Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ включает возбуждение электромагнитных волн в волноводе, размещение контролируемой жидкости в электромагнитном поле одного из торцевых участков волновода и идентичной жидкости с эталонным значением измеряемых физических свойств жидкости в электромагнитном поле другого торцевого участка волновода, при этом в волноводе возбуждают электромагнитные волны фиксированной частоты на одном из его торцов, частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, по которой судят о физических свойствах жидкости. Техническим результатом изобретения является расширение функциональных возможностей способа, повышение его надежности и стабильности измерений. 6 ил.

 

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств (плотности, концентрации смесей, влагосодержания и др.) различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.).

Известны различные способы и устройства для измерения физических свойств жидкостей, основанные на измерении электрофизических параметров (диэлектрической проницаемости или (и) тангенса угла диэлектрических потерь) жидкостей с применением радиоволновых ВЧ и СВЧ резонаторов, содержащих контролируемую жидкость (монографии: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз. 1963, 403 с., с. 37-144; Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука. 1989, 208 с., с. 168-177). Недостатком таких способов и реализующих эти способы измерительных устройств является их ограниченная область применения, обусловленная невозможностью контроля малых изменений физических свойств жидкостей ввиду невысокой точности измерения соответствующих малых изменений информативных параметров (резонансной частоты, добротности резонатора и др.). Для обеспечения возможности проведения таких измерений применяют двухканальные измерительные схемы с независимыми измерительным и эталонным каналами. В эталонном канале чувствительный элемент содержит жидкость с известными физическими свойствами (монография: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз. 1963, 403 с., с. 258-268).

Известно также техническое решение (RU 2285913 C1, 20.10.2006), которое содержит описание способа, согласно которому производят измерения физических свойств жидкостей с применением двух независимых измерительных каналов, рабочего и эталонного, с чувствительными элементами (измерительными ячейками) в виде отрезков коаксиальной линии. Они являются резонаторами с колебаниями основного типа TEM и заполняются, соответственно, контролируемой жидкостью и эталонной жидкостью. Для реализации данного способа применяют линии связи этих чувствительных элементов с соответствующими электронными блоками, выходы которых подсоединены к входу функционального преобразователя. Информативным параметром каждого измерительного канала является основная резонансная частота электромагнитных колебаний соответствующего резонатора. Недостатком данного способа является сложность его реализации, обусловленная необходимостью применения двух независимых измерительных каналов. В каждом из них необходимо наличие чувствительного элемента, генератора электромагнитных колебаний и приемного устройства для определения величины информативного параметра. Кроме того, необходимо наличие блока для функциональной обработки выходных сигналов этих (измерительного и опорного) каналов. Необходимость в данных элементах двухканальных измерительных устройств для реализации этого способа существенно усложняет его реализацию. Кроме того, этот способ характеризуется и невысокой точностью измерения вследствие возможных изменений схемных параметров, нестабильности указанных элементов измерительных схем (двух генераторов, приемных устройств). Это приводит к снижению точности измерения.

Известно также техническое решение (RU 2473889 C1, 27.01.2013), которое содержит описание способа, по технической сущности наиболее близкого к предлагаемому способу и принятого в качестве прототипа. Согласно этому способу-прототипу измерение физической величины, в частности физических свойств жидкости, производят при возбуждении волн в волноводном резонаторе, размещении контролируемого объекта в волновом поле одного из торцевых участков волноводного резонатора и определении одной из характеристик стоячей волны в нем, размещении в волновом поле другого торцевого участка идентичного объекта с эталонным значением измеряемой физической величины. Недостатком данного способа измерения является ограниченность его функциональных возможностей, обусловленная организацией волноводного резонатора на основе волновода при создании условий для отражения волн от торцов волновода и определении одной из характеристик стоячей волны в таком волноводном резонаторе. Способ становится неработоспособным при отсутствии возможности образования стоячей волны в волноводе.

Техническим результатом настоящего изобретения является расширение функциональных возможностей способа измерения.

