Способ обнаружения и классификации изменений параметров оболочки трубопровода и окружающей его среды

Использование: для обнаружения изменений параметров заглубленного трубопровода и окружающей его среды. Сущность изобретения заключается в том, что в оболочке трубы возбуждают последовательность виброакустических импульсов через интервалы, превышающие интервал корреляции существующих в ней шумов, последовательность отсчетов регистрируемых реакций на каждое воздействие на другом конце контролируемого участка трубопровода суммируют с ранее полученными аналогичными отсчетами, модуль результирующего сигнала нормируют и принимают за плотность распределения временных интервалов отсчетов от начала до конца сформированного в сумматоре сигнала, по этому распределению вычисляют его оценки математического ожидания, среднеквадратичного отклонения, асимметрии и эксцесса, по совокупности каждого из этих моментов определяют линии регрессии их средних и отклонений от них, сравнивают эти линии с вычисленными на предыдущем шаге и при достижении результатами сравнения установленных значений прогнозируют их поведение с ростом количества суммирования для обеспечения допустимых доверительных границ вычисляемых моментов, по достижению которых судят как о наличии, так и виде изменений в трубопроводной системе в текущий момент времени. Технический результат: повышение надежности обнаружения изменений параметров в трубопроводной системе и распознавание их вида. 1 з.п. ф-лы, 8 ил.

 

Изобретение относится к контролю безопасности эксплуатируемых трубопроводов и может быть использовано для предотвращения установки врезок в трубу, боеприпасов для ее подрыва, имитаторов несанкционированных работ в охранной зоне пролегания трубопровода для дезинформации службы безопасности, а также обнаружения утечек продукта, промерзания грунта в текущий период, просадок, выпучиваний, парафинирования трубы.

Известен способ обнаружения изменений состояний участка трубопровода по виброакустическим сигналам, формирующимся при несанкционированном взаимодействии субъекта с оболочкой трубы [Защита трубопроводов от несанкционированных врезок. / А.А. Казаков // Системы безопасности. - 2008. - №5. - С. 150-154]. Недостатком этого способа является малая номенклатура обнаруживаемых состояний (удар по трубе), запаздывание появления предупреждающего сигнала, исключающее возможность предотвратить нарушение целостности трубы и сопутствующую в результате этого чрезвычайную ситуацию.

Известен способ обнаружения «аварийно-опасного» участка трубопровода, основанный на возбуждении ударных виброакустических импульсов в оболочке трубы с помощью приваренных к ней звукопроводящих стержней с последующим определением отношения резонансной частоты диагностируемого трубопровода к эталонной [Пат. 2350833 РФ, МПК F17D 5/00. Способ контроля и диагностики состояния трубопровода [Текст]. / Толстунов С.А., Мозер С.П., Толстунов А.С.]. В основу способа положено известное соотношение зависимости резонансной частоты пластины ƒ0 от ее толщины h: ƒ0=c/2h, с - скорость распространения продольных волн в трубопроводе. Использование этой закономерности для выявления земляных работ в охраняемой зоне не представляется возможным.

Известна заявка №2006137406/28 от 23.10.2006 (дата публикации заявки 27.04.2008) на способ и устройство дальнего обнаружения утечек в трубопроводе. Согласно заявке в перекачиваемом продукте создаются периодические волны давления, которые регистрируются на другом конце контролируемого участка. По искажению регистрируемой волны судят о наличии утечки на этом участке. Способ не позволяет фиксировать изменения, происходящие за пределами оболочки трубопровода.

Известен способ обнаружения утечек на трубопроводном транспорте углеводородов, основанный на регистрации и анализе инфразвуковых сигналов в перекачиваемом продукте [Пат. US 666861982. Pattern matching for real time leak detection and location in pipelines (Распознавание образов для детектирования в реальном времени факта и локализации врезок в трубопроводы)] и в различных вариантах исполнения описанный в http://acoustic-solution-intl.com/faq_index.htm; www.grouplb.com; http://torinsk.ru/publication/25-mpp2007.html и др. Недостаток способа - регистрируется факт нарушения целостности трубопровода, а не подготовительные работы по установке врезки или боеприпаса.

