Способ промывки проппанта из колонны труб и призабойной зоны скважины после гидроразрыва пласта

Изобретение относится к нефтегазобывающей промышленности, в частности к технологиям промывки проппантовых пробок в скважинах. Способ включает спуск в скважину в интервал пласта колонны труб с пакером, установку пакера над пластом, закачку жидкости гидроразрыва в продуктивный пласт, проведение дренирования пласта с удалением из него жидкости гидроразрыва и незакрепленного в пласте проппанта в скважину, затем спуск колонны гибких труб - ГТ через колонну труб и промывку проппанта из скважины. Нижний конец колонны труб оснащают опрессовочным седлом. Перед проведением гидравлического разрыва пласта (ГРП) колонну труб опрессовывают при давлении, превышающем ожидаемое давление разрыва пласта в 1,5 раза. После проведения ГРП и дренирования из пласта жидкости гидроразрыва и незакрепленного в пласте проппанта в колонну труб производят спуск колонны ГТ с пером на конце и промывают проппант из скважины в два этапа. На первом этапе спускают колонну ГТ до опрессовочного седла колонны труб, затем технологической жидкостью с вязкостью от 1,0 до 2,0 МПа⋅с вымывают проппант из колонны труб, после чего доспускают колонну ГТ до забоя скважины и вымывают проппант из призабойной зоны скважины загущенной технологической жидкостью с вязкостью от 6 до 8 МПа⋅с, после чего приподнимают колонну ГТ на глубину 100 м, выдерживают паузу на технологический отстой частиц, повторным спуском колонны ГТ с пером определяют забой скважины. Повышается надежность и качество промывки, упрощается реализация способа. 2 ил.

 

Изобретение относится к нефтегазобывающей промышленности, в частности к технологиям промывки проппантовых пробок в добывающих и нагнетательных скважинах.

Известен способ промывки проппантовой пробки в газовой или газоконденсатной скважине после завершения гидравлического разрыва пласта (ГРП) (патент RU №2373379, МПК Е21В 37/00, опубл. 20.11.2009 г., бюл. №32), включающий ступенчатый спуск колонны гибкой трубы (ГТ) по мере промывки и закачивание в скважину промывочной жидкости с поддержанием минимальной разницы между давлением столба промывочной жидкости в кольцевом пространстве и давлением поглощения этой жидкости трещиной гидроразрыва. Причем спуск колонны ГТ до головы проппантовой пробки проводят со скоростью 0,1 м/с. После этого осуществляют промывку ствола скважины и ступенчатое углубление колонны ГТ на глубину 1-3 м со скоростью 0,001 м/с, постоянной подачей аэрированной промывочной жидкости и поддержанием 100% выхода циркуляции из скважины на каждой ступени углубления колонны ГТ. При этом циркуляцию на каждой ступени проводят не менее двух циклов, а поддержание минимальной разницы между давлением столба промывочной жидкости в кольцевом пространстве и давлением поглощения этой жидкости трещиной гидроразрыва осуществляется с помощью внешнего источника газообразного агента в виде компрессора и азотно-бустерной установки в комплексе с остальным оборудованием.

Недостатки способа:

- во-первых, ограниченность применения, т.е. способ применим только в газовой или газоконденсатной скважине;

- во-вторых, низкая надежность промывки проппанта из скважины после проведения ГРП, связанная с высокой вероятностью прихвата колонны ГТ в призабойной зоне пласта вследствие слабой несущей способности аэрированной жидкости из-за ее низкой вязкости, что может привести к поглощению аэрированной жидкости пластом и потере циркуляции аэрированной жидкости в скважине;

- в-третьих, низкое качество промывки проппанта из скважины аэрированной жидкостью (проппант остается на забое).