Технический результат в предлагаемом способе измерения физических свойств жидкости, заключающемся в возбуждении электромагнитных волн в волноводе, размещении контролируемой жидкости в электромагнитном поле волновода с одного из его торцевых участков и идентичной жидкости с эталонным значением измеряемых физических свойств жидкости в электромагнитном поле волновода с его другого торцевого участка, достигается тем, что в волноводе возбуждают электромагнитные волны фиксированной частоты на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, по которой судят о физических свойствах жидкости.

Предлагаемый способ поясняется чертежами.

На фиг. 1 приведена схема устройства, поясняющая принцип измерения с применением способа.

На фиг. 2 приведен график зависимости относительного значения амплитуды напряженности электрического поля от диэлектрической проницаемости жидкости.

На фиг. 3, 4, 5 и 6 приведены примеры устройств для реализации способа измерения.

На чертежах показаны волновод 1, генератор 2, элементы связи 3 и 4, детектор 5, регистратор 6, первая половина волновода 7, эталонная жидкость 8, вторая половина волновода 9, контролируемая жидкость 10, диэлектрическая пластина 11, торцевые части 12 и 13.

Способ реализуется следующим образом.

Предлагаемый способ заключается в возбуждении электромагнитных волн в волноводе на частоте, которая ниже критической частоты для волны низшего типа, при этом вдоль волновода существует только ослабевающее реактивное поле, убывающее при удалении от возбуждающего элемента у одного из торцов емкости.

Условием распространения электромагнитных волн по любому волноводу является выполнение неравенства: которому должны удовлетворять рабочая частота и критическая частота для волны низшего типа, например, для волны H11 в круглом волноводе. При имеет место режим, при котором распространения волн по волноводу не происходит, а существует только ослабевающее реактивное поле, убывающее при удалении от возбуждающего элемента. При этом электрическое поле (как и магнитное поле) изменяется вдоль координаты z (оси волновода) по закону:

а постоянная ослабления α есть

В этих формулах Em - амплитуда напряженности электрического поля при z=0; ε - диэлектрическая проницаемость диэлектрического вещества в волноводе, c - скорость света.

Выбирая соотношение между и можно управлять величиной ослабления α.

Поскольку существует зависимость ослабления электрического поля в волноводе от диэлектрической проницаемости жидкости в нем (формула (2)), то датчик физических свойств жидкости может быть построен на отрезке рассматриваемого волновода. На фиг. 1 изображен волновод 1. Возбуждение электромагнитных волн в волноводе осуществляется с помощью генератора 2 через элемент связи 3. Другой элемент связи (приема) 4 электромагнитных волн расположен на расстоянии вдоль волновода 1. Принимаемые волны поступают на детектор 5, подсоединенный к регистратору 6.

Если частота генератора меньше критической частоты данного волновода, то амплитуда напряженности E электрического поля, являющаяся информативным параметром, в точке приема есть

где , E0 - амплитуда напряженности поля в области возбуждения электромагнитных волн в рассматриваемом волноводе (т.е. в области расположения связи 3). Для волн типа H11 имеем , где d - внутренний диаметр волновода.

Например, при d=50 мм, для волн типа H11 будем иметь k=0,3012 1/см. Следовательно, информативный параметр E(ε) имеет величину . На фиг. 2 приведен график зависимости E(ε)/E0 от ε в диапазоне изменения ε в пределах 1,8÷2,0 (нефть и нефтепродукты). При этом относительное изменение E(ε)/E0 составляет 14,5%, что является достаточно большой величиной.

Длина измерительного участка, частота генератора выбираются с учетом диаметра волновода, электрофизических параметров контролируемой жидкости и диапазона их изменения.

Данный способ измерения физических свойств жидкости заключается в возбуждении электромагнитных волн в указанном волноводе, размещении контролируемой жидкости в электромагнитном поле одного из торцевых участков этого волновода и идентичной жидкости с эталонным значением измеряемых физических свойств жидкости в электромагнитном поле его другого торцевого участка. В рассматриваемом волноводе возбуждают электромагнитные волны фиксированной частоты на одном из торцов волновода. При этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода. Электромагнитные волны принимают после их распространения вдоль данного волновода на другом его торце и измеряют амплитуду напряженности электрического поля, по которой судят о физических свойств жидкости.

