Лопаточная решетка турбомашины

Изобретение относится к области машиностроения, может быть использовано при конструировании ступеней паровых и газовых турбин, компрессоров и направлено на повышение аэродинамической эффективности лопаточной решетки турбомашины. Лопаточная решетка турбомашины содержит лопатки, установленные между концевыми поверхностями, при этом на внутренней стороне, по меньшей мере, одной из концевых поверхностей в межлопаточных каналах выполнено оребрение. Оребрение выполнено в виде основного ребра и дополнительного ребра криволинейной формы треугольного поперечного сечения. Продольная ось основного ребра расположена на линии, соединяющей центры окружностей, вписанных между соседними лопатками. Входная кромка основного ребра расположена на входном сечении межлопаточного канала, а выходная кромка основного ребра расположена на выходном сечении межлопаточного канала. Высота основного ребра выполнена линейно возрастающей от нулевого значения в области его входной кромки до значения, равного 0.08 размера хорды профиля в лопаточной решетке в области выходной кромки. Продольная ось дополнительного ребра расположена на линии, соединяющей центры окружностей, вписанных между основными ребрами и спинками лопаток. Входная кромка дополнительного ребра расположена в горловом сечении, а выходная кромка дополнительного ребра расположена в направлении его продольной оси за выходным сечением межлопаточного канала на расстоянии от 0.08 до 0.1 размера хорды профиля в лопаточной решетке. Высота дополнительного ребра выполнена равной 0.08 размера хорды профиля в лопаточной решетке, а ширина основного и дополнительного ребер у основания не превышает 1 мм. Изобретение позволяет повысить аэродинамическую эффективность лопаточной решетки турбомашины за счет снижения концевых и профильных потерь. 5 ил.

 

Изобретение относится к области машиностроения и может быть использовано при конструировании ступеней паровых и газовых турбин, компрессоров.

Известна лопаточная решетка турбомашины (авторское свидетельство SU №877086, опубл. 30.10.1981, МПК F01D 5/14), содержащая лопатки и ограничивающие концевые поверхности, на которых выполнены канавки. Кроме того, в выходной части лопаток со стороны, по крайней мере, одной из ограничивающих концевых поверхностей выполнены выемки.

Основной недостаток настоящего технического решения заключается в низкой аэродинамической эффективности лопаточной решетки, вызванной незначительным снижением концевых потерь из-за ограниченности глубины канавок вследствие конструктивных ограничений.

Известна лопаточная решетка турбомашины (авторское свидетельство SU №299658, опубл. 01.01.1971, МПК F01D 1/04), содержащая лопатки, установленные между концевыми поверхностями, на которых выполнены профилированные канавки для уменьшения концевых потерь.

Основной недостаток настоящего технического решения заключается в низкой аэродинамической эффективности лопаточной решетки, вызванной незначительным снижением концевых потерь из-за ограниченности глубины канавок вследствие конструктивных ограничений.

Наиболее близкой по технической сущности к заявляемому изобретению является лопаточная решетка турбомашины (статья «Регулирующие клапаны и решетки для первых ступеней турбин с ультрасверхкритическими параметрами пара», Теплоэнергетика, 2016, №6, с. 44-52), содержащая лопатки, установленные между концевыми поверхностями. При этом на внутренней стороне, по меньшей мере, одной из концевых поверхностей в межлопаточных каналах выполнено оребрение, содержащее три криволинейных ребра треугольного поперечного сечения, выполненных параллельными средней линии лопатки. Входные и выходные кромки ребер расположены внутри межлопаточного канала на расстоянии α от его входного и выходного сечений, где α>0. Высота ребер постоянна и равна 0.08b, где b - размер хорды профиля в лопаточной решетке.

Основной недостаток настоящего технического решения заключается в низкой аэродинамической эффективности лопаточной решетки вследствие незначительного подавления парного вихря, обуславливающего концевые потери, и значительных профильных потерях, обусловленных количеством ребер, их расположением на концевых поверхностях и формой.

Техническая задача, решаемая предлагаемым изобретением, заключается в уменьшении концевых и профильных потерь.

