Способ диагностики механизмов, агрегатов и машин на основе оценки микровариаций вращения вала

Изобретение относится к области неразрушающего контроля и может быть использовано для диагностики состояния механизмов, агрегатов и машин, составной частью которых являются элементы, совершающие вращательное движение. Способ заключается в том, что на валу контролируемого изделия устанавливают датчик оборотов, генерирующий при вращении вала импульсы. Таким образом, при вращении вала с постоянной угловой скоростью датчик выдает импульсную последовательность с постоянными межимпульсными интервалами, наличие дефекта приводит к возникновению микровариаций вращений вала и, следовательно, к вариациям межимпульсных интервалов в импульсной последовательности, генерируемой датчиком; из импульсной последовательности, генерируемой датчиком. С помощью порогового устройства формируют стандартную последовательность единичных импульсов и последовательность, прореженную в целое число раз с помощью делителя частоты, затем производят измерение временных интервалов между импульсами исходной последовательности или прореженной последовательности. После этого для стандартной или прореженной последовательности находят среднеквадратичное отклонение значений интервалов между импульсами от среднего значения, и если зафиксированное среднеквадратичное отклонение выше определенного порога, то делают заключение о наличии у изделия дефекта. Технический результат заключается в упрощении процедуры выявления дефекта и снижении необходимых вычислительных затрат. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к области неразрушающего контроля механических изделий и может быть использовано для диагностики состояния механизмов, агрегатов и машин, составной частью которых являются элементы, совершающие вращательное движение: валы, шестерни, подшипники, роторы турбин, двигателей, генераторов и другие детали.

Неразрушающая диагностика для такого рода изделий обычно выполняется на основе регистрации и последующего анализа сигналов, получаемых с виброакустических датчиков, установленных на корпусе контролируемого механизма или агрегата. Целью анализа сигналов является выявление информативных признаков дефектов, на основе которых можно было бы делать вывод о состоянии исследуемого изделия. Наиболее близким техническим решением к предлагаемому способу является метод частотного анализа сигналов с вибродатчиков, основанный на оценивании частот и амплитуд гармонических компонент вибраций (Голованов В.В., Василенко В.Г., Земсков А.А., Панов С.С., Емельянова А.А. «Методы и средства диагностики авиационных приводов при их эксплуатации по техническому состоянию», Вестник Самарского государственного аэрокосмического университета им. С.П. Королева, 2015 г, том 14, №3, часть 1 - С. 213-220). Информативным признаком наличия дефекта является появление новых спектральных компонент ,обычно слабо выраженных в спектре исследуемого сигнала. Недостатками этого метода является необходимость выполнения дискретного преобразования Фурье большой размерности, позволяющего обеспечить разрешение частотных составляющих сигнала, что требует больших вычислительных ресурсов, а также сложность выделения низкоамплитудных гармонических компонент, порожденных дефектом, при наличии шумов.

Техническим результатом изобретения является упрощение процедуры выявления дефекта за счет применения нового информативного признака и снижение необходимых вычислительных затрат.

Технический результат обеспечивается тем, что на валу контролируемого изделия устанавливают датчик оборотов, генерирующий при вращении вала импульсы при значениях угла ϕ=360/N⋅i, где N - целое число, i=0, 1, 2, … - номер импульса, таким образом при вращении вала с постоянной угловой скоростью датчик выдает импульсную последовательность с постоянными межимпульсными интервалами, наличие дефекта приводит к возникновению микровариаций вращении вала и, следовательно, к вариациям межимпульсных интервалов в импульсной последовательности, генерируемой датчиком; из импульсной последовательности, генерируемой датчиком, с помощью порогового устройства формируют стандартную последовательность единичных импульсов и последовательность, прореженную в целое число раз с помощью делителя частоты, затем производят измерение временных интервалов между импульсами исходной последовательности или прореженной последовательности, после этого для стандартной или прореженной последовательности находят среднеквадратичное отклонение значений интервалов между импульсами от среднего значения, и если зафиксированное среднеквадратичное отклонение выше определенного порога, то делают заключение о наличии у изделия дефекта.