Известен способ изменений параметров среды в окружении заглубленного магистрального трубопровода [Пат. 2463590 РФ, МПК G01N 29/04. Способ обнаружения изменений параметров среды в окружении заглубленного магистрального трубопровода. / Епифанцев Б.Н., Федотов А.А.]. Согласно способу в оболочке трубы возбуждают виброакустические сигналы, регистрируют их на удалении от места возбуждения, проводят накопление зарегистрированных сигналов, соответствующих конкретному состоянию объекта контроля, и принимают результат накопления за соответствующий эталон, с которым сравнивают накопленные сигналы в периоды проведения контроля. Недостатком способа является неизвестное количество накоплений при проведении операций обучения и тестирования, оно зависит от изменения погодных условий, режима перекачки продукта и др.

Из известных технических решений наиболее близким по совокупности существенных признаков к заявляемому является способ обнаружения дефектов в трубопроводах [Пат. 2439551 РФ, МПК G01N 29/04. Способ обнаружения дефектов в трубопроводах. / Алексеев С.П. и др.].

Согласно способу формируют акустические сигналы и регистрируют их после прохождения контролируемой среды, определяют плотность распределения зарегистрированных сигналов, вычисляют моменты полученных распределений, по величине которых судят о наличии изменений в контролируемой среде. Недостатком способа является выявление только одного изменения от нормативно установленного. Кроме того, способ работоспособен при высоком отношении сигнал/шум. В реальности это условие редко выполняется, и надежность обнаружения изменения в среде (наличие включения) оказывается недостаточной.

Целью изобретения является увеличение надежности обнаружения значимых изменений параметров оболочки трубопровода и окружающей его среды при увеличении номенклатуры классифицируемых изменений.

Указанная цель достигается тем, что виброакустические сигналы возбуждают в оболочке трубы следующими друг за другом воздействиями на ее поверхность через интервалы, превышающие интервал корреляции существующих в ней виброакустических шумов, последовательность отсчетов регистрируемых реакций на каждое воздействие на другом конце контролируемого участка трубопровода суммируют с ранее полученными аналогичными отсчетами, модуль результирующего сигнала нормируют и принимают за плотность распределения временных интервалов отсчетов от начала до конца сформированного в сумматоре сигнала, по этому распределению вычисляют его оценки математического ожидания, среднеквадратичного отклонения, асимметрии и эксцесса, а по совокупности каждого из этих моментов, полученных после очередного воздействия на трубопровод, определяют линии регрессии их средних и отклонений от них, сравнивают эти линии с вычисленными на предыдущем шаге и при достижении результатами сравнения ниже установленных значений прогнозируют их поведение с ростом количества суммирований для обеспечения допустимых доверительных границ вычисляемых моментов, по достижению которого принимают решение как о наличии, так и виде изменений в трубопроводной системе в текущий момент времени.

Кроме того, в промежутках между воздействиями на оболочку трубопровода регистрируют существующий в ней виброакустический шум, определяют его интервал корреляции, по которому устанавливают интервалы между возбуждениями виброакустических сигналов в оболочке трубы.

Сущность изобретения поясняется нижеследующим описанием и прилагаемыми к нему чертежами.

На фиг. 1 изображена структурная схема устройства, реализующего предлагаемый способ.

Фиг. 2 и 3 поясняют алгоритм формирования сигналов в сумматоре.

На фиг. 2а и 3а приведены реализации шума, полученные моделированием случайного процесса с экспоненциальной корреляционной функцией и интервалом корреляции 100 мс. На первую из них аддитивно положен сигнал в виде косинусоидального импульса, на вторую - в виде логнормальной функции. Отношение сигнал/шум в обоих случаях 0,5. Фиг. 2б и 3б отражают результаты 50-кратного суммирования разных реализаций вида, представленных на фиг. 2а и 3а. Аналогичные функции показаны фиг. 2в и 3в, полученные при 100 суммированиях таких реализаций.

На фиг. 4 проиллюстрированы изменения значений момента плотности распределения вида, показанного на фиг. 3, и его доверительных границ от количества суммирований (воздействий на объект контроля).