Технический результат заключается в повышении аэродинамической эффективности лопаточной решетки турбомашины.

Это достигается тем, что лопаточная решетка турбомашины, содержащая лопатки, установленные между концевыми поверхностями, при этом на внутренней стороне, по меньшей мере, одной из концевых поверхностей в межлопаточных каналах выполнено оребрение, причем оребрение выполнено в виде основного ребра и дополнительного ребра криволинейной формы треугольного поперечного сечения, продольная ось основного ребра расположена на линии, соединяющей центры окружностей, вписанных между соседними лопатками, входная кромка основного ребра расположена на входном сечении межлопаточного канала, выходная кромка основного ребра расположена на выходном сечении межлопаточного канала, высота основного ребра выполнена линейно возрастающей от нулевого значения в области его входной кромки до значения, равного 0.08b в области выходной кромки, где b - размер хорды профиля в лопаточной решетке, продольная ось дополнительного ребра расположена на линии, соединяющей центры окружностей, вписанных между основными ребрами и спинками лопаток, входная кромка дополнительного ребра расположена в горловом сечении, выходная кромка дополнительного ребра расположена в направлении его продольной оси на расстоянии δ за выходным сечением межлопаточного канала, причем δ находится в диапазоне от 0.08b до 0.1b, высота дополнительного ребра выполнена равной 0.08b, ширина основного и дополнительного ребер у основания не превышает 1 мм.

Сущность заявляемого изобретения поясняется чертежами, где на фиг. 1 изображена лопаточная решетка турбомашины, на фиг. 2 показана схема размещения ребер в межлопаточных каналах, на фиг. 3 изображено поперечное сечение основного и дополнительного ребра, на фиг. 4 изображен продольный разрез основного ребра, а на фиг. 5 - продольный разрез дополнительного ребра.

Лопаточная решетка турбомашины содержит лопатки 1, установленные между концевыми поверхностями 2. На внутренней стороне, по меньшей мере, одной из концевых поверхностей 2 в межлопаточных каналах 3 выполнено оребрение в виде основного ребра 4 и дополнительного ребра 5 криволинейной формы треугольного поперечного сечения.

Продольная ось О1 основного ребра 4 расположена на линии, соединяющей центры окружностей 6, вписанных между соседними лопатками 1. Входная кромка основного ребра 4 расположена на входном сечении 7 межлопаточного канала 3, выходная кромка основного ребра 4 расположена на выходном сечении 8 межлопаточного канала 3. Высота основного ребра 4 выполнена линейно возрастающей от нулевого значения в области его входной кромки до значения, равного 0.08b в области выходной кромки, где b - размер хорды профиля в лопаточной решетке.

Продольная ось О2 дополнительного ребра 5 расположена на линии, соединяющей центры окружностей 9, вписанных между основными ребрами 4 и спинками лопаток 1. Входная кромка дополнительного ребра 5 расположена в горловом сечении 10, являющемся самым узким сечением межлопаточного канала 3. Выходная кромка дополнительного ребра 5 расположена в направлении его продольной оси O2 на расстоянии δ за выходным сечением 8 межлопаточного канала 3, причем δ находится в диапазоне от 0.08b до 0.1b. Высота дополнительного ребра 5 выполнена равной 0.08b. Ширина S основного 4 и дополнительного 5 ребер у основания не превышает 1 мм.

Лопаточная решетка турбомашины работает следующим образом.

В рабочем процессе газообразная среда обтекает лопатки 1. Основные ребра 4 добавляют гидравлическое сопротивление на пути потока, перетекающего в пристеночной области в нормальном к скорости основного течения направлении. В результате большие канальные вихри, зарождающиеся в области пограничного слоя, толщина которого в лопаточной решетке определяется по формуле Δ=0.08b (Дейч М.Е. Техническая газодинамика. Издательский дом МЭИ, 1961 год), разделяются на малые.

