Реактор полимеризации для получения термопластичных высокочистых полимеров

Изобретение относится к оборудованию для проведения непрерывных химических процессов, в частности к реакторам полимеризации в массе для получения высокомолекулярных соединений. Техническая задача изобретения: снижение энергозатрат за счет эффективного подвода тепла. Техническая задача изобретения достигается тем, что в реакторе полимеризации для получения термопластичных высокочистых полимеров, содержащем расположенные одна над другой и соединенные центральным патрубком две камеры, каждая из которых выполнена в виде вертикального цилиндрического корпуса с рубашкой, днищем с выгружным патрубком, крышку со штуцерами для ввода и вывода теплоносителя и патрубком для подачи реагентов и концентрический змеевик для теплоносителя, расположенный коаксиально внутри каждого корпуса, при этом патрубок для подачи реагентов расположен в центре крышки верхней камеры, и реактор снабжен вставленным в патрубок для подачи реагентов соосно с корпусом распределителем мономера и отражателями, расположенными в каждой камере перед выгружными патрубками, согласно изобретению внутри рубашки расположены кольцевые вставки, имеющие коническое поперечное сечение и снижающие площадь поперечного сечения кольцевого зазора между корпусом реактора и рубашкой от 0, 25 до 0,5 раз. 1 ил.

 

Изобретение относится к оборудованию для проведения непрерывных химических процессов, в частности к реакторам полимеризации в массе для получения высокомолекулярных соединений.

Изобретение может быть использовано для получения термопластичных высокочистых полимеров для полимерных оптических волокон и изделий оптического назначения.

Реакторы полимеризации в массе можно разделить на два типа: реакторы смешения и реакторы вытеснения.

Реакторы смешения представляют собой разнообразные по конструкции вертикальные и горизонтальные емкостные аппараты, оборудованные различными перемешивающими устройствами, рассчитанными на высоковязкие среды, Использование мешалок в реакторах приводит к дополнительным загрязнениям полимера. Кроме того, применение аппаратов этого типа ограничено верхним пределом вязкости (Энциклопедия полимеров. - Советская энциклопедия. 1974, т. 2, с. 895).

Реакторы вытеснения бывают: трубчатые с прямой и спиралевидной формой трубок; колонного типа цилиндрической или сферической формы.

Трубчатый реактор представляет собой горизонтальный цилиндр, обогреваемый снаружи электрической спиралью или жидким теплоносителем (Бутаков А.А., Максимов Э.И. V Всесоюзная конференция по моделированию химических процессов. «Химреактор-5», Уфа, т. 3, с. 14, 1974).

Недостатком трубчатого реактора является то, что, во-первых, при проведении реакции полимеризации из-за накопления образующегося полимера на стенках трубок происходит "пробой" реактора, т.е. осевые слои движутся с большей скоростью и зона реакции выходит из реактора; во-вторых, в связи с резким возрастанием вязкости возможна закупорка реактора и выход его из строя.

Кроме того, производительность и качество полимера, полученного при использовании трубчатых реакторов, существенно зависят от их геометрии. В спиральном реакторе, например, полимеризация может протекать в устойчивом режиме и с высокой степенью превращения (Бутаков А.А., Штессель Э.Д. ДАН, т. 237, №5, 1422, 1977), но имеют место ограничения при выходе на большие объемы производства для получения полимеров с большой вязкостью, поэтому в производстве его использование значительно ограничено.

Реакторы полимеризации колонного типа цилиндрической или сферической формы, работающие по принципу вытеснения, представляют собой цилиндр или сферу, внешняя сторона которых имеет обогрев (Бостонджиян С.А. и др. Фронтальная радиальная полимеризация в проточном сферическом реакторе. - Теоретические основы химической технологии, 1989, т. 23, №3, с. 340-346). Реакционную смесь подают через распылитель в зону реакции. Полученную полимерную массу выгружают через выходной штуцер.

Недостатками этого типа реактора являются неоднородность получаемого полимера, большое содержание димеров, "пробой" реактора и малая производительность.

Наиболее близким к изобретению по технической сущности и достигаемому результату является реактор полимеризации для получения термопластичных высокочистых полимеров, содержащий расположенные одна над другой и соединенные центральным патрубком две камеры, каждая из которых выполнена в виде вертикального цилиндрического корпуса с рубашкой, днищем с выгружным патрубком, крышку со штуцерами для ввода и вывода теплоносителя и патрубком для подачи реагентов и концентрический змеевик для теплоносителя, расположенный коаксиально внутри каждого корпуса, при этом патрубок для подачи реагентов расположен в центре крышки верхней камеры, и реактор снабжен вставленным в патрубок для подачи реагентов соосно с корпусом распределителем мономера и отражателями, расположенными в каждой камере перед выгружными патрубками (Патент РФ №2085281, B01J 9/24, опубл. 27.07.1997).