Обозначения на чертежах: 1 - изображение трубопровода; В - элемент возбуждения виброакустических сигналов в оболочке трубы; Г - генератор сигналов, П - приемник виброакустических сигналов, У - усилитель, ЛЗ - линия задержки, КЛ1 и КЛ2 - электронные ключи, В1 и В2 - вычислители, КОМ - коммутатор, N - число суммирований, ОСШ - отношение сигнал/шум, u(t) - нормированная амплитуда сигнала на интервале t-tkс, τс - длительность возбуждения поверхности оболочки трубы, - средняя длительность формирующихся на выходе приемника сигналов, Л2 - линия регрессии момента распределения, Л1 и Л3 - изменения доверительных границ вычисляемого момента в зависимости от количества суммирований, Ny - количество суммирований, при котором вычисляемые линии регрессии Л13 на предыдущем шаге N=Ny-1 отличались от полученных на заранее установленную величину, Д12 - доверительные интервалы, допускаемые при оценке соответствующего момента распределения, штриховые кривые - прогноз доверительных границ с увеличением N.

При воздействии элементом В на оболочку трубопровода в ней формируется виброакустический импульс, распространяющийся в направлении приемника П. В зависимости от соотношений волновых сопротивлений соприкасающихся систем «оболочка - перекачиваемый продукт», «оболочка - внешняя среда» часть энергии импульса переходит в указанные среды, причем доли покинувших оболочку виброакустических колебаний зависят от частоты их колебаний [Буденков С.А. и др. Оценка возможностей метода акустической эмиссии при контроле магистральных трубопроводов // Дефектоскопия, 2000, №2, С. 29-36]. В силу указанных причин форма импульса, сформированная в месте взаимодействия элемента В с поверхностью трубы, по мере распространения изменяется в зависимости от амплитудно-частотной характеристики канала распространения колебаний. Парафинирование внутренней стенки трубы изменяет соотношение волновых сопротивлений «оболочка трубы - перекачиваемый продукт», наблюдается не только изменение энергии импульса, но и его формы из-за зависимости волновых сопротивлений от частоты колебаний [Неразрушающий контроль: Справочник: В 8 т. / Под общ. ред. В.В. Клюева. Т. 3. И.Н. Ермолов, Ю.В. Ланге. Ультразвуковой контроль. - М.: Машиностроение, 2006. - 864 с.].

В оболочке трубопровода формируются случайные флуктуации механических (виброакустических) колебаний, порождаемые следующими причинами [Епифанцев Б.Н и др. Трубопроводный транспорт: нейтрализация новых угроз безопасности. - Омск: СибАДИ, 2006. - 295 с.]:

- турбулентным характером движения перекачиваемого продукта;

- ветровым фактором, формирующим через растительность сейсмические колебания в канале передачи «прозванивающих» виброакустических импульсов;

- проезжающим вблизи «охранной зоны» транспортом и т.д.

Регистрируемый приемником П сигнал оказывается соизмеримым или меньшим сренеквадратического отклонения сопутствующих шумов. В связи с этим для обнаружения поступающих сигналов требуется вводить операцию по увеличению отношения сигнал/шум. В качестве такой операции предлагается использовать накопление сигналов. Исследуемая задача допускает такую возможность - решение принимается по совокупности откликов на N «прозванивающих» виброакустических импульсов.

Сформированный генератором Г электрический импульс преобразуется элементом возбуждения В в виброакустический, который «прозванивает» канал его распространения. Достигнув приемника П, он вновь преобразуется в электрический сигнал, поступающий через усилитель на линию задержки ЛЗ. По окончанию сигнала генератора Г коммутатор КОМ открывает ключи КЛ2, сформировавшийся за время работы генератора отклик на выходе приемника П переносится в вычислитель В2. После окончания импульса генератора Г на линию задержки ЛЗ поступает шумовой процесс, распределение интенсивности которого на интервале между «прозваниваниями» переносится коммутатором КОМ в вычислитель В1 перед появлением нового импульса генератора Г.

В вычислителе В2 каждая поступающая реализация отклика из линии задержки ЛЗ суммируется с ранее записанными. В первой из них N=1 в основном просматривается шум, полезный сигнал не выделяется (фиг. 2а, 3а). После многих суммирований (процесс накопления) сигнал проявляется все отчетливее. Согласно принципу накопления приращение интенсивности сигнала пропорционально числу накоплений N, а шумов - . Этот эффект справедлив, когда реализации шумов не коррелированны. Для обеспечения этого условия в вычислителе B1 определяется интервал корреляции текущих шумов τk и по нему устанавливается требуемая длительность импульса τс. Наилучший случай - равенство τсk. Система обнаружения оказывается адаптированной к изменениям шумовой обстановки в зоне контролируемого объекта.