Расположение продольной оси O1 основных ребер 4 препятствует образованию дополнительных вихревых токов и отрывов потока от поверхности основных ребер 4. Линейное возрастание высоты основных ребер 4 от нулевого значения до значения, равного толщине пограничного слоя, позволяет эффективно подавлять канальный вихрь, интенсивность которого возрастает по мере прохождения потока в межлопаточном канале 3, сохраняя при этом профильные потери на низком уровне. Нулевая высота основного ребра 4 в области входной кромки обуславливает его низкое гидравлическое сопротивление. Снижение числа основных ребер 4 снижает профильные потери.

В области косого среза решетки дополнительные ребра 5 подавляют парные вихри за счет дополнительного гидравлического сопротивления на пути вторичных токов. Расположение продольной оси O2 дополнительных ребер 5 препятствует образованию дополнительных вихревых токов и отрывов потока от их поверхности. Расположение входной и выходной кромок дополнительных ребер 5 обеспечивает эффективное подавление парных вихрей, распространяющихся в области косого среза. Треугольная форма поперечного сечения, а также высота дополнительных ребер 5, равная толщине пограничного слоя в лопаточной решетке, обуславливает низкие профильные потери.

Опытным путем было установлено, что увеличение высоты основных ребер 4 и дополнительных ребер 5 свыше 0.08b приводит к тому, что часть ребер выходит за пределы пограничного слоя, что способствует резкому возрастанию профильных потерь. Увеличение расстояния δ более 0.1b способствует увеличению профильных потерь, а уменьшение δ менее 0.08b приводит к увеличению потерь со вторичными токами.

При установке основного 4 и дополнительного 5 ребер на внутренней стороне обеих концевых поверхностей 2 лопаточной решетки достигается наилучшая аэродинамическая эффективность лопаточной решетки турбомашины.

Использование изобретения позволяет повысить аэродинамическую эффективность лопаточной решетки турбомашины за счет снижения концевых и профильных потерь.

Лопаточная решетка турбомашины, содержащая лопатки, установленные между концевыми поверхностями, при этом на внутренней стороне, по меньшей мере, одной из концевых поверхностей в межлопаточных каналах выполнено оребрение, отличающаяся тем, что оребрение выполнено в виде основного ребра и дополнительного ребра криволинейной формы треугольного поперечного сечения, продольная ось основного ребра расположена на линии, соединяющей центры окружностей, вписанных между соседними лопатками, входная кромка основного ребра расположена на входном сечении межлопаточного канала, выходная кромка основного ребра расположена на выходном сечении межлопаточного канала, высота основного ребра выполнена линейно возрастающей от нулевого значения в области его входной кромки до значения, равного 0.08b в области выходной кромки, где b - размер хорды профиля в лопаточной решетке, продольная ось дополнительного ребра расположена на линии, соединяющей центры окружностей, вписанных между основными ребрами и спинками лопаток, входная кромка дополнительного ребра расположена в горловом сечении, выходная кромка дополнительного ребра расположена в направлении его продольной оси на расстоянии δ за выходным сечением межлопаточного канала, причем δ находится в диапазоне от 0.08b до 0.1b, высота дополнительного ребра выполнена равной 0.08b, ширина основного и дополнительного ребер у основания не превышает 1 мм.



 

Похожие патенты:

Лопатка газотурбинного двигателя, имеющая множество секций лопатки, упакованных вдоль радиальной оси (Z-Z). Каждая секция лопатки расположена вдоль продольной оси (Х-Х) между передней кромкой и задней кромкой и вдоль тангенциальной оси (Y-Y) между стороной корытца и стороной спинки.

Лопатка ротора газовой турбины, включающая в себя корневую часть, платформу и перьевую часть. Платформа содержит входную и выходную стороны, боковые стороны, проходящие от входной к выходной стороне, а также осевую и радиальную канавки в каждой боковой стороне платформы.

Изобретение относится к энергетике. Газотурбинный двигатель, включающий в себя контур (10) охлаждения окружающего воздуха, содержащий охлаждающий канал (26), расположенный в лопатке (22) турбины и в сообщении по текучей среде с источником (12) окружающего воздуха; и предварительный завихритель (18), причем упомянутый предварительный завихритель содержит внутренний обод, наружный обод и множество направляющих лопаток, каждая проходящая от внутреннего обода до наружного обода.