Производят измерение временных интервалов между импульсами стандартной последовательности и последовательностями, получаемыми из стандартной ее прореживанием в целое число раз с помощью делителя частоты, затем для стандартной и прореженных последовательностей находят свои среднеквадратичные отклонения значений межимпульсных интервалов от их средних значений и заключение о наличии у изделия дефекта производят по совокупности всех полученных среднеквадратичных отклонений.

Дополнительное оценивание микровариаций вращения вала производят на основе гистограмм межимпульсных интервалов стандартной и прореженных последовательностей единичных импульсов, предоставляющих дополнительную информацию о микровариациях вращения вала, проявляющуюся, например, в наличии у гистограммы характерной формы, асимметрии, протяженных хвостов или нескольких пиков.

На фиг. 1 представлена блок-схема, поясняющая процесс оценивания микровариаций вращения входного вала.

На фиг. 2 приведены межимпульсные интервалы исправного (1) и неисправного (2) редукторов.

1 - датчик оборотов, 2 - блок формирования стандартной последовательности единичных импульсов, 3 - делитель частоты импульсов с целочисленным коэффициентом деления М=2, 3, 4, …, 4 - блок определения среднего межимпульсного интервала и среднеквадратичного отклонения межимпульсного интервала от среднего значения, 5 - блок построения гистограммы.

n - число импульсных интервалов длительностью Т, выраженной в мс.

Технический результат достигается выполнением следующей последовательности операций обработки сигнала s(t) с датчика оборотов, генерирующего при вращении вала импульсы при значениях угла ϕ=360/N⋅i, где N - целое число, i=0, 1, 2, … - номер импульса:

1. С помощью порогового элемента сигнал s(t) преобразуется в стандартную последовательность единичных импульсов

,

возникающих в моменты пересечения порогового уровня h0 передним фронтом импульсов, создаваемых датчиком оборотов.

2. В стандартной последовательности p(t) производят измерение межимпульсных интервалов Ti=ti+1-ti, где i - номер импульса p(t).

3. По значениям Ti находят средний межимпульсный интервал и среднеквадратичное отклонение σ интервалов Ti от среднего значения .

4. Из последовательности p(t) получают прореженную импульсную последовательность PM(t), сохраняя импульсы кратные М=2, 3, 4, … последовательности.

4. Для pM(t) находят средний межимпульсный интервал и среднеквадратичное отклонение от него σM, для более точного выявления и локализации дефекта.

5. По превышении величин σ и σM некоторого значения делается вывод о наличии дефекта в диагностируемом изделии.

6. Наконец, для целей диагностики могут быть использованы гистограммы межимпульсных интервалов последовательностей p(t) и рM(t), предоставляющие дополнительную информацию о микровариациях вращения вала, проявляющуюся, например, в наличии у гистограммы характерной формы, асимметрии, протяженных хвостов, нескольких пиков и т.д.

Применение предлагаемого способа к реальной задаче диагностики редуктора при установке на его входном валу датчика оборотов при параметрах N=3 и N=6 показало его эффективность, так в случае неисправного редуктора величина σ была в 2,57 раза больше, чем в случае исправного редуктора. Это свидетельствует о том, что амплитуда микровариаций вращения вала редуктора является хорошим информативным диагностическим признаком. Дополнительное подтверждение справедливости этого вывода демонстрируют гистограммы межимпульсных интервалов для исправного и неисправного редукторов, приведенные на фиг. 2, наличие неисправности отражается в расширении пика гистограммы, при этом смещение пиков не является признаком наличия неисправности и вызвано различием средних скоростей вращения вала при проведении испытаний.

Использование предлагаемого способа при диагностике роликовых подшипников на стенде, с датчиком оборотов с N=24 и параметре М=1 также подтвердило его эффективность. В этом случае величина σ для подшипников с дефектами была примерно в 1,8 раза больше, чем у исправных подшипников.

Таким образом, приведенные выше данные позволяют заключить, что предложенный способ может быть использован для диагностики редуктора и подшипников. При этом в сравнении с методами вибродиагностики, основанными на использовании частотного анализа, предложенный способ не требует больших вычислительных ресурсов.