Наиболее близким по технической сущности является способ промывки проппантовой пробки в скважине (патент RU №2310103, МПК Е21В 43/14, 43/27, 47/12, опубл. 10.11.2007 г., бюл. №31), включающий спуск в скважину с пластами колонны труб с пакером и струйным насосом. При этом пакер устанавливают между нижним и первым промежуточным пластами. Проводят закачку жидкости гидроразрыва в нижний пласт, после чего производят дренирование этого пласта с удалением из него жидкости гидроразрыва и выносом незакрепленного в пласте проппанта в скважину, регистрируя давление в скважине под пакером с помощью автономного манометра. После чего приводят пакер в транспортное положение. Приподнимают колонну труб с пакером и струйным насосом и проводят распакеровку пакера между следующими промежуточными пластами. Устанавливают проппантовую пробку в интервале от забоя до подошвы промежуточного пласта. Затем повторяют те же операции и так далее в зависимости от количества продуктивных пластов. После чего через колонну труб и струйный насос спускают колонну ГТ и вымывают проппант из скважины технологической жидкостью, в качестве которой используется пластовая вода.

Недостатки способа:

- во-первых, низкая надежность промывки проппанта из скважины после проведения ГРП, связанная с высокой вероятностью прихвата колонны ГТ в призабойной зоне пласта вследствие слабой несущей способности технологической жидкости, имеющей низкую вязкость 1-2 МПа⋅с, что может привести к поглощению технологической жидкости пластом и потере циркуляции технологической жидкости в скважине;

- во-вторых, низкое качество промывки проппанта из скважины, вследствие того что, промывку проппанта осуществляют после того, как проведут ГРП во всех пластах, поэтому не весь проппант удается вымыть с забоя скважины; способ не позволяет проконтролировать весь ли проппант вымыт из скважины;

- в-третьих, сложный технологический процесс реализации, связанный с проведением технологических операций в нескольких пластах и с применением струйного насоса.

Техническими задачами изобретения являются повышение надежности и качества промывки проппанта с забоя скважины, а также упрощение процесса реализации способа.

Поставленные задачи решаются способом промывки проппанта из колонны труб и призабойной зоны скважины после гидроразрыва пласта - ГРП, включающим спуск в скважину в интервал пласта колонны труб с пакером, установку пакера над пластом, закачку жидкости гидроразрыва в продуктивный пласт, проведение дренирования пласта с удалением из него жидкости гидроразрыва и незакрепленного в пласте проппанта в скважину, затем спуск колонны гибких труб - ГТ через колонну труб и промывку проппанта из скважины.

Новым является то, что нижний конец колонны труб оснащают опрессовочным седлом, а перед проведением ГРП колонну труб опрессовывают при давлении, превышающем ожидаемое давление разрыва пласта в 1,5 раза, после проведения ГРП и дренирования из пласта жидкости гидроразрыва и незакрепленного в пласте проппанта в колонну труб производят спуск колонны ГТ с пером на конце и промывают проппант из скважины в два этапа, причем на первом этапе спускают колонну ГТ до опрессовочного седла колонны труб, затем технологической жидкостью с вязкостью от 1,0 до 2,0 МПа⋅с вымывают проппант из колонны труб, после чего доспускают колонну ГТ до забоя скважины и вымывают проппант из призабойной зоны скважины загущенной технологической жидкостью с вязкостью от 6 до 8 МПа⋅с, после чего приподнимают колонну ГТ на глубину 100 м, выдерживают паузу на технологический отстой частиц, повторным спуском колонны ГТ с пером определяют забой скважины.

На фиг. 1 и 2 схематично и последовательно изображен процесс реализации способа.

Предлагаемый способ реализуется следующим образом.

В скважину 1 (см. фиг. 1) и интервал пласта 2 спускают колонну труб 3 с пакером 4 и опрессовочным седлом 5, выполненным конусным, сужающимся сверху вниз с проходным диаметром у нижнего основания D, установленным на нижнем конце колонны труб 3.

Например, в качестве колоны труб 3 используют колонну насосно-компрессорных труб (НКТ) диаметром 89 мм, на нижнем конце которой установлено опрессовочное седло 5 проходным диаметром D=50 мм.

Колонну труб 3 размещают в скважине 1 так, чтобы опрессовочное седло 5 находилось выше кровли пласта 2 на расстоянии 2 м с целью исключения прихвата колонны труб 3 проппантом в случае возникновения резкого скачка давления при продавке проппанта в процессе ГРП.

Пакер 4 устанавливают над пластом 2 с целью защиты стенок скважины от воздействия высокого давления, возникающего в процессе ГРП, например, устанавливают пакер 4 на 5 м выше кровли пласта 2.