По мере увеличения числа суммирований начинает выявляться форма принимаемого сигнала (фиг. 2, 3), по которой можно судить о характере изменения в канале распространения «прозванивающего» сигнала [Епифанцев Б.Н. и др. К оценке чувствительности виброакустической системы обнаружения локальных возмущений параметров среды в окружении магистрального трубопровода // Дефектоскопия. - 2015. - №2. - С. 17-26].

Описание этой формы возможно моментами формирующейся кривой. Такими моментами могут служить среднее, среднеквадратическое отклонение, асимметрия, эксцесс. Выполнение этой операции требует знания плотности распределения вероятностей. Если в качестве параметра распределения принять длительности от начала работы генератора в момент t-τk до очередного отсчета сигнала (количество отсчетов определяется выбранным количеством ключей КЛ2), то амплитуды отсчетов очередной суммы можно принять за значения вероятностей. Для этого необходимо использовать модуль сигнала u(t) (вероятности не могут быть отрицательными, данный эффект наблюдается в начале работы вычислителя (при N=1)). Второе условие сводится к выполнению нормировки значений отсчетов (их сумма должна равняться единице).

Наконец, следует решить вопрос, когда завершается процесс суммирования откликов канала прокладки трубопровода на «прозванивающие» сигналы. Фиг. 4 поясняет алгоритм нахождения ответа на этот вопрос.

Если N мало, разброс вычисляемых моментов по изложенной схеме значителен. С ростом N оценки моментов группируются около среднего (дисперсия оценок пропорциональна корню из 1/N). После каждого суммирования определяются линии регрессии оцениваемых параметров и отклонений от них (Л13). Если при очередном вычислении этих линий их отличие от предыдущих не превысит заданную величину, их поведение прогнозируется при увеличении N (штриховые линии на фиг. 4). Определяется далее, при каком значении N найденная оценка попадет в заданный доверительный интервал (Д12 на фиг. 4). Реализацией этого количества «прозванивающих импульсов» завершается цикл очередного испытания трубопроводной системы на наличие произошедших изменений.

Перечень интересующих изменений реализуется на действующих в настоящее время полигонах. По каждому моделируемому изменению оценивается форма отклика при разных N и положение моментов формы с доверительными интервалами.

1. Способ обнаружения и классификации изменений в оболочке трубопровода и окружающей его среде, основанный на возбуждении и регистрации виброакустических сигналов, формировании плотности распределения вероятностей регистрируемых сигналов и вычислении его моментов, вынесении решения по их значениям о появлении изменений в объекте контроля, отличающийся тем, что виброакустические сигналы возбуждают в оболочке трубы следующими друг за другом воздействиями на ее поверхность через интервалы, превышающие интервал корреляции существующих в ней виброакустических шумов, последовательность отсчетов регистрируемых реакций на каждое воздействие на другом конце контролируемого участка трубопровода суммируют с ранее полученными аналогичными отсчетами, модуль результирующего сигнала нормируют и принимают за плотность распределения временных интервалов отсчетов от начала до конца сформированного в сумматоре сигнала, по этому распределению вычисляют его оценки математического ожидания, среднеквадратичного отклонения, асимметрии и эксцесса, по совокупности каждого из этих моментов определяют линии регрессии их средних и отклонений от них, сравнивают эти линии с вычисленными на предыдущем шаге и при достижении результатами сравнения установленных значений прогнозируют их поведение с ростом числа суммирований для обеспечения допустимых доверительных границ вычисляемых моментов, по достижению которых судят как о наличии, так и виде изменений в трубопроводной системе в текущий момент времени.

2. Способ по п. 1, отличающийся тем, что в промежутках между воздействиями на оболочку трубопровода регистрируют существующий в ней виброакустический шум, определяют его интервал корреляции, по которому устанавливают интервалы между возбуждениями виброакустических сигналов в оболочке трубы.



 

Похожие патенты:

Способ может быть использован в машиностроении, гидроэнергетике и других отраслях промышленности, требующих применения в производстве ультразвукового контроля. Для определения температурного коэффициента скорости ультразвука используются данные об изменении акустических характеристик материала.