Для волноводов конкретных размеров выбором частоты генератора можно оптимизировать чувствительность такого датчика физических свойств жидкости в рабочем диапазоне их изменения. При этом имеет место монотонность зависимости информативного параметра - амплитуды E(ε) напряженности электрического поля - от значения ε, функционально связанного с измеряемым физическим свойством жидкости.

Согласно данному способу измерения, контролируемую и эталонную жидкости располагают в волноводе с разных его торцов идентично. При этом возможна различная степень заполнения каждой из частей волновода: 1) заполнение каждой жидкостью (контролируемой и эталонной жидкостями) половины длины волновода; при этом волновод полностью заполнен этими двумя жидкостями, образующими границу раздела (фиг. 3); 2) идентичное заполнение каждой жидкостью только части длины соответствующей половины волновода, например, торцевой части каждой половины длины волновода (фиг. 4) или части, прилегающей к середине длины волновода (фиг. 5); 3) возможно также идентичное расположение каждой жидкости в некоторой части соответствующей половины длины волновода, не примыкающей к ее концам (фиг. 6).

На фиг. 3 показано применение данного способа для измерения физических свойств диэлектрической жидкости с диэлектрической проницаемостью е, где в первой половине 7 волновода 1 размещена эталонная жидкость 8 с диэлектрической проницаемостью ε0 - жидкость с эталонным значением x0 измеряемой величины x (и ε=ε0), а идентичная вторая половина 9 волновода 1 заполнена контролируемой жидкостью 10 - той же жидкостью с текущим значением измеряемого физического свойства x (и, соответственно, значением ε). В волноводе 1 эталонная жидкость 8 и контролируемая жидкость 10 на границе их раздела отделены друг от друга тонкой диэлектрической пластиной 11, не препятствующей распространению электромагнитной волны.

Согласно предлагаемому способу, в волноводе 1 с эталонной жидкостью 8 и контролируемой жидкостью 10 возбуждают через элемент связи 3 с помощью генератора 2 электромагнитные волны на частоте меньшей критической частоты для этого волновода (фиг. 3). Напряженность электрического поля E при удалении от элемента связи 3, служащего для возбуждения и приема электромагнитных колебаний, спадает в соответствии с соотношением (1). При этом значение E зависит от физических свойств как эталонной, так и контролируемой жидкостей в волноводе 1. У другого торца волновода 1 принимаемый сигнал поступает через элемент связи 4 на детектор 5. Затем продетектированный сигнал поступает на регистратор 6 для определения амплитуды E сигнала, служащей информативным параметром.

На фиг. 4 показано применение данного способа для измерения физических свойств диэлектрической жидкости с диэлектрической проницаемостью ε, где в торцевой части 12 волновода 1 в виде ячейки, ограниченной с одной стороны первым торцом волновода, а с другой стороны - диэлектрической пластиной 11, размещена эталонная жидкость 8 с диэлектрической проницаемостью ε0 - жидкость с эталонным значением x0 измеряемой величины x (и ε=ε0), а другая идентичная торцевая часть 13 волновода 1 - в виде ячейки, ограниченной с одной стороны вторым торцом волновода, а с другой стороны - диэлектрической пластиной 11, заполнена контролируемой жидкостью 10 - той же жидкостью с текущим значением измеряемого физического свойства x (и, соответственно, значением ε).

При отличии измеряемого физического свойства x жидкости от его эталонного значения x0 в волноводе происходит изменение амплитуды ослабевающего реактивного электромагнитного поля, убывающего при удалении от возбуждающего элемента, причем уменьшение амплитуды этого реактивного электромагнитного поля соответствует функциональной зависимости (3). При этом амплитуда напряженности E электрического поля, являющаяся информативным параметром, в точке приема зависит от условий распространения убывающего реактивного электромагнитного поля как в части, заполненной эталонной жидкостью, так и в части, заполненной контролируемой жидкостью.

Изменение x относительно его эталонного значения x0 приводит к изменению амплитуды убывающего реактивного электромагнитного поля. Она изменяется относительно исходного экстремального (максимального или минимального) значения, имеющего место при x=x0 в зависимости от величины x.

Для схемы на фиг. 3 имеем значение E1 амплитуды реактивного электромагнитного поля после распространения в эталонной жидкости:

где в данном случае - длина половины волновода, E1 - значение амплитуды E после прохождения электромагнитной волной половины длины волновода, заполненной эталонной жидкостью.