Изобретение относится к способу армирования передней кромки (16) лопасти (12) для ее защиты, а также к лопасти с армированием и может найти применение при изготовлении или восстановлении лопасти турбинного двигателя, вертолета или пропеллера.

Узел пера и полки хвостовика для дозвукового потока включает полку хвостовика и установленное на ней перо облопаченного колеса газотурбинного двигателя. Полка хвостовика имеет поверхность, расположенную между перьями, которая представляет собой поверхность полки хвостовика и которая радиально образует внутренность газопропускающих каналов, образованных между перьями.

Лопатка компрессора имеет аэродинамическую часть заданного профиля по существу в соответствии со значениями X, Y и Z декартовой системы координат, представленными в масштабируемой таблице, выбранной из группы таблиц, состоящей из Таблиц 1-11, в которой значения X, Y и Z декартовой системы координат являются безразмерными значениями, приведенными с возможностью преобразования в размерные расстояния путем умножения значений X, Y и Z декартовой системы координат на некоторое число, при этом X и Y представляют собой координаты, которые, будучи соединенными непрерывными дугами, задают сечения профиля аэродинамической части на каждой высоте Z, при этом сечения профиля аэродинамической части на каждой высоте Z соединены друг с другом с формированием полного профиля аэродинамической части.

Компрессор содержит поворотные статорные лопатки. Лопатка компрессора имеет аэродинамическую часть заданного профиля по существу в соответствии со значениями X, Y и Z декартовой системы координат, приведенными в масштабируемой таблице, которая выбрана из группы таблиц, состоящей из Таблиц 1-2, и в которой значения X, Y и Z декартовой системы координат являются безразмерными значениями, преобразуемыми в размерные расстояния путем умножения значений X, Y и Z декартовой системы координат на некоторое число, причем координаты X и Y представляют собой координаты, которые, будучи соединенными непрерывными дугами, определяют сечения профиля аэродинамической части на каждой высоте Z, при этом сечения профиля аэродинамической части на каждой высоте Z плавно соединены друг с другом с формированием полной формы аэродинамической части.

Изобретение относится к энергетике. Лопатка турбомашины, содержащая перо лопатки, вытянутое в осевом направлении между передней кромкой и задней кромкой, а в радиальном направлении - между хвостовиком и вершиной.

Предложена сопловая лопатка (180) турбины, содержащая аэродинамическую часть, имеющую аэродинамическую форму. Аэродинамическая часть имеет оптимальный профиль, по существу в соответствии со значениями X, Y и Z декартовой системы координат, приведенными в Таблице 1.

Изобретение относится к авиационному двигателестроению, в частности к осевым вентиляторам авиационных газотурбинных двигателей. Рабочее колесо высокооборотного осевого вентилятора содержит диск, установленные в диске лопатки и трактовые полки, установленные на диске между лопатками с образованием внутренней поверхности межлопаточного канала.

Лопасть вентилятора турбореактивного двигателя содержит хвостовик, концевую часть, переднюю и заднюю кромки. Передняя кромка лопасти имеет угол стреловидности, больший чем или равный +28° на участке лопасти, который расположен на радиальной высоте, лежащей в диапазоне от 60% до 90% от общей радиальной высоты лопасти, измеренной от ее хвостовика в направлении ее концевой части. Угол стреловидности передней кромки представляет разность, меньшую чем 10° между минимальным углом стреловидности, измеренным на радиальной высоте минимального угла стреловидности на участке лопасти, лежащем в диапазоне от 20% до 90% от радиальной высоты лопасти, и углом стреловидности, измеренным на радиальной высоте, которая на 10% больше, чем упомянутая радиальная высота минимального угла стреловидности. Другие изобретения группы относятся к вентилятору турбореактивного двигателя и турбореактивному двигателю, включающим множество указанных выше лопастей. Группа изобретений позволяет повысить аэродинамические, акустические и механические характеристики лопасти вентилятора турбореактивного двигателя. 3 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к общей области газовых турбин для самолетных или вертолетных двигателей и более конкретно к способу изготовления лопаток, который способствует минимизации напряжений и веса во время механической обработки. При механической обработке лопатки на станке для объемной механической обработки определяют опорные точки, которые должны служить в качестве контрольных точек для механической обработки. При этом обрабатываемая лопатка содержит перо, полку, содержащую передний и задний держатели, образованные соответственно под ее передним и задним участками для поддержки уплотнительного кожуха, хвостовик лопатки и стойку, расположенную между полкой и хвостовиком лопатки. Затем позиционируют лопатку на станке, используя упомянутые передний и задний держатели в качестве двух опорных точек для шеститочечной системы позиционирования, и производят механическую обработку. Другое изобретение группы относится к газотурбинному двигателю, включающему в себя множество лопаток, полученных указанным выше способом. Группа изобретений позволяет упростить механическую обработку лопатки и снизить ее вес. 2 н. и 1 з.п. ф-лы, 1 ил.