Использование: для ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения. Сущность изобретения заключается в том, что две антенные решетки размещают на поверхности контролируемого изделия на оптимальном расстоянии между собой с двух сторон от сварного соединения, регистрируют отраженные от донной поверхности ультразвуковые эхо-импульсы, восстанавливают множество парциальных изображений, получают изображение профиля донной поверхности, по которому находят таблицу значений толщины контролируемого изделия в каждой точке области восстановления.

Использование: для определения характеристик небольших объектов, имеющих поверхность, которая искривлена в плоскости сечения. Сущность изобретения заключается в том, что выполняют по меньшей мере одно наблюдение ультразвука, проходящего через объект, причем каждое наблюдение выполняют на оси, перпендикулярной плоскости симметрии, причем каждое наблюдение получают в результате излучения ультразвука, формируемого вдоль соответствующей одной из упомянутых осей и падающего на объект вдоль упомянутой оси под углом падения, отличным от нормального, причем ультразвук падает на объект таким образом, чтобы следовать по пути, который является симметричным относительно плоскости симметрии, причем время пролета ультразвуковой волны и/или положение оси, на которой выполняются излучение и наблюдение, анализируют для описания характеристик объекта.

Использование: для локального ультразвукового неразрушающего контроля качества труб. Сущность изобретения заключается в том, что акустический блок содержит сканирующий узел с основанием с опорными роликами, которое связано штоками с корпусом, в котором размещены демпфер, ультразвуковой эхо-пьезопреобразователь, локальная ванна для иммерсионной жидкости (воды).

Использование: для автоматизированного неразрушающего контроля резервуаров для хранения нефти и нефтепродуктов. Сущность изобретения заключается в том, что предложено устройство для автоматизированного неразрушающего контроля металлической конструкции, содержащее ультразвуковой блок неразрушающего контроля, блок неразрушающего контроля на основе метода утечки магнитного поля, вихретоковый блок неразрушающего контроля, управляющий блок, соединенный с указанными ультразвуковым блоком неразрушающего контроля, блоком неразрушающего контроля на основе метода утечки магнитного поля и вихретоковым блоком неразрушающего контроля для отправки управляющих сигналов для осуществления контроля металлической конструкции, и блок навигации, соединенный с управляющим блоком управления и выполненный с возможностью определения положения указанного устройства для автоматизированного неразрушающего контроля относительно металлической конструкции и состояния поверхности контролируемой металлической конструкции и направления сигналов с информацией о положении указанного устройства для автоматизированного неразрушающего контроля и состоянии поверхности контролируемой металлической конструкции в управляющий блок, причем все указанные блоки установлены во взрывозащищенном корпусе, имеющем средства перемещения по поверхности контролируемой металлической конструкции, управляющий блок выполнен с возможностью направления управляющих сигналов одновременно на по меньшей мере один блок из числа указанных ультразвукового блока неразрушающего контроля, блока неразрушающего контроля на основе метода утечки магнитного поля и вихретокового блока неразрушающего контроля на основе сигналов, полученных от блока навигации, а блок неразрушающего контроля на основе метода утечки магнитного поля выполнен с возможностью изменения индукции магнитного поля, создаваемого этим блоком, от минимального значения, близкого к нулю, до заданного максимального значения.

Использование: для дефектоскопии листов, плит и других изделий двухсторонним доступом в металлургической, машиностроительной областях промышленности. Сущность изобретения заключается в том, что излучают с одной стороны контролируемого изделия импульсы ультразвуковых колебаний, принимают с противоположной стороны изделия первый сквозной и двукратно отраженный сквозной импульсы, а также эхо-импульсы ультразвуковых колебаний, отраженных от дефекта, сканируют изделие по всей площади, обеспечивая соосность излучающего и приемного электроакустических преобразователей, анализируют огибающие амплитуд ультразвуковых колебаний первого прошедшего (сквозного) импульса и эхо-сигналы от дефекта во временном интервале между первым и вторым сквозными импульсами, дополнительно считывают координаты уменьшения прошедших через изделие сквозных импульсов, повышают чувствительность приема сигналов во временном интервале между первым и вторым сквозными импульсами, измеряют временной интервал между первым сквозным импульсом и первым эхо-сигналом от дефекта, по измеренным значениям определяют местоположение и глубину залегания дефекта.