Производят опрессовку колонны труб 3 при давлении, превышающем ожидаемое давление разрыва пласта в 1,5 раза. Например, ожидаемое давление разрыва пласта 2 согласно моделированию процесса в программе Frac-pro составляет 27,0 МПа.

Производят опрессовку колонны, например, для этого с устья скважины 1 на канате в колонну труб 3 спускают опрессовочный конус (на фиг. 1 и 2 не показан), который сажают на опрессовочное седло 5 (см. фиг. 1) труб 3, герметизируют колонну труб 3 на устье скважины 1 и опрессовывают колонну труб 3 при давлении 27,0 МПа ⋅ 1,5=40,5 МПа с помощью насосного агрегата (на фиг. 1 и 2 не показан). Выдерживают в течение 30 мин колонну труб 3 под давлением 40,5 МПа.

Колонна труб 3 считается герметично при выполнении условия:

где Рд - допустимое давление опрессовки, МПа;

Ропр - давление опрессовки колонны труб, МПа.

Т.е. допустимое давление опрессовки составляет Рд=40,5 МПа - (40,5 МПа⋅5% /100%)=38,5 МПа.

Например, в данном случае снижение давления составило 1,0 МПа, то есть давление опрессовки в колонне труб 3 по истечении 30 мин составило Ропр=39,5 МПа.

38,5 МПа<39,5 МПа

Как видно неравенство (1) соблюдается, т.е. снижение давления в колонне труб 3 в результате опрессовки не превышает допустимого значения.

Производят гидроразрыв пласта 2 с образованием трещины 6 и последующим ее креплением проппантом.

По окончании ГРП производят дренирование пласта 2 с удалением из него жидкости гидроразрыва и незакрепленного в пласте проппанта 7.

Далее производят промывку проппанта из скважины спуском колонны гибких ГТ 8 с наружным диаметром d, при этом на устье скважины производят герметизацию сальником (на фиг. 1 и 2 показан условно) колонны ГТ в процессе ее перемещения:

где d - наружный диаметр ГТ, мм;

D - проходной диаметр опрессовочного седла у нижнего основания, мм.

Опытным путем установлено, что при таком соотношении проходного диаметра D опрессовочного седла 5 и наружного диаметра d колонны ГТ исключаются гидравлические сопротивления при промывке проппанта 7 из призабойной зоны 9 скважины 1.

Исходя из условия (2), подбирают наружный диаметр ГТ 8 из существующего ряда гибких труб, предназначенных для промывки по колонне НКТ, d: 25,4 мм; 31,75 мм; 38,1 мм; 44,45 мм.

Подставляя числовые значения в условие (2), получаем:

d<D/1,5=50 мм /1,5=33,3 мм

Таким образом, под условие (2) подходит ГТ 8 с наружным диаметром 25,4 мм и 31,75 мм. Выберем ГТ 8 с диаметром d=31,75 мм.

Промывку проппанта 7 с помощью колонны ГТ 8 из скважины 1 осуществляют в два этапа.

На первом этапе спускают колонну ГТ 8 до опрессовочного седла 5 колонны труб 3 и технологической жидкостью, в качестве которой применяют пластовую воду вязкостью от 1,0 до 2,0 МПа⋅с, промывают проппант 7 из колонны труб 3.

Для этого на устье скважины 1 оснащают нижний конец ГТ 8 пером 10 наружным диаметром, равным 31,75 мм, т.е. равным наружному диаметру d колонны ГТ 8.

Гидравлически обвязывают на устье скважины насосный агрегат 11 для подачи технологической жидкости с ГТ 8, а межколонное пространство 12 между колонной труб 3 и колонной ГТ 8 - с желобной емкостью 13.

Спускают колонну ГТ 8 (см. фиг. 1) в колонну труб 3 и циркуляцией пластовой воды, например, вязкостью 1,6 МПа⋅с по колонне ГТ 8 и перу 10 через межколонное пространство 12 вымывают проппант 7 из колонны НКТ 3 в желобную емкость 13, т.е. от устья колонны труб 3 до опрессовочного седла 5 с расходом технологической жидкости 8 л/с=8⋅10-3 м3/с.

