Способ очистки и сушки деталей вращения

Изобретение относится к области машиностроения, а именно к очистке от технологических загрязнений и сушке поверхностей деталей вращения типа колец подшипников, осей, валов, втулок, зубчатых колес и др. Способ очистки и сушки деталей вращения, при котором детали придают вращение и направляют на ее поверхность поток сжатого воздуха. Частоту вращения детали устанавливают достаточной для удаления мелких частиц и влаги под действием центробежной силы с очищаемой поверхности и определяют по формуле:

. Время очистки и сушки определяют в соответствии с зависимостью:

где n - частота вращения детали, об/с; λ - коэффициент трения загрязнений относительно обрабатываемой поверхности; g - ускорение свободного падения, мм/с2; d - диаметр очищаемой поверхности, мм, τ - потребное время обработки, с; wν - удельная энергия недиссоциативной адсорбции молекул жидкости на очищаемой поверхности, Дж/кг. Сопло, с помощью которого осуществляют подачу сжатого воздуха в направлении, противоположном направлению вращения детали, устанавливают под углом к очищаемой поверхности, оказывающим максимальное воздействие на очистку поверхности. Технический результат: повышение качества очистки и сушки поверхности тел вращения, обеспечение более равномерной очистки поверхности, повышение производительности обработки за счет высокой интенсивности очистки, упрощение возможности практической реализации способа. 1 ил.

 

Изобретение относится к области машиностроения, а именно к очистке от технологических загрязнений и сушке поверхностей деталей вращения типа колец подшипников, осей, валов, втулок, зубчатых колес и др.

Известны способы очистки изделий от загрязнений [SU 1440567, В08В 3/04, 1988, БИ 44; SU 1781322, C23G 3/04, 1992, БИ 46], в которых изделие помещают в камеру с моющей жидкостью, придают изделию вращение, а моющую жидкость с напором непрерывно прокачивают через камеру.

Недостатки этих способов заключаются в низкой интенсивности очистки и необходимости последующей сушки деталей.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является способ очистки и сушки деталей, при котором детали придают вращение и направляют на ее поверхность поток сжатого воздуха [SU 1747215 А1, 15.07.1992 (Д1)]. Способ реализован в устройстве, в котором в качестве обрабатываемой детали используют фильтр, который закрепляют на оправке, и на его внутреннюю и на наружную поверхность подают поток сжатого воздуха из сопел, установленных параллельно оси вращения, а скорость вращения детали во избежание разрушения фильтра плавно увеличивают с помощью выжимного сцепления.

Недостатками данного способа являются следующие: скорость вращения детали ограничивают так, что на многие, особенно мелкие, загрязнения действуют недостаточные по величине центробежные силы, под действием которых загрязнения и влага могут быть удалены с поверхности детали, время обработки может быть недостаточно для удаления с поверхности детали веществ, имеющих с ней молекулярное взаимодействие, а установка сопла параллельно оси вращения детали не обеспечивает высокую эффективность очистки, так как только незначительный наиболее близкий к очищаемой поверхности слой потока воздуха участвует в очистке, а большая часть потока воздуха, находящегося на некотором расстоянии от поверхности, расходуется вхолостую, и обработка поверхности осуществляется не равномерно, так как с увеличения расстояния от сопла давление воздуха значительно падает. Все это резко снижает эффективность процесса очистки и сушки деталей и снижает ее качество.

Задачей изобретения является повышение эффективности и качества очистки и сушки деталей.