После дальнейшего прохождения электромагнитной волной другой половины длины волновода, заполненной теперь уже контролируемой жидкостью, в точке приема (т.е. после прохождения электромагнитной волной всей длины волновода) будем иметь:

где

При ε=ε0 из формулы (5) следует, что При ε>ε0 будем иметь E(ε)<E(ε0), и зависимость E(ε) имеет при этом монотонно убывающий характер. Соответственно, при ε<ε0 будем иметь E(ε)>E(ε0); зависимость E(ε) имеет при этом монотонно возрастающий характер.

Для схемы на фиг. 4 имеем значение E2 амплитуды реактивного электромагнитного поля после распространения в половине длины волновода с эталонной жидкостью в его торцевой части:

где - значение постоянной ослабления α в части длины волновода, не заполненной как эталонной, так и контролируемой жидкостью (т.е. в полой части волновода, где ε=1); - длина части волновода, заполненная эталонной жидкостью (в другой половине волновода идентичная часть ее длины с контролируемой жидкостью также равна ).

После последующего прохождения электромагнитной волной другой половины длины волновода, заполненной теперь уже частично в торцевой области контролируемой жидкостью, сначала вдоль полого волновода, а затем вдоль части длины волновода с контролируемой жидкостью, в точке приема (т.е. после прохождения электромагнитной волной всей длины волновода) будем иметь

При ε=ε0 из формулы (7) следует, что Как и для схемы на фиг. 1, в данном случае также при ε>ε0 будем иметь E(ε)<E(ε0), и зависимость E(ε) имеет при этом монотонно убывающий характер, а при ε<ε0 будем иметь E(ε)>E(ε0), и зависимость E(ε) имеет при этом монотонно возрастающий характер.

Аналогичный характер имеет зависимость E(ε) для схем на фиг. 5 и 6. На фиг. 5 одна часть длины волновода 1, прилегающая к середине длины волновода 1, содержит ячейку, ограниченную с каждой стороны соответствующей диэлектрической пластиной 11 и заполненную эталонной жидкостью 8. Другая идентичная часть длины волновода 1, прилегающая к середине волновода 1 с другой ее стороны, содержит ячейку с контролируемой жидкостью 10. При этом данная ячейка со стороны, прилегающей к середине длины волновода 1, ограничена той же диэлектрической пластиной 11, что и у ячейки с эталонной жидкостью 8, а с другой стороны - еще одной диэлектрической пластиной 11. На фиг. 6 показано идентичное расположение каждой жидкости в пределах соответствующей ячейки, ограниченной с каждой стороны диэлектрической пластиной 11, в некоторой части соответствующей половины длины волновода 1, не примыкающей к ее концам.

Реализацию данного способа можно осуществлять и при другом расположении эталонной и контролируемой жидкостей в волноводе: сначала электромагнитная волна распространяется вдоль половины волновода с контролируемой жидкостью, а затем вдоль половины волновода с эталонной жидкостью (при их полном или идентичном частичном заполнении соответствующей части волновода).

Таким образом, данный способ позволяет достаточно просто и с высокой точностью измерять различные физические свойства диэлектрических жидкостей. Для проведения измерений не требуется организации волноводного резонатора с образованием стоячей волны в волноводе, а достаточно только возбуждения в волноводе электромагнитных волн на фиксированной частоте.

Способ измерения физических свойств жидкости, заключающийся в возбуждении электромагнитных волн в волноводе, размещении контролируемой жидкости в электромагнитном поле волновода с одного из его торцевых участков и идентичной жидкости с эталонным значением измеряемых физических свойств жидкости в электромагнитном поле волновода с его другого торцевого участка, отличающийся тем, что в волноводе возбуждают электромагнитные волны фиксированной частоты на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, по которой судят о физических свойствах жидкости.



 

Похожие патенты:

Использование: для обнаружения потенциально опасных и/или взрывчатых веществ, скрытых под одеждой или в багаже. Сущность изобретения заключается в том, что путем излучения, отражения и регистрации микроволн можно получить трехмерное изображение интересующего объекта.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, сыпучих веществ, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам.