В процессе спуска колонны ГТ 8 в колонну труб 3, например, со скоростью 1 м/с производят периодические расхаживания подъемом ГТ 8 на 2 м вверх через каждые 100-150 м (для проверки отсутствия прихвата колонны ГТ 8 проппантом 7 внутри колонны труб 3).

Таким образом, циркуляцией пластовой воды полностью вымывают проппант 7 из колонны труб 3 (см. фиг. 2), что определяют визуально в желобной емкости 13 по отсутствию проппанта в поступающей в желобную емкость 13 пластовой воде.

Далее реализуют второй этап.

Доспускают колонну гибких труб 3 (см. фиг. 2) до забоя 14 скважины 1 и вымывают проппант 7 из призабойной зоны 9 скважины загущенной технологической жидкостью, в качестве которой используют 1,0% раствор крахмала в пластовой воде с вязкостью от 6 до 8 МПа⋅с, следующим образом.

Опытным путем получено, что для получения загущенной технологической жидкости вязкостью 6-8,0 МПа⋅с необходимо смешать 1,0% крахмала по объему в 99% по объему пластовой воды с минерализацией 220 г/л. Данную загущенную технологическую жидкость готовят на базе, например, химического сервиса или на устье скважины 1 при наличии смесителя (на фиг. 1 и 2 не показан).

Например, для приготовления 20 м3 загущенной технологической жидкости необходимо 19,8 м3 пластовой воды (99%) смешать с 0,2 м3 крахмала (1%). Емкость (на фиг. 1 и 2 не показана) с загущенной технологической жидкостью подсоединяют к насосному агрегату 11 (см. фиг. 2).

Далее сначала доспуском колонны ГТ 8 на 2 м ниже опрессовочного седла 5 колонны труб 3 проверяют заход пера 10 в опрессовочное седло 5 колонны НКТ 3 со скоростью 2 м/мин (0,033 м/с) с промывкой загущенной технологической жидкостью (подачей насосным агрегатом 11 по колонне ГТ 8 и перу 10, через межколонное пространство 12 в желобную емкость 13).

После чего приподнимают колонну ГТ 8 с пером 10 до интервала установки опрессовочного седла 5 колонны НКТ 3, не прекращая циркуляции, переходят на промывку колонны НКТ 3 загущенной технологической жидкостью.

Циркулируют загущенную технологическую жидкость в течение 30 мин по ГТ 8, перу 10, через межколонное пространство 12 в желобную емкость 13 с целью вноса проппанта из подпакерной зоны скважины 1 ниже пакера 4, но выше нижнего конца колонны труб 3.

Далее создают циркуляцию загущенной технологической жидкости при давлении закачки Ρ=18,0-20,0 МПа и расходе технологической жидкости 4,5 л/с=4,5⋅10-3 м3/с, производят спуск колонны ГТ 8 с пером 10 через опрессовочное седло 5 колонны НКТ 3 до забоя 14 скважины 1 со скоростью 0,25 м/с.

Загущенная технологическая жидкость циркулирует по ГТ 8, перу 10, призабойной зоне скважины 9, межколонному пространству 12 и желобной емкости 13 с периодическим расхаживанием ГТ 8 в призабойной зоне скважины (например, подъемом колонны ГТ вверх на 1 м после спуска колонны ГТ вниз на 5 м), пока не закончит выходить проппант, что определяют визуально по отсутствию проппанта на выходе отработанной загущенной жидкости в желобную емкость 13.

Повышается надежность реализации способа, так как использование загущенной технологической жидкости при промывке призабойной зоны пласта позволяет повысить несущую (выносящую) способность технологической жидкости при промывке проппанта и исключает прихват колонн ГТ в призабойной зоне скважины. Кроме того, применение вязкой технологической жидкости в способе снижает ее поглощение пластом и вероятность потери циркуляции технологической жидкости в скважине.

Не прекращая циркуляцию загущенной технологической жидкости, поднимают колонну ГТ 8 с пером 10 в колонне труб 3 скважины 1 на глубину 100 м.

Глубина 100 м исключает прихват колонны ГТ 8 в колонне труб 3 при наличии остаточного проппанта 7 или при условии, что проппант 7 продолжает выходить из закрепленной трещины 6 пласта 2.