1. Способ неразрушающей диагностики механизмов, агрегатов и машин, основанный на оценке микровариаций вращения их элементов, характеризующийся тем, что на валу контролируемого изделия устанавливают датчик оборотов, генерирующий при вращении вала импульсы при значениях угла ϕ=360/N·i, где N - целое число, i=0, 1, 2, … - номер импульса, таким образом при вращении вала с постоянной угловой скоростью датчик выдает импульсную последовательность с постоянными межимпульсными интервалами, наличие дефекта приводит к возникновению микровариаций вращении вала и, следовательно, к вариациям межимпульсных интервалов в импульсной последовательности, генерируемой датчиком; из импульсной последовательности, генерируемой датчиком, с помощью порогового устройства формируют стандартную последовательность единичных импульсов и последовательность, прореженную в целое число раз с помощью делителя частоты, затем производят измерение временных интервалов между импульсами исходной последовательности или прореженной последовательности, после этого для стандартной или прореженной последовательности находят среднеквадратичное отклонение значений интервалов между импульсами от среднего значения, и если зафиксированное среднеквадратичное отклонение выше определенного порога, то делают заключение о наличии у изделия дефекта.

2. Способ по п. 1, заключающийся в том, что производят измерение временных интервалов между импульсами стандартной последовательности и последовательностями, получаемыми из стандартной ее прореживанием в целое число раз с помощью делителя частоты, затем для стандартной и прореженных последовательностей находят свои среднеквадратичные отклонения значений межимпульсных интервалов от их средних значений и заключение о наличии у изделия дефекта производится по совокупности всех полученных среднеквадратичных отклонений.

3. Способ по п. 1 или 2, состоящий в том, что производят построение гистограмм межимпульсных интервалов стандартной и прореженных последовательностей единичных импульсов, а выявление дефекта контролируемого изделия осуществляют по наличию у гистограммы характерной формы, асимметрии, протяженных хвостов или нескольких пиков.



 

Похожие патенты:

Изобретение относится к техническому диагностированию гидрофицированных силовых передач самоходных машин. Способ оценки качества работы гидроподжимных муфт при переключении зубчатых передач гидрофицированных коробок передач осуществляется без разрыва потока мощности в передачах во время их переключения.

Изобретение относится к измерительной технике и может быть использовано при эксплуатации электродвигателей и другой техники с подшипниковыми узлами для определения текущего состояния подшипников и прогнозирования ресурса по завершении определенного времени с начала эксплуатации.

Изобретение относится к горнодобывающей промышленности и может быть использовано при шарошечном бурении взрывных или разведочных буровых скважин на горных предприятиях.

Изобретение относится к измерительной технике и может быть использовано для определения осевой нагрузки на шарикоподшипниковые опоры роторов, а также для определения и контроля собственных частот колебаний роторов небольших механизмов и приборов.

Изобретения относятся к измерительной технике, в частности к средствам и методам измерения непроницаемости просвета поршневого кольца. При реализации способа открытое поршневое кольцо зажимают в направлении периферии посредством вспомогательного приспособления с максимальным закрытием стыка и определяют непроницаемость просвета посредством оптических средств.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях для мониторинга прочности ответственного оборудования в процессе его эксплуатации, например паропроводов и корпусных элементов оборудования высокого давления.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях (ТЭС) на паровых турбинах низкого давления, имеющих лопатки с бандажными полками, и предназначено для контроля целостности бандажных полок с возможностью контроля количества расцеплений на контролируемой турбинной ступени в процессе эксплуатации.

Изобретение относится к испытательной технике, в частности к оборудованию для испытания рабочих органов дорожно-строительных машин. Стенд для испытания рабочих органов дорожно-строительных машин содержит опорную раму со стойками, установленную на опорной раме несущую плиту с упорами для фиксации исследуемого образца грунта, взаимодействующего с испытываемым рабочим органом.

Изобретение относится к испытательной технике и может быть использовано при испытаниях и доводке газовых подшипников высокооборотных турбомашин. Стенд содержит вал, установленный в радиальном подшипнике, закрепленном на станине стенда, установленный на валу испытуемый газодинамический подшипник, размещенный в корпусе, подвижном относительно станины, приводное устройство, соединенное с валом, нагрузочное устройство, связанное с указанным корпусом испытуемого газодинамического подшипника, и измерительную систему с датчиком частоты вращения вала и блоком обработки данных.