Поставленная задача решается тем, что в способе очистки и сушки деталей вращения, при котором детали придают вращение и направляют на ее поверхность поток сжатого воздуха, при этом частоту вращения детали устанавливают достаточной для удаления мелких частиц и влаги под действием центробежной силы с очищаемой поверхности и определяют по формуле:

время очистки и сушки определяют в соответствии с зависимостью:

а сопло, с помощью которого осуществляют подачу сжатого воздуха в направлении, противоположном направлению вращения детали, устанавливают под углом к очищаемой поверхности, оказывающим максимальное воздействие на очистку поверхности, где n - частота вращения детали, об/с; λ - коэффициент трения загрязнений относительно обрабатываемой поверхности; g - ускорение свободного падения, мм/с2; d - диаметр очищаемой поверхности, мм, τ - потребное время обработки, с; wν - удельная энергия недиссоциативной адсорбции молекул жидкости на очищаемой поверхности, Дж/кг (для воды примерно равная 40 Дж/кг).

Техническим результатом являются обеспечение возможности удаления с поверхности даже мелких загрязнений и пленок, взаимодействующих с ней на молекулярном уровне, более эффективное использование потока сжатого воздуха и более равномерная очистка поверхности.

Придание детали высокой частоты вращения, при которой на загрязнения и влагу воздействует центробежная сила, достаточная для их удаления с поверхности, обеспечивает высокую эффективность очистки и способствует повышению ее качества. Указанное время обработки позволяет удалить с поверхности и те вещества, которые имеют с ней молекулярное взаимодействие. Так как сопло установлено под углом к очищаемой поверхности, то это повышает эффективность использования воздуха и обеспечивает одинаковое технологическое воздействие потока воздуха на всю очищаемую поверхность. Все это способствует достижению задачи повышения эффективности и качества процесса очистки и сушки деталей.

Сущность изобретения поясняется чертежом, где на фиг. 1 показана схема осуществления способа очистки и сушки деталей вращения.

Деталь 1 в виде кольца упорного подшипника с дорожкой качения 2 вращают вокруг его оси с частотой n. Вращение осуществляют от электропривода (не показан). Частоту вращения кольца выбирают из условия удаления с ее поверхности влаги и мелких частиц под действием возникающей центробежной силы и определяют из условия:

где n - частота вращения детали, об/с; λ - коэффициент трения загрязнений относительно обрабатываемой поверхности; g - ускорение свободного падения, мм/с2; d - диаметр очищаемой поверхности, мм.

Обычно помимо загрязнений и влаги на поверхности детали присутствуют также различные пленки, связанные с очищаемой поверхностью молекулярными связями. Они удаляются не сразу, а постепенно со временем, величину которого определяют по формуле:

где τ - потребное время обработки, с; - удельная энергия недиссоциативной адсорбции молекул жидкости на очищаемой поверхности, Дж/кг (для воды примерно равная 40 Дж/кг.).

С целью повышения эффективности и качества очистки и для обеспечения сушки на очищаемую поверхность подают очищенный от влаги сжатый воздух. Сопло, с помощью которого осуществляют подачу воздуха, располагают под углом α=30-60° к обрабатываемой поверхности. Конкретное значение угла α выбирают из условия обеспечения максимального воздействия на очищаемую поверхность и определяют экспериментально.

Воздействие трех факторов: центробежной силы, достаточного времени обработки и потока сжатого воздуха, позволяет обеспечить высокую эффективность очистки и сушки поверхности детали и повысить ее качество.

Пример. Очистке подвергали дорожку качения упорного кольца подшипника 1118-2902840, используемого в верхней опоре стойки передней подвески автомобилей ВАЗ «Калина», «Приора», «Гранта» и др. Диаметр очищаемой дорожки качения d=70 мм, ширина очищаемой дорожки качения h=5 мм. Для осуществления очистки кольцо устанавливали на оправке и придавали ему вращение. С помощью специального сопла, установленного под углом атаки 50 градусов, на поверхность дорожки против направления вращения детали подавали воздух под давлением 3-6 атмосфер. Выходное отверстие сопла устанавливали равным h=5 мм, чтобы струя воздуха концентрировалась на очищаемой поверхности.

Частоту вращения кольца определяли по формуле:

где n - частота вращения детали, об/с; λ - коэффициент трения загрязнений относительно обрабатываемой поверхности; g - ускорение свободного падения, мм/с2; d - диаметр очищаемой поверхности, мм.