Производят паузу в течение 2 ч на технологический отстой с целью оседания твердых частиц (песка, шлама), поднятых с забоя вместе с проппантом 7. По окончании технологического отстоя доспуском колонны ГТ 8 с пером 10 нащупывают забой 14 скважины 1 с целью проверки качества промывки проппанта 7 из скважины 1 и сверяют его с забоем 14, который был до проведения ГРП. Например, забой 14 скважины 1 до проведения ГРП составлял 1675 м, а после вымыва проппанта 7, т.е. после реализации предлагаемого способа, забой 14 скважины 1 составил 1675 м. Это означает, что проппант 7 полностью вымыт из скважины 1.

Повышается качество промывки проппанта из скважины вследствие того, что промывку проппанта осуществляют после каждого проведенного ГРП, а не после того, как проведут ГРП во всех пластах, как описано в прототипе. При этом после промывки производится контрольный спуск ГТ с определением текущего забоя скважины с целью определения качества промывки проппанта из скважины.

После чего извлекают из скважины 1 колонну ГТ 8 с пером 10.

При наличии нескольких пластов, подлежащих ГРП, колонну труб распакеровывают и переводят в другой интервал пласта скважины, после чего после опрессовки и проведения ГРП все вышеописанные операции по промывке проппанта повторяются.

Упрощается технологический процесс вследствие реализации способа без привлечения струйного насоса и отдельно по каждому пласту, подлежащему ГРП.

Предлагаемый способ промывки проппанта из колонны труб и призабойной зоны скважины после ГРП позволяет:

- повысить надежность промывки проппанта из скважины;

- повысить качество промывки проппанта с забоя скважины;

- упростить процесс реализации способа.

Способ промывки проппанта из колонны труб и призабойной зоны скважины после гидроразрыва пласта - ГРП, включающий спуск в скважину в интервал пласта колонны труб с пакером, установку пакера над пластом, закачку жидкости гидроразрыва в продуктивный пласт, проведение дренирования пласта с удалением из него жидкости гидроразрыва и незакрепленного в пласте проппанта в скважину, затем спуск колонны гибких труб - ГТ через колонны труб и промывку проппанта из скважины, отличающийся тем, что нижний конец колонны труб оснащают опрессовочным седлом, а перед проведением ГРП колонну труб опрессовывают при давлении, превышающем ожидаемое давление разрыва пласта в 1,5 раза, после проведения ГРП и дренирования из пласта жидкости гидроразрыва и незакрепленного в пласте проппанта в колонну труб производят спуск колонны ГТ с пером на конце и промывают проппант из скважины в два этапа, причем на первом этапе спускают колонну ГТ до опрессовочного седла колонны труб, затем технологической жидкостью с вязкостью от 1,0 до 2,0 МПа⋅с вымывают проппант из колонны труб, после чего доспускают колонну ГТ до забоя скважины и вымывают проппант из призабойной зоны скважины загущенной технологической жидкостью с вязкостью от 6 до 8 МПа⋅с, после чего приподнимают колонну ГТ на глубину 100 м, выдерживают паузу на технологический отстой частиц, повторным спуском колонны ГТ с пером определяют забой скважины.



 

Похожие патенты:

Изобретение относится к устройствам для магнитной обработки скважинной жидкости в призабойной зоне пласта. Технический результат заключается в предотвращении асфальтеносмолопарафиновых отложений и снижении коррозионной активности флюида в скважинах.

Изобретение относится к нефтедобывающей промышленности и, в частности, к эксплуатации скважин, оборудованных установками электроцентробежных насосов. Технический результат - повышение эффективности расклинивания и очистки установки электроцентробежного насоса от отложений механических примесей и солей, образовавшихся в процессе отбора пластового флюида и, как следствие, увеличение межремонтного периода эксплуатации насосных установок данного типа.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для очистки забоя от песчаных и гипсовых пробок при текущем ремонте вертикальной скважины.

Изобретение относится к бурению скважин и может быть использовано в телеметрических системах в качестве устройства для передачи измеренной забойной информации в процессе бурения по гидравлическому каналу связи на поверхность.

