ,.

Изобретение относится к полиариленэфиркетонам блочного строения. Описаны полиариленэфиркетоны формулы: , где n=1-20; m=2-100.

Изобретение относится к высокомолекулярным соединениям, а именно к ароматическим полиэфирсульфонкетонам формулы (I), где n=1-20, z=2-50, конструкционного и пленочного назначения.

Изобретение относится к полигидроксиэфирам. Описан полигидроксиэфир на основе 3,3/-диаллил-4,4/-диоксидифенилпропана общей формулы: , где n=70-180.

Изобретение относится к извлечению кислых компонентов из газовых потоков, таких как попутные газы из скважин или дымовые/выхлопные газы с использованием мембран, содержащих макромолекулярный самоорганизующийся полимер.

Изобретение относится к протонпроводящим полимерным мембранам с высокой проводимостью (до 10-1 См/см) и повышенной термостабильностью, содержащим сульфокислотные группы и фосфорную кислоту.

Изобретение относится к технологии изготовления мембран и может быть использовано в производстве топливных элементов, высокопроизводительных конденсаторов, оборудования для диализа и ультрафильтрации.

Изобретение относится к способу получения проницаемого газоразделительного материала. .

Изобретение относится к промышленности пластмасс, а именно к способам получениякомпозиционных газоразделительных мембран, и может быть использовано в химической, нефтехимической и газодобывающей отраслях промышленности для разделения газовых смесей.

Изобретение относится к области физической химии, вакуумной технике, управляемого термоядерного синтеза и предназначено для поддержания требуемого вакуума в вакуумном объеме термоядерных установок и удаления из них остатков топлива: изотопов водорода дейтерия и трития, а также для откачки вакуумных систем, в которых изотопы водорода служат рабочим газом.

Изобретение относится к созданию селективных мембран, функционирующих за счет «сродства» гидридообразующего наполнителя к водороду. Описан способ получения композиционных мембранных материалов для выделения водорода из газовых смесей на основе гидридообразующих интерметаллических соединений и полимерных связующих, включающий механоактивационную обработку порошка гидридообразующего интерметаллического соединения в шаровой мельнице, последующую кратковременную совместную механоактивационную обработку порошка гидридообразующего интерметаллического соединения с добавлением барьерного полимерного материала продолжительностью 1-5 мин, прессование металлополимерных композиционных порошков и последующую прокатку полученного металлополимерного компакта.

В настоящей заявке описан способ мембранного разделения газов и выработки электроэнергии, в частности, с целью регулирования выбросов двуокиси углерода из работающих на газе энергетических установок.

Изобретение относится к области получения гелия из природного газа и может использоваться в газовой, нефтяной, химической и других отраслях промышленности и науке.

Изобретение относится к мембранному разделению. Представлен способ проведения выделения по меньшей мере одного находящегося в газообразном пермеате рабочего материала из исходного газообразного материала, подаваемого в резервуар для исходного газообразного материала, находящийся во взаимосвязи с возможностью массопереноса с резервуаром для пермеата через мембрану, где исходный газообразный материал включает рабочий материал, представляющий собой находящийся в исходном газообразном материале рабочий материал, и мембрана включает гель.
Наверх