Недостатки этого реактора следующие.

1. Невозможность достижения необходимой степени конверсии мономера при полимеризации в массе из-за короткого пути движения полимера в реакторе, большое содержание в полимере димеров.

2. В связи с колебательным характером достижения стационарного режима процесса возможен выход зоны реакции из реактора.

3. Высокие энергозатраты из-за несовершенства конструкции рубашек.

Техническая задача изобретения: снижение энергозатрат за счет эффективного подвода тепла.

Техническая задача изобретения достигается тем, что в реакторе полимеризации для получения термопластичных высокочистых полимеров, содержащем расположенные одна над другой и соединенные центральным патрубком две камеры, каждая из которых выполнена в виде вертикального цилиндрического корпуса с рубашкой, днищем с выгружным патрубком, крышку со штуцерами для ввода и вывода теплоносителя и патрубком для подачи реагентов и концентрический змеевик для теплоносителя, расположенный коаксиально внутри каждого корпуса, при этом патрубок для подачи реагентов расположен в центре крышки верхней камеры, и реактор снабжен вставленным в патрубок для подачи реагентов соосно с корпусом распределителем мономера и отражателями, расположенными в каждой камере перед выгружными патрубками, согласно изобретению внутри рубашки расположены кольцевые вставки, имеющие коническое поперечное сечение и снижающие площадь поперечного сечения кольцевого зазора между корпусом реактора и рубашкой от 0, 25 до 0,5 раз.

Наличие внутри рубашки кольцевых вставок приводит к созданию перепада давления теплоносителя при его движении вдоль корпуса реактора, образованию зон развитой турбулентности в потоке теплоносителя, что приводит к более эффективной теплопередаче через стенку реактора и снижению общих энергозатрат на процесс синтеза.

Изобретение иллюстрируется чертежом, на котором схематично изображен реактор полимеризации в разрезе.

Реактор полимеризации содержит расположенные друг над другом и соединенные центральным патрубком 1 две камеры 2 и 3, каждая выполнена в виде вертикального цилиндрического корпуса с теплообменной рубашкой 4 и днищем с выгружным патрубком 5, крышку 6 со штуцерами 7 для ввода и вывода теплоносителя и патрубком 8 для подачи реагентов и концентрический змеевик 9 для теплоносителя, расположенный коаксиально внутри каждого корпуса. Патрубок 8 для подачи реагентов расположен в центре крышки 6 верхней камеры 2.

Реактор также снабжен вставленным в патрубок 8 для подачи реагентов соосно корпусам распределителем 10 мономера, расстояние от которого до днища верхней камеры 2 выбрано равным от 1/4 до 1/3 ее высоты, и отражателями 11, расположенными в каждой камере 2 и 3 перед выгружными патрубками 5.

Кроме того, реактор дополнительно может быть снабжен металлической сеткой 12, расположенной внутри каждого корпуса камер 2 и 3, трубкой 13, соединенной с центральным патрубком 1 для дополнительного введения инициатора во вторую нижнюю камеру 3, и регулировочным клапаном 14. Внутри теплообменной рубашки 4 расположены кольцевые вставки 15, создающие перепад давления теплоносителя.

Реактор полимеризации предназначен для проведения полимеризации в массе и работает следующим образом. Через распределитель 10 мономера в верхнюю камеру 2 при закрытом центральном патрубке 8 загружают приготовленную реакционную смесь, представляющую жидкий мономер с добавками инициатора. Смесь заполняет камеру 2 на 2/3 часть. Обогрев реакционной смеси ведут с помощью рубашки 4 и внутреннего змеевика 9. При достижении температуры разложения инициатора полимеризация проходит с выделением тепла и температура повышается до заданного значения.

Открывают центральный патрубок 1 и регулировочный клапан 14 и начинают наработку форполимера в непрерывном режиме.

Образующийся полимер в верхней камере 2 реактора перетекает через центральный патрубок 1 в нижнюю камеру 3. Сюда же дополнительно вводят инициатор через трубку 13. Форполимер, проходя пространство нижней камеры 3, дополнительно полимеризуется. Благодаря дополнительному количеству инициатора и значительному времени пребывания в реакторе достигается высокая степень конверсии мономера. Полученный в реакторе форполимер выгружают через выгружной патрубок 5.