Изобретение относится к оборудованию для освоения и ремонта нефтяных и газо-конденсатных скважин и предназначено для повышения нефтеотдачи нефтяных и газо-конденсатных пластов при эксплуатации нефтедобывающих скважин.

Группа изобретений относится к нефтедобывающей промышленности, а именно к очистке призабойной зоны нефтяного пласта, ухудшившего свои эксплуатационные показатели вследствие загрязнения прискважинной зоны.

Изобретение относится к области нефтегазовой промышленности и может быть использовано для очистки и освоения пласта. Устройство включает колонну насосно-компрессорных труб - НКТ, оснащенную снизу фильтром, а выше - пакером, установленным выше пласта, седло и сваб, установленные в колонне НКТ.

Изобретение относится к нефтяной промышленности и может быть использовано при добыче нефти с пескопроявлениями в добывающих скважинах. Технический результат - снижение пескопроявления нефтяных скважин за счет создания внутрискважинного противопесочного фильтра.
Изобретение относится к нефтяной промышленности и может найти применение при очистке скважины от асфальтосмолопарафиновых, сульфидсодержащих, солевых и прочих отложений.
Изобретение относится к нефтяной промышленности и может найти применение при очистке скважины, снабженной штанговым глубинным насосом от асфальтосмолопарафиновых, сульфидсодержащих, солевых и прочих отложений.

Группа изобретений относится к области нефтегазодобывающей промышленности, в частности к оборудованию для очистки насосно-компрессорных труб (НКТ) нефтяных и газовых скважин от отложений асфальтенов, смол, парафинов, гидратов, солей кальция (АСПО) и т.д. без извлечения НКТ из скважин. Данный прибор может быть использован также для очистки вододобывающих и прочих скважин. Очистка внутренней поверхности НКТ осуществляется за счет комбинированного воздействия (ультразвуковое, механическое, тепловое) на загрязнения. В связи с тем, что работа скважины не останавливается, измельченная комбинированным воздействием грязь поднимается на поверхность и удаляется из скважины потоком флюида. Комплекс ультразвуковой очистки НКТ состоит из ультразвукового генератора и скважинного ультразвукового скребка, который представляет собой преобразователь электрических колебаний в механические, помещенный в защитный кожух, соединенный с трансформатором колебаний, усиливающим амплитуду колебаний ультразвуковых излучателей. Повышается эффективность и экономичность операции по очистке НКТ. 2 н. и 10 з.п. ф-лы, 3 ил.

Изобретение относится к нефтегазодобывающей отрасли, в частности к устройствам для очистки наклонно-направленных и горизонтальных стволов скважин от шлама в процессе бурения на суше и море. Устройство включает толстостенную бурильную трубу (ТБТ), имеющую входные и выходные отверстия, располагающиеся под восходящим и нисходящим углами соответственно, при этом в области входных отверстий в ТБТ выполнена канавка для размещения подшипников, которые устанавливаются после надевания вращающейся втулки на ТБТ и выполняют роль запорного подшипника. Часть вращающейся втулки имеет гладкую поверхность, а на другой части смонтированы лопасти, которые не выступают за пределы рабочего диаметра ТБТ. Устройство также включает турбинные секции, часть из которых жестко соединена с вращающейся втулкой, а другая часть закреплена на теле ТБТ, и которые выполняют роль ротора и статора соответственно. Один конец ТБТ имеет муфтовое соединение для свинчивания с предыдущей бурильной трубой, а другой конец - ниппельное соединение для свинчивания с переводником, который в то же время является фиксирующим элементом для вращающейся втулки с лопастями. Устройство выполнено с возможностью частичного отвода потока бурового раствора во входные отверстия для взаимодействия с турбинными секциями, приводя их и вращающуюся втулку в движение. Повышается качество очистки скважин от шлама. 2 з.п. ф-лы, 3 ил.