Узел пера лопатки и полки включает перо и полку, на поверхности которой установлено перо, причем поверхность полки имеет углубление между передней кромкой и задней кромкой пера лопатки. Наиболее глубокий сегмент углубления расположен в половине, выше по потоку, пера лопатки. Скелетная кривая является кривой, представляющей собой вариации скелетного угла пера лопатки в секущей плоскости, параллельной поверхности полки, в зависимости от положения вдоль оси колеса. Линеаризованная скелетная кривая является линеаризованным представлением скелетного угла в зависимости от положения вдоль оси колеса и представляет собой прямую линию, соединяющую точки, характеризующие скелетный угол при 10 и при 90% осевого размера пера лопатки от передней кромки, в непосредственной близости от полки скелетная кривая имеет приподнятый участок, лежащий над линеаризованной скелетной кривой. Плоскость, в которой смещение между скелетной кривой и линеаризованной скелетной кривой является максимальным, расположена в осевом направлении между положением в 0,5×N и 1,5×N, где N представляет собой процентную величину, представляющую собой положение плоскости наиболее глубокого сегмента относительно осевого размера пера лопатки от его передней кромки. Другие изобретения группы относятся к лопатке, включающей указанный выше узел, рабочему колесу, выполненному с указанным выше узлом или лопаткой, а также газотурбинному двигателю с таким рабочим колесом. Группа изобретений позволяет повысить аэродинамическую эффективность рабочего колеса газотурбинного двигателя. 6 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к газотурбинному двигателю. Газотурбинный двигатель включает в себя множество лопаток, собранных в кольцеобразный ряд лопаток и частично образующих путь горячего газа и путь охлаждающей текучей среды, узел с ответвлениями, расположенный на стороне основания ряда лопаток, и нагнетающие элементы (130), распределенные вокруг узла с ответвлениями, выполненного с возможностью придавать в наиболее узком зазоре пути охлаждающей текучей среды движение потоку охлаждающей текучей среды, текущей через него. Путь охлаждающей текучей среды продолжается от полости ротора к пути потока горячего газа. Множество нагнетающих элементов (130), узел с ответвлениями и основание ряда лопаток являются эффективными для придания спиралеобразного движения потоку охлаждающей текучей среды, когда он входит в путь горячего газа. В результате улучшается аэродинамическая эффективность лопатки, тем самым увеличивая эффективность двигателя, увеличивается срок службы лопатки. 5 з.п. ф-лы, 10 ил.