Устойчивый режим синтеза в реакторе полимеризации поддерживается регулированием теплообмена и выводом продукта.

В реакторе полимеризации может быть проведен синтез (мет)-акриловых полимеров в массе в атмосфере азота с высокой степенью конверсии.

Полученные в реакторе полимеры имеют узкое молекулярно-весовое распределение и низкое содержание димеров, что позволяет использовать эти полимеры в оптической технике.

Содержание димеров в полимере влияет прямо пропорционально на оптические свойства получаемых изделий, например волокон.

Наличие внутри рубашки кольцевых вставок приводит к созданию перепада давления теплоносителя при его движении вдоль корпуса реактора, образованию зон развитой турбулентности в потоке теплоносителя, что приводит к более эффективной теплопередаче через стенку реактора и снижению общих энергозатрат на процесс синтеза.

Таким образом, предлагаемое техническое решение по сравнению с прототипом обеспечивает снижение энергозатрат за счет эффективного подвода тепла.

Реактор полимеризации для получения термопластичных высокочистых полимеров, содержащий расположенные одна над другой и соединенные центральным патрубком две камеры, каждая из которых выполнена в виде вертикального цилиндрического корпуса с теплообменной рубашкой, днищем с выгружным патрубком, крышку со штуцерами для ввода и вывода теплоносителя и патрубком для подачи реагентов и концентрический змеевик для теплоносителя, расположенный коаксиально внутри каждого корпуса, при этом патрубок для подачи реагентов расположен в центре крышки верхней камеры, и реактор снабжен вставленным в патрубок для подачи реагентов соосно с корпусом распределителем мономера и отражателями, расположенными в каждой камере перед выгружными патрубками, отличающийся тем, что внутри рубашки расположены кольцевые вставки, имеющие коническое поперечное сечение и снижающие площадь поперечного сечения кольцевого зазора между корпусом реактора и рубашкой от 0,25 до 0,5 раз.



 

Похожие патенты:

Группа изобретений относится к получению суспензии порошков неорганических и органических материалов и может быть использована для деагломерации в жидкой среде наноразмерных порошков углерода, металлов и их соединений, органических веществ в химической, нефтехимической, пищевой, фармацевтической и других отраслях промышленности.

Группа изобретений относится к неорганической химии и может быть использована для получения сероводорода с содержанием сульфанов, не превышающим 600 млн-1. Для получения сероводорода путем проведения экзотермической реакции серы с водородом при повышенных температуре и давлении обеспечивают наличие расплава (3) серы в нижней части (2) реактора (1).

Изобретение относится к способу облагораживания пека, причем способ содержит стадии, на которых осуществляют гидрокрекинг тяжелого нефтяного исходного материала в системе реакции гидрокрекинга, содержащей одну или более ступеней реакции гидрокрекинга, содержащих реактор гидрокрекинга с кипящим слоем; извлекают вытекающий поток и отработанный или частично отработанный катализатор из реактора гидрокрекинга с кипящим слоем; фракционируют вытекающий поток, чтобы производить две или более углеводородные фракции; осуществляют сольвентную деасфальтизацию по меньшей мере одной из двух или более углеводородных фракций, чтобы производить фракцию деасфальтированного масла и пек; подают пек, водород и частично отработанный катализатор в реактор гидрокрекинга пека с кипящим слоем; осуществляют контактирование пека, водорода и катализатора в реакторе гидрокрекинга пека с кипящим слоем при условиях реакции - температуре и давлении, достаточных, чтобы конвертировать по меньшей мере часть пека в дистиллятные углеводороды; отделяют дистиллятные углеводороды от катализатора.

Изобретение относится к установкам для окисления аммиака, в частности к газораспределителю для установки для окисления аммиака. Установка для окисления аммиака содержит емкость с внутренней стенкой и впускным отверстием для газа, слой катализатора, содержащийся в емкости, впускное отверстие для газа в емкость и газораспределитель, установленный во впускном отверстии для газа.

Группа изобретений относится к неорганической химии и может быть использована для получения сероводорода с содержанием сульфанов, не превышающим 600 млн-1. Для получения сероводорода путем проведения экзотермической реакции серы с водородом при повышенных температуре и давлении обеспечивают наличие расплава (3) серы в нижней части (2) реактора (1).