Изобретение относится к измерительной технике, может быть использовано для определения электрофизических параметров слоя полупроводника на поверхности диэлектрика и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев.

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами трехкомпонентного вещества, неподвижного или транспортируемого по трубопроводу.

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами двухфазного вещества, неподвижного или транспортируемого по трубопроводу.

Изобретение относится к области противодействия терроризму и может быть использовано в системах защиты объектов. Способ обнаружения осколочных взрывных устройств основан на методе нелинейной радиолокации и включает облучение СВЧ электромагнитным зондирующим полем и регистрацию новых составляющих в спектре отраженного сигнала.

Предлагаемый способ относится к области электрических измерений и может применяться для контроля изменений интегрального состава вещества в химической промышленности, добывающей промышленности, в системах контроля отработанных газов двигателей внутреннего сгорания, либо в аналогичных комплексных системах, где крайне важна задача мониторинга изменения интегрального состава вещества, находящегося в любом агрегатном состоянии. Контроль изменений интегрального состава вещества основан на измерении изменений набега фазы микроволнового сигнала при его многократном распространении через объем контролируемого вещества.

Одной из главнейших задач обеспечения безопасности работ в угледобывающих шахтах является контроль содержания в рудничной атмосфере опасных газов и смесей, среди которых наибольшую угрозу представляют метан и угольная пыль. Предлагаемый способ относится к области электрических измерений и может применяться для контроля изменения состава интегральной газовой среды в угледобывающих шахтах, в системах контроля отработанных газов, которые выделяются вследствие промышленной деятельности человека, либо в аналогичных комплексных системах, где крайне важна задача мониторинга концентрации вторичных взрыво- и пожароопасных продуктов производства. Контроль изменений интегрального состава газовой среды основан на измерении изменений набега фаз микроволнового сигнала при его многократном распространении по замкнутой волноводной структуре, через которую также пропускают воздух их окружающей среды.

Способ определения процентного содержания воды в смеси диэлектрик-вода при изменении содержания воды в смеси в широких пределах относится к области электрических измерений неэлектрических величин и может быть использован для контроля содержания воды в жидких смесях типа диэлектрик-вода, например жидких углеводородах (нефть, масло, мазут и т.п.) или во влажных смесях (цементно-песочная смесь и т.п.).

Датчик перманентного контроля сердечного ритма шахтера относиться к области обеспечения безопасности работ в горной промышленности и может использоваться для перманентного контроля сердечного ритма всего персонала в шахтах, как во время выполнения ими плановых работ, так и при возникновение чрезвычайных ситуаций, повлекших изоляцию персонала шахты за/под завалом горной породы. Новым в датчике перманентного контроля сердечного ритма шахтера является размещение датчика внутри корпуса аккумуляторного блока шахтерского фонаря со стороны его широкой стенки, обращенной к телу шахтера и изготовление датчика в виде автодинного генератора, совмещенного с микрополосковой антенной и содержащего кроме того датчик тока, узкополосный усилитель инфразвуковой частоты, микроконтроллер со встроенным аналого-цифровым преобразователем и получатель информации о сердечном ритме шахтера. Автодинный генератор состоит из полевого транзистора, блокировочного конденсатора и микрополосковой антенной на диэлектрической подложке с экранирующей пластиной, который начинает генерировать колебания при подаче на сток транзистора напряжения постоянного тока.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или перекачиваются по трубопроводу. В предложенном способе для измерения физических свойств жидкости предварительно возбуждают электромагнитные колебания в волноводном резонаторе и измеряют резонансную частоту электромагнитных колебаний, при этом контролируемую жидкость помещают в коаксиальный резонатор, в котором одним из его торцевых участков является запредельный коаксиальный волновод с уменьшенным диаметром наружного проводника. В резонаторе возбуждают электромагнитные колебания типа Hm1p (m=1, 2, 3. …; р=1, 2, 3, …). Второй торцевой участок коаксиального резонатора идентичен первому торцевому участку или выполнен в виде металлической стенки волноводного резонатора. Расширение функциональных возможностей предложенного способа за счет проведения измерений физических свойств жидкости в широком диапазоне частот, в том числе на высоких частотах гигагерцового диапазона, что является техническим результатом изобретения. 2 ил.