Изобретение относится к способу изготовления заменяющей лопатки для турбомашины. Согласно указанному способу определяют геометрические характеристики контура ступицы и корпуса снабженного старой лопаткой проточного канала, а также осевое положение центра тяжести пера старой лопатки, которая с одной стороны зажата в ступице или в корпусе. Рассчитывают геометрические характеристики пера заменяющей лопатки, таким образом, что перо заменяющей лопатки на своей передней кромке наклоняется в направлении зажатия выше по потоку и обладает прямой стреловидностью. Задают близкую к зажатию область пера заменяющей лопатки, составляющую от 5% до 15% высоты заменяющей лопатки. Смещают участок пера заменяющей лопатки, расположенный за пределами указанной области, выше по потоку, пока осевое положение центра тяжести пера заменяющей лопатки не совпадет с осевым положением центра тяжести пера старой лопатки. В области от расположенной со стороны зажатия линии контура пера заменяющей лопатки до смещенного участка пера заменяющей лопатки переднюю кромку наклоняют в направлении зажатия ниже по потоку для образования в этой области переходной стреловидности. Затем осуществляют профилирование заменяющей лопатки. Другие изобретения группы относятся к лопатке ротора и лопатке статора для газовой турбины, изготовленным указанным выше способом, а также к соответствующей лопатке компрессора. Группа изобретений позволяет повысить аэродинамическую эффективность лопаток турбомашины без повышения нагрузки на элементы крепления указанных лопаток. 5 н. и 2 з.п. ф-лы, 2 ил.

Электрически проводящая структура для пропускания и отвода электрического тока от основного тела выходной направляющей лопасти в наружную опорную структуру содержит обшивку из металла, покрывающую переднюю кромку основного тела лопасти, и электрически проводящую прокладку из металла, содержащую контактную часть, имеющую такой размер, чтобы перекрывать одним концом обшивку, и часть в виде шайбы, предназначенную для ввода болта для затягивания в опорную структуру, при этом одно или больше соединений, выбранных из группы, содержащей сварку, точечную сварку, пайку, соединение с помощью электрически проводящей пасты и зажим, создают соединение между концом обшивки и контактной частью. Предотвращаются повреждения матричной смолы основного тела лопасти за счет безопасного отвода электрического тока при ударе в самолет молнии, ток обходит основное тело лопасти. 3 з.п. ф-лы, 8 ил.

Двухъярусная ступень паровой турбины содержит двухъярусный сопловой аппарат и двухъярусное рабочее колесо. Сопловой аппарат ступени выполнен в виде единой неразборной конструкции с конической перегородкой, разделяющей сопловые лопатки верхнего яруса от сопловых лопаток нижнего яруса. Хорды профилей лопаток в корневых сечениях верхнего яруса выполняются по меньшей мере на 30% меньше, чем хорды профилей в периферийных сечениях нижнего яруса. Лопатки соплового аппарата верхнего яруса смещены относительно лопаток соплового аппарата нижнего яруса в сторону рабочего колеса двухъярусной ступени. Перед сопловым аппаратом верхнего яруса имеется аэродинамический фильтр, состоящий из плоских радиально установленных перфорированных пластин, непрерывно расположенных с угловым шагом, не превышающим 5°. Рабочее колесо ступени изготавливается из двухъярусных рабочих лопаток, представляющих собой единую неразборную конструкцию. Достигается повышение эффективности и надежности. 2 ил.

Изобретение относится к области газотурбостроения и может быть использовано при изготовлении металлических элементов усиления, предназначенных для установки на передней или задней кромке композитной лопатки турбомашины. Двум листам придают форму, приближенную к окончательной форме элемента усиления. Листы располагают по обе стороны от стержня, который воспроизводит внутреннюю форму спинки и корытца элемента усиления. Стержень имеет по меньшей мере одну выемку для формирования полости, предназначенной для получения на элементе усиления вставки для позиционирования элемента усиления. Листы герметично соединяют в вакууме вокруг стержня. Путем горячего изостатического прессования формуют листы на стержне. Затем листы разрезают и отделяют элемент усиления и стержень. В результате обеспечивается упрощение и повышение точности позиционирования элемента усиления на передней или задней кромке лопатки. 3 н. и 6 з.п. ф-лы, 8 ил.