Использование: для контроля технического состояния магистральных нефтепроводов в процессе их эксплуатации. Сущность изобретения заключается в том, что для стопроцентного контроля всего сечения трубы на дефектоскопе устанавливают большое количество ультразвуковых преобразователей.

Изобретение относится к области испытания конструкции на воздействие подводной ударной волны и может быть использовано для регистрации сотрясений на элементах подводного аппарата при воздействии подводной ударной волны.

Использование: для неразрушающего ультразвукового контроля изделий. Сущность изобретения заключается в том, что осуществляют ввод излучающим преобразователем ультразвуковых колебаний в изделие, прозвучивание свода изделия импульсами ультразвуковых колебаний и прием прошедших свод изделия ультразвуковых колебаний в воздушной среде канала изделия устройством с приемным преобразователем, при этом проводят предварительный ультразвуковой контроль изделия известным способом для определения участков, на которых фиксируется прохождение ультразвуковых колебаний через свод изделия, после чего на один из таких участков устанавливают неподвижно излучающий ультразвуковой преобразователь, выбирают акустически непрозрачный участок изделия для определения на нем сплошности скрепления полимерного материала с прилегающей к нему поверхностью корпуса, а также участок изделия, симметричный ему относительно излучающего преобразователя и образующей поверхности изделия, проходящей через место контакта излучающего преобразователя с поверхностью изделия, ориентируют устройство с приемным преобразователем путем поворота и продольного перемещения относительно оси изделия на участок поверхности канала, радиально противоположный выбранному акустически непрозрачному участку, устанавливают уровень сигнала в пределах экрана без ограничения сверху, и при неподвижно установленном излучающем преобразователе сканируют ультразвуковым приемным преобразователем участки поверхности канала изделия, радиально-противоположные выбранному акустически непрозрачному участку и симметричному ему участку, и последовательно сравнивают сигналы на данных участках, выявляя участки, на которых имеет место относительное уменьшение уровня сигнала, после чего аналогичным образом проверяют другие акустически непрозрачные участки.

Изобретение относится к неразрушающим методам и средствам дефектоскопии технически сложных элементов конструкции. Сущность: элемент конструкции, к которому есть доступ, нагружают переменной механической нагрузкой и вызывают его перемещения.

Использование: для внутритрубного обследования трубопроводов. Сущность изобретения заключается в том, что внутритрубный ультразвуковой дефектоскоп оснащен устройством измерения скорости звука в перекачиваемой жидкости V и блоком автоматической регулировки длительности временного окна ΔT во время контроля по формуле: ΔT=ΔT°V°/V, где ΔТ° - длительность окна при контроле в жидкости с минимальной скоростью звука V°. Конструкция носителя п ультразвуковых пьезоэлектрических преобразователей обеспечивает длину пути ультразвукового импульса, от точки отражения от внутренней поверхности трубы до ближайшего элемента носителя, не менее ΔT°V°/2+ΔНп, где ΔНп - максимально допустимый износ полоза носителя ультразвуковых пьезоэлектрических преобразователей. Технический результат: расширение диапазона контролируемых толщин стенки трубы в сторону увеличения при перекачивании разнородных жидкостей и упрощение требований к конструкции носителя ультразвуковых пьезоэлектрических преобразователей. 1 з.п. ф-лы, 5 ил.

Использование: для ультразвукового (УЗ) неразрушающего контроля протяженных металлических изделий. Сущность изобретения заключается в том, что при перемещении вдоль трубопровода периодически возбуждают УЗ колебания в заданной области внешней или внутренней его поверхности, связанной с диагностическим устройством, принимают из этой же области реализации УЗ колебаний от акустических нормальных волн, отраженных от различных нарушений сплошности материала стенок, и в результате обработки принятых реализаций определяют распределение дефектов в стенках трубопровода, при этом возбуждают УЗ колебания касательными к поверхности трубопровода колебательными силами акустических контактов приемно-излучающих элементов диагностического устройства поочередно в каждой точке, а прием колебаний осуществляют одновременно во всех точках в пределах указанной области в выбранном интервале времени, и из реализаций УЗ колебаний, принятых во всех точках поверхности трубопровода при перемещении вдоль него, по предварительно рассчитанным временам задержки для всех типов акустических нормальных волн выбирают эхосигналы от каждой точки поверхности стенок, когерентно суммируют их для каждой точки поверхности отдельно для каждого типа волн, вычисляют амплитуды суммарных сигналов и строят нормированные распределения этих амплитуд в соответствии с координатами точек поверхности стенок трубопровода отдельно для каждого типа акустических волн, после чего составляют одно распределение величины, значения которой равны максимальным значениям амплитуд суммарных сигналов от разных типов акустических волн для совпадающих по координатам точек поверхности стенок трубопровода, и по этому распределению судят о наличии и величине дефектов в стенках трубопровода. Технический результат: обеспечение возможности обнаружения малоразмерных и слабо отражающих дефектов в стенках трубопровода. 2 н. и 8 з.п. ф-лы, 3 ил.