Использование: для дистанционного досмотра багажа. Сущность изобретения заключается в том, что выполняют облучение контролируемой области пространства когерентным СВЧ-излучением на наборе частот, регистрацию сигнала после прохождения сигналом этой области с помощью нескольких каналов регистрации и обработку зарегистрированного сигнала, который несет информацию о диэлектрических объектах в багаже, при этом облучение области СВЧ-излучением осуществляют несколькими передающими элементами, расположенными в различных точках пространства, а при обработке зарегистрированного сигнала определяют множество значений удлинения оптического пути, соответствующих определенной паре излучатель-регистратор на наборе частот, затем вычисляют распределение плотности удлинения оптического пути в конкретной области пространства, выделяют непрерывные трехмерные участки с близкими по значению плотностями удлинения оптического пути, затем для каждого выделенного участка вычисляют среднюю плотность удлинения ρ оптического пути, положение и размеры диэлектрического объекта, находящегося в багаже, в системе координат (x, y, z), диэлектрическую проницаемость ε диэлектрического объекта в сечении одной из плоскостей системы координат, причем диэлектрическую проницаемость вычисляют по заданной математической формуле, задают значения εниж и εверх, которые характерны для опасных диэлектрических объектов, и при εниж<ε<εверх констатируют присутствие опасного диэлектрического объекта в контролируемой области пространства. Технический результат: обеспечение возможности выявления опасных диэлектрических объектов, а также обеспечение возможности определения положения выявленного объекта в пространстве и его размеров.

Изобретение относится к области СВЧ-техники и может быть использовано для определения концентраций веществ в водных растворах, в том числе для контроля влаги в углеводородных смесях, при контроле загрязнения водных сред, при контроле концентрации биологических клеток в суспензиях. Способ определения содержания воды в жидкостях заключается в повышении температуры при воздействии СВЧ-излучения на капиллярную трубку с исследуемой жидкостью в течение фиксированного промежутка времени и определении соответствующего изменения поглощения за этот промежуток времени, после чего на основании разности поглощения СВЧ-излучения жидкостью при различных температурах определяется концентрация воды в жидкости. Повышение точности измерений в условиях максимальной добротности резонатора является техническим результатом изобретения. 1 ил.

Изобретение относится к медицинской технике. Устройство для диагностики заболеваний бронхолегочной системы содержит управляемый генератор высокой частоты (3), аналого-цифровой преобразователь (9), блок управления (4), блок регистрации и отображения результатов измерений (2), блок генерации и измерения (1), основной (6), опорный (7) и приемный (8) каналы. В блоке генерации и измерения (1) в качестве генератора высокой частоты (3) использован синтезатор частот СВЧ диапазона, первый выход которого соединен с входом делителя мощности (5) для разделения мощности СВЧ сигнала между основным (6) и опорным (7) каналами. Основной канал (6) образован усилителем мощности (12) и передающей антенной-аппликатором (13), опорный канал (7) - аттенюатором (15) и измерителем коэффициента усиления (16), приемный канал (8) - приемной матрицей антенн-аппликаторов (19), блоком мультиплексирования (18) и усилителем мощности (17). Датчики нажима (14, 20) передающей антенны-аппликатора (13) и приемной матрицы антенн-аппликаторов (19) и оптический датчик положения (11) передающей антенны-аппликатора (13) соединены с блоком управления (4), который связан с электронно-вычислительной машиной (21) с помощью шины данных через устройство сопряжения (10). Достигается определение наличия изменений в бронхолегочной системе и их локализации у пациентов всех возрастных групп, в том числе детей раннего возраста, повышение достоверности, точности и информативности получаемых результатов обследования. 3 з.п. ф-лы, 1 ил.