Изобретение может быть использовано при изготовлении моноколес, применяемых преимущественно в роторах газотурбинных двигателей. Способ включает получение заготовки лопатки газотурбинного двигателя штамповкой с образованием аэродинамического профиля в каждом сечении пера лопатки и образованием хвостовика с их последующей механической обработкой. При штамповке заготовки лопатки хвостовик выполняют в виде выступа с замкнутым вокруг пера лопатки контуром, отстоящим от контура поперечного сечения пера лопатки на 1-5 мм. После механической обработки хвостовика к нему посредством сварки присоединяют сформированные механической обработкой накладки, которые имеют сопрягаемые с выступом поверхности. Размер и форму накладок выбирают с обеспечением необходимого напуска для захвата и удержания лопатки в сварочной машине при линейной сварке трением. Накладки можно присоединять к выступу посредством диффузионной сварки. Изобретение позволяет сократить трудоемкость и материалоемкость изготовления заготовок лопаток, присоединяемых к диску линейной сваркой трением. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области турбо-машиностроения, в частности к авиационному моторостроению, и может быть использовано в рабочих колесах осевых компрессоров газотурбинных двигателей (ГТД). В известном рабочем колесе осевого компрессора газотурбинного двигателя, включающем установленные на диске ротора рабочие лопатки, каждая из которых содержит хвостовик и перо, ограниченное выпуклой и вогнутой поверхностями с выполненными на них в средней части по высоте пера лопатки бандажными полками, бандажные полки смежных лопаток соединены между собой с образованием не менее одного антивибрационного бандажного кольца несимметричного профиля, выпуклая сторона которого расположена со стороны диска вдоль линий тока воздуха в межлопаточном канале, согласно изобретению кольцо снабжено компенсационными ребрами симметричного аэродинамического профиля, выполненными по меньшей мере на одной из бандажных полок каждой лопатки и расположенных вдоль линий тока воздуха в межлопаточном канале, при этом размер ребер в радиальном направлении равен сумме 0,1 длины лопатки и величины зазора между торцом лопатки и стационарным корпусом. Профиль полок, образующих антивибрационное бандажное кольцо, выполнен в виде профиля крыла, на выпуклой и вогнутой поверхностях пера каждой лопатки могут быть выполнены расположенные по высоте две и более бандажные полки, образующие бандажные кольца, а бандажные полки выполнены в средней части пера на расстоянии от торца лопатки, равном 0,2…0,7 ее длины. Применение изобретения позволяет снизить уровень механических напряжений в перьях рабочих лопаток, замках и дисках ротора ГТД за счет частичной компенсации центробежных сил аэродинамической силой, возникающей на антивибрационных полках рабочих лопаток при обтекании их воздухом (газом). Снижение уровня механических напряжений, в свою очередь, влечет снижение массы, габаритов и стоимости узлов, повышение надежности работы из-за улучшения условий работы антивибрационных бандажных полок рабочих лопаток осевого компрессора. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения, может быть использовано при конструировании ступеней паровых и газовых турбин, компрессоров и направлено на повышение аэродинамической эффективности лопаточной решетки турбомашины. Лопаточная решетка турбомашины содержит лопатки, установленные между концевыми поверхностями, при этом на внутренней стороне, по меньшей мере, одной из концевых поверхностей в межлопаточных каналах выполнено оребрение. Оребрение выполнено в виде основного ребра и дополнительного ребра криволинейной формы треугольного поперечного сечения. Продольная ось основного ребра расположена на линии, соединяющей центры окружностей, вписанных между соседними лопатками. Входная кромка основного ребра расположена на входном сечении межлопаточного канала, а выходная кромка основного ребра расположена на выходном сечении межлопаточного канала. Высота основного ребра выполнена линейно возрастающей от нулевого значения в области его входной кромки до значения, равного 0.08 размера хорды профиля в лопаточной решетке в области выходной кромки. Продольная ось дополнительного ребра расположена на линии, соединяющей центры окружностей, вписанных между основными ребрами и спинками лопаток. Входная кромка дополнительного ребра расположена в горловом сечении, а выходная кромка дополнительного ребра расположена в направлении его продольной оси за выходным сечением межлопаточного канала на расстоянии от 0.08 до 0.1 размера хорды профиля в лопаточной решетке. Высота дополнительного ребра выполнена равной 0.08 размера хорды профиля в лопаточной решетке, а ширина основного и дополнительного ребер у основания не превышает 1 мм. Изобретение позволяет повысить аэродинамическую эффективность лопаточной решетки турбомашины за счет снижения концевых и профильных потерь. 5 ил.

Наверх