Использование: для оценки ресурса трубы из полиэтилена. Сущность изобретения заключается в том, что пьезоэлектрический преобразователь устанавливают последовательно, равномерно по периметру внешней поверхности полиэтиленовой трубы, и осуществляют последовательно ввод импульсов ультразвуковых колебаний в материал трубы через ее внешнюю поверхность по нормали к внешней ее поверхности продольных колебаний и последовательно прием отраженных ультразвуковых колебаний от внутренней поверхности стенки трубы и последовательно при этом измеряют время прохождения ультразвуковых колебаний в каждой установленной точке пьезоэлектрического преобразователя и запоминают измеренные значения, затем определяют стандартное отклонение измеренных значений, и по величине стандартного отклонения, которое сравнивают со стандартным отклонением трубы из полиэтилена с предельным состоянием материала, полученное аналогично описанному выше при определении стандартного отклонения контролируемой трубы из полиэтилена, определяют возможность дальнейшей эксплуатации трубы из полиэтилена. Технический результат: обеспечение возможности определения дальнейшей эксплуатации трубы из полиэтилена. 2 н.п. ф-лы, 3 ил.

Использование: для неразрушающего дистанционного контроля различных силовых конструкций и ответственных деталей. Сущность изобретения заключается в том, что неконтактное возбуждение ультразвуковой волны в объекте осуществляется мощным наносекундным объемным электрическим разрядом с заданным фронтом и длительностью и синхронно производится ее регистрация до и после прохождения объекта оптическим устройством, сигнал с которого передается на фотоприемник, подключенный к цифровому осциллографу. При этом эффективное неконтактное возбуждение ультразвуковой волны в объекте достигается мощным наносекундным объемным электрическим разрядом в газовом потоке водорода или гелия, который также заполняет газовый промежуток между генератором объемного электрического разряда и объектом. Технический результат: обеспечение возможности создания неконтактного способа ультразвуковой диагностики, увеличивающего глубину контроля. 1 табл., 1 ил.

Изобретение относится к области неразрушающего контроля технического состояния рельсовых путей. Согласно способу мониторинга рельсового пути в рельсы передают акустический сигнал, отраженный сигнал принимают акустическими датчиками, обрабатывают сигнал с помощью системы обработки сигналов. По результатам анализа полученных данных судят о состоянии рельсового пути. В качестве источника акустического сигнала используют деформационную волну, возникающую в рельсе при движении подвижного состава. Прием отраженных сигналов осуществляют непрерывно в движении состава. В качестве акустических датчиков используют электромагнитно-акустические преобразователи. В результате расширяются функциональные возможности и повышается надежность способа мониторинга рельсового пути. 3 ил.

Изобретение относится к области минералогического анализа тонковкрапленных зерен благородных металлов и может быть использовано в горнодобывающей отрасли. При осуществлении способа производится дробление кернового материала до крупности -1+0,0 мм, первичная классификация материала по классам крупности -1+0,5 мм, -0,5+0,2 мм, -0,2+0,0 мм, взвешивание каждого класса крупности, гравитационное обогащение каждого класса крупности с использованием лотка для промывки проб с получением первичного шлихового материала, первичный просмотр под бинокуляром с диагностикой всех минералов и выборка выделенных тонкодисперсных частиц благородных металлов, ультразвуковая обработка по классам крупности гидросмеси первичного шлихового материала с соотношением Т:Ж 1:3, посредством размещения гидросмеси в цилиндрообразном излучателе осуществляется при частоте 22 кГц, средней интенсивности звука 15 Вт/см2, вторичная классификация шлихового материала каждого класса крупности и гравитационное обогащение каждого класса крупности с использованием лотка для промывки проб с получением вторичного шлихового материала, взвешивание каждого класса крупности, вторичный просмотр под бинокуляром с диагностикой всех минералов по каждому классу крупности и выборка выделенных тонкодисперсных частиц свободных частиц благородных металлов, электронно-микроскопическое исследование состава благороднометалльных частиц в остатке вторичного шлихового материала. Достигается повышение эффективности определения тонковкрапленных зерен благородных металлов путем раскрытия тонкодисперсных включений в минеральных сростках. 2 ил.