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей. Техническим результатом изобретения является повышение достоверности обнаружения взрывчатых и наркотических веществ, размещенных на контролируемых объектах, путем точного и однозначного определения местоположения контролируемого объекта и его перемещения в пространстве. Устройство, реализующее предлагаемый способ, содержит приемопередающую антенну (1), антенный переключатель (2), передатчик (3), приемник (4), усилители (5, 21 и 29) высокой частоты, аналого-цифровой преобразователь (6), измерительное устройство (7), блок (8) памяти, блок (9) индикации, контролируемый объект (10), процессор (11), блок (12) сравнения, ключ (13), корреляторы (14), (22, 30 и 36), перемножители (15, 23, 31 и 37), фильтры (16, 24, 32 и 38) нижних частот, экстремальные регуляторы (17, 25, 33 и 39), блоки (18, 26, 34 и 40) регулируемой задержки, индикатор (19) дальности, приемные антенны (20 и 28), индикатор (35) угла места, индикатор (41) угла ориентации. 2 н.п. ф-лы, 2 ил.

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого вдоль его продольной оси пропущен диэлектрический трубопровод с контролируемым диэлектрическим веществом, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок, при этом волноводный резонатор выполнен в виде прямоугольного волноводного резонатора, в котором возбуждены колебания типа H10n, n=1, 2, …, и в котором у каждой из его узких стенок установлена диэлектрическая вставка с тем же поперечным размером, что и у прямоугольного резонатора, ее продольный размер имеет величину , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Технический результат: обеспечение возможности повышения точности измерения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Техническим результатом является повышение точности и упрощение процесса определения состояния поверхности дороги. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, возбуждаемыми в волноводе, размещаемом под контролируемой поверхностью, с одного из его торцевых участков, который встраивают в поверхностный слой контролируемого участка дороги, и определяют одну из характеристик стоячей волны в волноводе. С другого торцевого участка волновода зондируют электромагнитными волнами поверхность, идентичную участку поверхности дороги с эталонными значениями ее состояния, соответствующими отсутствию покрывающего слоя на поверхности дороги. В качестве поверхности, зондируемой с другого торцевого участка волновода, может быть использован участок поверхности дороги с эталонными значениями ее состояния, соответствующими отсутствию покрывающего слоя на поверхности дороги, а данный торцевой участок волновода встраивают в поверхностный слой этого участка поверхности дороги. 1 з.п. ф-лы, 3 ил.

Использование: для обнаружения диэлектрических взрывчатых веществ, скрытых под одеждой на теле человека и в носимом багаже. Сущность изобретения заключается в том, что выполняют облучение контролируемой области когерентным СВЧ-излучением на N частотах, регистрацию сигнала, несущего информацию о скрытом объекте, находящемся в контролируемой области пространства, с помощью одного или более параллельных каналов регистрации и когерентную обработку зарегистрированного сигнала, причем регистрацию сигнала, несущего информацию о скрытом объекте, находящемся в контролируемой области пространства, осуществляют после прохождения сигналом этой области, затем определяют зависимость заданной функции от х - координаты по оси, соединяющей регистратор и источник СВЧ-излучения, при этом определяют значение хmax, при котором функция F имеет максимальное значение Fmax, устанавливают F0 - пороговое значение, и при Fmax<F0 констатируют присутствие проводящего объекта в контролируемой области пространства, при Fmax>F0 и xmax>xпороговое, где xпороговое - установленное минимальное значение размеров объекта, констатируют присутствие диэлектрического объекта в контролируемой области пространства, а при Fmax>F0 и xmax<xпороговое констатируют отсутствие объектов в контролируемой области пространства. Технический результат: повышение точности и достоверности результатов дистанционного обнаружения скрытых объектов, а также возможность осуществления досмотра цели при отсутствии достаточной освещенности контролируемой области.

Настоящее изобретение относится к области нелинейной радиолокации и может быть использовано при разработке нелинейных радиолокаторов (НРЛ), осуществляющих поиск объектов, имеющих в своем составе нелинейные элементы (НЭ). Техническим результатом предлагаемого изобретения является улучшение характеристик сигнала на выходе оптимальной обработки за счет использования в качестве ЗС суммы двух ЛЧМ сигналов на разных несущих частотах и организации обработки отраженного от объекта поиска сигнала на комбинированной составляющей (суммарной комбинационной составляющей совместно со второй гармоникой). Это позволяет улучшить тактико-технические характеристики НРЛ, такие как разрешающая способность, отношение сигнал/боковик и стабилизация уровня ложных тревог. 5 ил.
Наверх