Изобретение относится к синтезу сероводорода и может быть использовано в химической промышленности. Реактор (1) для непрерывного получения сероводорода содержит нижнюю часть (2) с расплавом (3) серы, одну или несколько не удерживающих давление первых ловушек (4), по меньшей мере по одному устройству (5, 5а), подводящему водород на каждую первую ловушку, газосборную часть (6), пригодную для вмещения газовой смеси, содержащей продукт, один или несколько не удерживающих давление встроенных элементов (7) для непрерывного перемещения всей содержащей продукт газовой смеси, образовавшейся в нижней части (2) реактора, в газосборную часть (6).

Изобретение относится к синтезу сероводорода и может быть использовано в химической промышленности. Реактор (1) для непрерывного получения сероводорода путем проведения экзотермической реакции серы и водорода содержит нижнюю часть (2) для размещения расплава (3) серы, одну или несколько не удерживающих давление первых ловушек (4), по меньшей мере по одному устройству (5, 5a), подводящему под давлением газообразный водород на каждую первую ловушку, одну или несколько не удерживающих давление вторых ловушек (8), расположенных над первой(-ыми) ловушкой(-ами) (4), газосборную часть (6) для размещения газовой смеси, содержащей продукт при повышенных температуре и давлении.

Изобретение относится к реактору для каталитической паровой и пароуглекислотной конверсии углеводородов, содержащему цилиндрический корпус с эллиптическим дном, закрытый крышкой, при этом во внутренней полости корпуса вдоль цилиндрической его части закреплены на крышке множество вертикальных нагревательных труб байонетного типа, оборудованных горелками и штуцерами подвода топлива, окислителя и штуцером отвода дымовых газов, которые установлены вдоль цилиндрической части.

Изобретение относится к способу и устройству для гидрообработки риформата. Способ включает приведение риформата в контакт с обладающим каталитическим гидрирующим действием катализатором в условиях жидкофазной гидрообработки в реакторе гидрирования, при этом часть водородсодержащего газа для гидрообработки получена из растворенного водорода, содержащегося в риформате; где гидрообработку проводят в присутствии дополнительного водородсодержащего газа, который инжектируют в риформат перед проведением контактирования и/или во время контактирования через поры с помощью смесителя, который содержит, по меньшей мере, один канал для жидкости, предназначенный для риформата, и, по меньшей мере, один канал для газа, предназначенный для дополнительного водородсодержащего газа, при этом канал для жидкости соединен с каналом для газа посредством компонента, по меньшей мере, часть которого представляет собой пористую область; при этом риформат получают из нижней части газожидкостного сепаратора путем инжекции смеси каталитического риформинга в газожидкостной сепаратор и в продукте, полученном путем проведения контактирования, удаляют летучие компоненты, причем риформат поступает в реактор гидрирования после теплообмена с нефтяным сырьем с удаленными летучими компонентами, нефтяное сырье с удаленными летучими компонентами инжектируют в колонну для удаления тяжелых компонентов и для извлечения ароматических углеводородов из верхней части колонны.

Изобретение относится к улучшенному способу производства уксусной кислоты в системе производства уксусной кислоты, включающему этапы: (i) производства уксусной кислоты в реакторе, при этом этап производства включает реакцию монооксида углерода и метанола в присутствии катализатора и йодистого водорода; (ii) формирования комплекса путем непрерывного введения комплексообразующего агента в систему после реактора, причем комплексообразующий агент содержит фосфиноксид, при этом комплексообразующий агент вводят в количестве от приблизительно 0,1 до 10 моль на моль йодистого водорода, и при этом фосфиноксид и йодистый водород взаимодействуют с образованием указанного комплекса; и (iii) извлечения указанного комплекса.