Предложены способ и устройство испытания испытуемого объекта (204). Способ испытания прочности соединений композитного объекта (204) включает: генерирование волны (228) напряжения в текучей среде (306) в полости (302) в конструкции (300) генератора волн; направление волны (228) напряжения через текучую среду (306) в полости (302) в композитный объект (204) и задание определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн. Устройство для испытания прочности соединений композитного объекта (204) содержит: источник (304) энергии и конструкцию (300) генератора волн, имеющую полость (302), выполненную с возможностью удержания текучей среды (306), причем источник энергии (304) выполнен с возможностью генерирования волны (228) напряжения, которая проходит через текучую среду (306) в полости (302) в композитный объект (204), причем конструкция (300) генератора волн выполнена с возможностью задания определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн. Технический результат – уменьшение габаритов устройства, возможность испытания объектов больших размеров и сложных форм. 2 н. и 11 з.п. ф-лы, 15 ил.

Предложены способ и устройство испытания испытуемого объекта (204). Способ испытания прочности соединений композитного объекта (204) включает: генерирование волны (228) напряжения в текучей среде (306) в полости (302) в конструкции (300) генератора волн; направление волны (228) напряжения через текучую среду (306) в полости (302) в композитный объект (204) и задание определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн. Устройство для испытания прочности соединений композитного объекта (204) содержит: источник (304) энергии и конструкцию (300) генератора волн, имеющую полость (302), выполненную с возможностью удержания текучей среды (306), причем источник энергии (304) выполнен с возможностью генерирования волны (228) напряжения, которая проходит через текучую среду (306) в полости (302) в композитный объект (204), причем конструкция (300) генератора волн выполнена с возможностью задания определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн. Технический результат – уменьшение габаритов устройства, возможность испытания объектов больших размеров и сложных форм. 2 н. и 11 з.п. ф-лы, 15 ил.

Использование: для ультразвукового контроля листов. Сущность изобретения заключается в том, что локальная иммерсионная ванна (ЛИВ) для ультразвукового контроля листов включает корпус и как минимум одну линейку ультразвуковых преобразователей (ЛУП), которая дополнительно содержит как минимум одну линейку акустических зеркал (ЛАЗ), разворачивающих ультразвуковые лучи на заданный угол, и устройство поворота зеркал (УПЗ), позволяющее корректировать угол падения ультразвуковых лучей на поверхность листа относительно его номинального значения, а также осуществлять поворот ЛАЗ для дополнительной очистки ее рабочей поверхности. Технический результат: повышение качества и достоверности ультразвукового контроля. 2 з.п. ф-лы, 5 ил.

Использование: для диагностики изделий машиностроения, создаваемых на основе соединений с гарантированным натягом с помощью ультразвука. Сущность изобретения заключается в том, что зондирующий ультразвуковой импульс вводится через контактную жидкость в наружную боковую поверхность охватывающего кольца соединения с натягом. Распространяясь в радиальном направлении, ультразвуковая волна отражается от поверхности сопряжения и, достигая контактной площадки объекта контроля и датчика, регистрируется дефектоскопом как первый эхо-импульс. Отражаясь от наружной поверхности кольца, первый эхо-импульс уходит в объект вслед за зондирующим импульсом, вновь отражается от места посадки (поверхности сопряжения) и регистрируется как второй эхо-импульс. На основе измерения амплитуд двух соседних эхо-импульсов на свободном кольце, затем на контролируемой посадке производится вычисление действительного значения коэффициента отражения от места посадки, численно характеризующее величину натяга и, следовательно, качество посадки с натягом. Технический результат: обеспечение возможности получения количественных данных о локальной величине натяга и характере напряженно-деформированного состояния деталей в зоне сопряжения посадок с натягом. 5 ил.
Наверх