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны в горизонтальных стволах скважин, пробуренных в залежи битумов. Способ очистки и обработки призабойной зоны горизонтальной скважины в залежи битума включает спуск в скважину колонны гибких труб (ГТ) и фиксацию глубины спуска, закачивание по колонне ГТ аэрированной промывочной жидкости, очистку призабойной зоны от кольматирующих отложений промывкой и транспортирование их циркуляцией в желобную емкость. При этом спуск колонны ГТ, оснащенной грушевидной насадкой на конце, осуществляют в скважину до глубины на 50 м ниже устья скважины. Запускают азотный компрессор в линию колонны ГТ и проводят аэрирование промывочной жидкости, находящейся в скважине, с одновременным доспуском колонны ГТ до глубины начала фильтровой части хвостовика. После чего запускают насосный агрегат с подачей промывочной жидкости в линию ГТ. Затем производят очистку призабойной зоны скважины промывкой аэрированной жидкостью в четыре цикла. Причем каждый цикл состоит из перемещения колонны ГТ со скоростью 1 м/с до забоя с одновременной промывкой аэрированной жидкостью. По достижении забоя перемещение колонны ГТ прекращают. Промывают скважину аэрированной жидкостью в течение 30 мин. Затем отключают насосный агрегат и азотный компрессор. Выдерживают технологическую паузу в течение 30 мин. При этом отбивают уровень жидкости в скважине эхолотом. Далее производят подъем колонны ГТ до глубины на 50 м ниже устья скважины. После чего вышеописанный цикл повторяют три раза. Затем производят обработку призабойной зоны пласта закачкой 8% соляной кислоты в интервале горизонтальной части ствола от начала фильтровой части хвостовика до забоя по 0,2 м3 на каждые 50 м с последующей продавкой соляной кислоты в пласт пресной водой. Техническим результатом является повышение качества очистки призабойной зоны горизонтальной скважины и повышение эффективности очистки призабойной зоны скважины. 2 ил.

Группа изобретений относится к нефтегазодобывающей области, в частности к ингибированию коррозии и образования отложений на скважинном оборудовании при добыче углеводородного сырья. Установка содержит электромагнитные излучатели, размещенные вдоль продольной оси скважинной компоновки на определенном расстоянии друг от друга, блок сопряжения с погружным электродвигателем, установленный в отдельном корпусе, в котором размещен также электронный блок управления, соединенный с блоком сопряжения входом-выходом, и генераторы возбуждения по количеству электромагнитных излучателей, входы которых соединены с выходами электронного блока управления, а выходы соединены с обмотками возбуждения соответствующих электромагнитных излучателей, датчики параметров, установленные в скважинном пространстве и подключенные к электронному блоку управления. Каждый электромагнитный излучатель содержит цилиндрический сердечник из магнитомягкого материала с аксиальной или ортогональной обмоткой, витки которой расположены соответственно аксиально или перпендикулярно оси скважинной компоновки. Установка содержит блок электропитания, включенный в состав блока сопряжения и связанный с обмоткой электродвигателя электропогружного насоса для отбора электроэнергии и питания блоков установки для ингибирования образования отложений. Блок управления связан каналом связи с аппаратурой мониторинга и управления, размещенной на земной поверхности. Повышается эффективность защиты скважинного оборудования от коррозии и отложений. 2 н. и 5 з.п. ф-лы, 3 ил.

Изобретение относится к области бурения и эксплуатации скважин и может быть использовано при строительстве и ремонте скважин различного назначения, в том числе скважин, предназначенных для добычи нефти и газа. Обеспечивает проведение в скважине за одну спуско-подъемную операцию совместно с перфорацией иных технологических работ, в том числе работ, осуществление которых совместно с перфорацией требует подачи рабочей жидкости под перфоратор на оборудование, расположенное в компоновке ниже перфоратора, или в затрубное пространство. Гидромеханический перфоратор для вскрытия эксплуатационной колонны содержит корпус и размещенный в нем рабочий узел с механизмом его инициации, при этом он дополнительно содержит распределительный узел для управления потоком рабочей жидкости, обеспечивающий возможность регулируемой подачи жидкости на рабочий узел перфоратора либо в нижнюю часть перфоратора, минуя рабочий узел. 1 з.п. ф-лы, 4 ил.