Изобретение относится к способу получения полимеров полимеризацией с обращенной фазой. Способ суспензионной полимеризации с обращенной фазой для получения полимерного бисера включает образование водных мономерных капель, содержащих водный раствор растворимого в воде этиленненасыщенного мономера или смеси мономеров, и полимеризацию мономера или смеси мономеров с образованием полимерного бисера, одновременно суспендированного в неводной жидкости и отделение полимерного бисера. Условия полимеризации включают воздействие на водные мономерные капли ультрафиолетовым светом по меньшей мере из одного источника ультрафиолетового света. Интенсивность ультрафиолетового света находится в интервале 30-1000 мВт/см2, температура в начале реакции находится ниже 30°С. Описано также устройство для способа суспензионной полимеризации и растворимый или набухаемый в воде полимерный бисер. Технический результат – предоставление способа получения растворимого в воде или набухаемого в воде полимерного бисера, в котором получают одинаковые или улучшенные результаты касательно распределения частиц по размерам, который дает возможность получить более высокие скорости получения и способность предоставлять более высокие объемы продукта. 3 н. и 14 з.п ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к нефтехимии, газохимии, углехимии и касается синтеза Фишера-Тропша в компактном варианте. Компактный реактор включает корпус, размещенные в корпусе реакционные каналы прямоугольной формы, заполненные кобальтовым катализатором, патрубки для ввода синтез-газа в количестве, определяемом отношением числа каналов к числу патрубков ввода синтез-газа, патрубок для ввода и для вывода теплоносителя, на котором расположен регулятор давления, и узел вывода синтетических углеводородов. Активируют кобальтовый катализатор путем пропускания через него водорода. Синтетические углеводороды получают при пропускании через реакционные каналы реактора, заполненные активированным кобальтовым катализатором, синтез-газа. Через каждые 300-500 ч повышают объемную скорость синтез-газа с последующим возвратом к исходным условиям процесса. Это обеспечивает достижение производительности по высокомолекулярным углеводородам на единицу массы реактора не менее 1160г С5+/кгр/сутки при производительности катализатора синтеза Фишера-Тропша не менее 1200 кг С5+/м3кат⋅ч, конверсии CO не менее 69%. 3 н. и 2 з.п. ф-лы, 2 ил., 1 табл., 4 пр.

Изобретение относится к способу синтеза мочевины. В секции (10) синтеза получают содержащий мочевину раствор (13), указанный раствор очищают в секции (14) извлечения и водный раствор (15), содержащий в основном мочевину и воду, который получают из упомянутой секции извлечения, подвергают процессу концентрирования. При этом процесс концентрирования включает стадию отделения посредством избирательной мембраны. 3 н. и 6 з.п. ф-лы, 1 ил.

Изобретение относится к производству полиолефинов, в частности к системе производства полиолефинов. Система содержит первый реактор, вьполненный с возможностью получения продукта, выходящего из первого реактора и содержащего первый полиолефин, второй реактор, вьполненный с возможностью получения продукта, выходящего из второго реактора и содержащего второй полиолефин, послереакторную зону обработки, выполненную с возможностью приема продуктов, выходящих из первого и второго реакторов, причем первый и второй реакторы выполнены с возможностью обеспечения переноса продукта, выходящего из первого реактора, во второй реактор и, альтернативно, его отведения в обход второго реактора и подачи в послереакторную зону обработки, при этом первый и второй полиолефины впервые контактируют в послереакторной зоне обработки. При этом послереакторная зона обработки содержит продувочную колонну, причем направленные в нее первый и второй полиолефины впервые в ней контактируют, бак, питающий экструдер, причем направленные в него первый и второй полиолефины впервые контактируют в баке, и экструдер, причем направленные в него первый и второй полиолефины впервые контактируют во впускном отверстии экструдера и смешиваются в экструдере. Изобретение обеспечивает эффективное производство полиолефинов, улучшение качества продукта, снижение производственных затрат. 10 з.п. ф-лы, 25 ил., 36 пр.

Изобретение относится к установке и способу для полимеризации этилена и альфа-олефина. Установка для полимеризации этилена и альфа-олефина включает полимеризационный реактор, секцию разделения непрореагировавших этилена, альфа-олефина, низкомолекулярного олигомера и полимера и секцию извлечения растворителя. В полимеризационный реактор подают этилен и альфа-олефин и растворитель и сополимеризуют исходное сырье в состоянии раствора для получения продукта полимеризации, содержащего сополимер этилена и альфа-олефина, растворенный в растворителе. Секция разделения включает испарительную колонну для отделения непрореагировавших этилена и альфа-олефина, содержащихся в продукте полимеризации, и отпарную колонну для отделения низкомолекулярных олигомеров, имеющих меньшую молекулярную массу, чем молекулярная масса сополимера этилена и альфа-олефина, содержащегося в продукте полимеризации. В секции извлечения растворителя выделяют низкомолекулярные олигомеры из выделенных низкомолекулярного олигомера и растворителя и извлекают растворитель. Обеспечивается эффективная и экономичная сополимеризация этилена и альфа-олефина. 2 н. и 5 з.п. ф-лы, 2 ил.
Наверх