Изобретение относится к области турбомашиностроения, а именно к способам снижения вибраций турбомашин, и может быть использовано в авиационных газотурбинных двигателях, испытательных стендах, роторы которых оборудованы упругими опорами.

Изобретение относится к области машиностроения, преимущественно к авиадвигателестроению, а именно к способу определения физико-механического состояния рабочих лопаток турбины высокого давления (ТВД), в частности напряженного состояния лопатки. Сущность предложенного способа определяется тем, что в способе определения напряженного состояния лопатки ТВД, включающем определение поверхностных остаточных напряжений, объемных остаточных напряжений, вычисление суммарной энергии напряженного состояния от действия поверхностных и объемных остаточных напряжений и металлографическое исследование структуры материала, определение поверхностных остаточных напряжений, объемных остаточных напряжений и металлографическое исследование структуры материала выполняют на одной лопатке, причем определение поверхностных остаточных напряжений определяют на образцах прямоугольного сечения, вырезаемых вдоль оси пера от выходной кромки до центральной оси как со стороны спинки, так и со стороны корыта, объемные остаточные напряжения определяют на образцах прямоугольной формы с установленными на них тензорезисторами, вырезаемых от входной кромки до центральной оси как со стороны спинки, так и со стороны корыта, металлографическое исследование структуры материала проводят в поперечном сечении оставшейся части пера лопатки, а вычисление энергии напряженного состояния осуществляют путем сложения величин поверхностных и объемных остаточных напряжений, измеряющихся по глубине их залегания. 2 ил., 3 табл.

Изобретение относится к области турбомашиностроения, а именно к способам воздействия вибрацией на элементы турбомашин, в частности для определения предела усталостной выносливости лопаток моноколеса компрессора турбомашины. Способ включает подготовку детали и установку ее на вибростенд, регулирование возбуждающей частоты вибрации вибростенда до ее совпадения с собственной частотой колебания детали, воздействие на деталь вибрацией с резонансной частотой. При этом для определения предела усталостной выносливости лопаток моноколеса компрессора турбомашины, при подготовке моноколеса и установке на вибростенд, регулируют частоту собственных колебаний, по меньшей мере, одной его лопатки и возбуждающую частоту вибрации вибростенда до их совпадения. Воздействие на лопатку вибрацией с резонансной частотой производят при нагрузке, обеспечивающей в лопатке без разрушения переменные, близкие к предельным, динамические напряжения в течение N-циклов нагружения, соответствующих материалу изготовления моноколеса. Совпадение частоты собственных колебаний, по меньшей мере, одной его лопатки и возбуждающей частоты вибростенда дополнительно обеспечивают путем демпфирования лопаток и/или нагружения грузами. Технический результат заключается в сокращении подвергаемых разрушению числа лопаток и сохранении работоспособности большей части конструкции. 1 з.п. ф-лы, 5 ил.

Изобретение относится к способу определения в полете изгибных напряжений на валу несущего винта вертолета с торсионной втулкой несущего винта. Для определения напряжений измеряют летно-технические характеристики штатными средствами в течение всего времени полета, из них выбирают и систематизируют значимые параметры, определяют их аппроксимирующие функции с целью получения итоговой функции зависимости напряжений в вале несущего винта от выбранных параметров летно-технических характеристик, рассчитывают нагрузки на вал несущего винта с помощью математической модели, сигнализируют в случае их превышения. Обеспечивается определение остаточного ресурса и контроль допустимого уровня нагрузок. 2 з.п. ф-лы, 7 ил.

Изобретение относится к области мониторинга технических систем для диагностирования промышленного оборудования и может быть использовано для мониторинга технического состояния электродвигателя роботизированного комплекса. Устройство содержит датчик электромагнитного поля электромашины, датчик температуры обмоток электромашины, датчики температуры подшипниковых узлов двигателя, датчик сопротивления величины сопротивления изоляции электромашины, датчик выработки часов, устройство для выявления структурных изменений в твердых телах, сейсмодатчик, инфранизкочастотный трехкомпонентный пьезоэлектрический датчик ускорений, микроконтроллер, источник опорного питания, регистр результата и систему управления. Технический результат заключается в повышении точности и достоверности мониторинга технического состояния двигателя. 1 ил.
Наверх