Группа изобретений относится к области бурения и эксплуатации скважин и может быть использована при строительстве и ремонте скважин различного назначения, в том числе скважин, предназначенных для добычи нефти и газа. Обеспечивает сокращение времени на проведение полного комплекса работ, связанных с перфорацией скважин, и сопутствующих работ: фрезерования ствола скважины, шаблонирования скважины, очистки стенок эксплуатационной колонны с помощью скрепера, промывки забоя с помощью пера, а именно проведение комплекса работ за одну спуско-подъемную операцию. Способ включает спуск в скважину на колонне НКТ компоновки, включающей гидромеханический перфоратор, содержащий распределительный узел для управления потоком рабочей жидкости, и инструмент или комбинацию технологического оборудования для проведения необходимых работ в скважине; подачу рабочей жидкости через распределительный узел перфоратора под перфоратор на технологическое оборудование или в низ НКТ в затрубное пространство; проведение с помощью технологического оборудования соответствующих технологических операций; подачу рабочей жидкости через распределительный узел в перфоратор; проведение перфорации; подачу рабочей жидкости через распределительный узел перфоратора повторно на технологическое оборудование или в низ НКТ в затрубное пространство; проведение с помощью технологического оборудования соответствующих технологических операций после перфорации. 20 н. и 18 з.п. ф-лы, 1 ил.

Изобретение относится к нефтегазодобывающей промышленности и предназначено для борьбы с солеотложением в призабойной зоне пласта и стволах скважин с целью сохранения дебита скважин в условиях высокой минерализации попутно добываемых вод. Способ предупреждения отложения исключает их образование путем поддержания концентрации хлорида натрия, растворенного в пластовой воде, на уровне, исключающем его кристаллизацию. Поддержание заданной величины концентрации обеспечивают закачкой в подземное хранилище увлажненного газа, исключающего процесс абсорбции газом влаги из пластовой воды. Требуемое количество пресной воды для увлажнения закачиваемого газа определятся как разность абсолютного максимального влагосодержания газа в пластовых условиях и абсолютного влагосодержания газа, поступающего с магистрального газопровода для закачки в подземное хранилище. Увеличивается продолжительность работы скважин и хранилищ и суммарный объем отбираемого газа, увеличивается межремонтный период, исключаются работы по ликвидации соляных пробок. 4 ил., 1 табл.

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для глушения и промывки скважин. Состав полисахаридной жидкости для промывки скважин или промысловых трубопроводов или глушения скважин, полученный растворением биоцида «Биолан» в пресной или минерализованной воде, представленной преимущественно раствором одновалентных катионов, растворением и гидратацией в полученном растворе гуарового загустителя, последующим введением комплексного реагента Нефтенол УСП с перемешиванием до получения мицеллярной дисперсии, с последующим добавлением борного сшивающего агента СП-РД и перемешиванием до полного сшивания, при следующем соотношении компонентов, мас.%: гуаровый загуститель 0,2-1,0, указанный сшивающий агент 0,2-1,0, реагент Нефтенол УСП 6,0-10,0, биоцид «Биолан» 0,004-0,01, указанная вода - остальное. Способ промывки скважин и очистки интервала перфорации от асфальтосмолопарафиновых отложений в скважинах с аномально низким пластовым давлением, включающий закачку указанного выше состава в затрубное пространство скважины в качестве блокирующей пачки, выдержку для размещения ее на забое скважины, последующую обратную промывку скважины закачкой в затрубное пространство скважины промывочной жидкости, в качестве которой используют подогретый до 30-40°C водный раствор реагента Нефтенол УСП с концентрацией 60-100 л на 1 м3 пресной или минерализованной воды, объем блокирующей пачки определяют расчетным путем с учетом объема зумпфа и оставления стакана, перекрывающего интервал перфорации на 100-200 м, и ее плотность превышает на 20-50 кг/м3 плотность указанной промывочной жидкости. Способ промывки скважин, включающий закачку в скважину указанного выше состава и его циркулирование в полном объеме скважины. Способ промывки промысловых трубопроводов, включающий закачку в промысловый трубопровод подогретой до 30-40°C промывочной жидкости, в качестве которой используют водный раствор реагента Нефтенол УСП с концентрацией 60-100 л на 1 м3 пресной или минерализованной воды, и затем продавку указанного выше состава. Способ промывки промысловых трубопроводов, включающий закачку в промысловый трубопровод указанного выше состава. Технический результат – повышение эффективности обработки. 5 н.п. ф-лы, 2 табл.
Наверх