В условиях примера из формулы (1) находили:

Такой частоты вращения детали было достаточно для удаления свободно лежащих на поверхности загрязнений. Для повышения надежности очистки частоту вращения детали увеличивали и принимали равной n=5 об/с.

Обычно жидкость создает недиссоциативную адсорбцию с поверхностью детали. Поэтому энергия, передаваемая жидкости в процессе очистки, должна быть больше энергии ее адсорбции на очищаемой поверхности. Исходя из этого условия определяли потребное время обработки:

где τ время обработки, с; - удельная энергия недиссоциативной адсорбции молекул жидкости на очищаемой поверхности, Дж/кг (для пленок воды примерно равная 40 Дж/кг.); d - диаметр очищаемой поверхности, мм.

Подставляя в формулу (2) исходные данные, получали:

Принимали τ=15 с.

Подача сжатого воздуха на очищаемую поверхность обеспечила дополнительное равномерное воздействие на загрязнения, а также позволила осуществлять сушку поверхности от возможных остатков влаги. Для этого из воздуха предварительно была удалена влага.

Как видно, эффективность обработки оказалась очень высокой, так как время обработки составило всего несколько секунд. После указанной обработки поверхность детали полностью была очищена от загрязнений и влаги, и поэтому деталь после очистки непосредственно передавали на сборку. Вместе с тем осуществление способа основано на использовании простых широко применяемых технических средств, что упрощает его практическое применение.

Таким образом, использование предлагаемого изобретения обеспечило:

1. Повышение качества очистки и сушки поверхности тел вращения за счет одновременного воздействия на очищаемую поверхность сразу трех факторов - центробежной силы, времени обработки, достаточного для устранения межмолекулярных связей удаляемого вещества с очищаемой поверхностью, и воздействия потока сжатого воздуха.

2. Обеспечение более равномерной очистки поверхности, так как на все ее участки воздействие указанных средств осуществляется в одинаковой степени.

3. Повышение производительности обработки за счет высокой интенсивности очистки.

4. Упрощение возможности практической реализации способа, так как для его реализации требуются простые общедоступные технические средства.

Способ очистки и сушки деталей вращения, при котором детали придают вращение и направляют на ее поверхность поток сжатого воздуха, отличающийся тем, что частоту вращения детали устанавливают достаточной для удаления мелких частиц и влаги под действием центробежной силы с очищаемой поверхности и определяют по формуле:

время очистки и сушки определяют в соответствии с зависимостью:

а сопло, с помощью которого осуществляют подачу сжатого воздуха в направлении, противоположном направлению вращения детали, устанавливают под углом к очищаемой поверхности, оказывающим максимальное воздействие на очистку поверхности, где n - частота вращения детали, об/с; λ - коэффициент трения загрязнений относительно обрабатываемой поверхности; g - ускорение свободного падения, мм/с2; d - диаметр очищаемой поверхности, мм, τ - потребное время обработки, с; wν - удельная энергия недиссоциативной адсорбции молекул жидкости на очищаемой поверхности, Дж/кг, для воды - 40 Дж/кг.



 

Похожие патенты:

Изобретение относится к способу мониторинга работы системы обработки жидкого пищевого продукта. Система обработки включает по меньшей мере одну секцию (110, 120), через которую проходят жидкие пищевые продукты в процессе их обработки и вызывают осаждение осадка в указанной секции (110, 120), и по меньшей мере один датчик (112, 114, 122, 124), выполненный с возможностью определения разности давления в указанной по меньшей мере одной секции для мониторинга удаления или осаждения указанного осадка.

Изобретение относится к машиностроению, а именно к устройствам для очистки от технологических загрязнений и сушки поверхностей деталей вращения типа колец подшипников, осей, валов, втулок, зубчатых колес.

Изобретение относится к устройствам для зачистки полых изделий от отложений и может быть использовано на складах и базах горючего при эксплуатации вертикальных резервуаров.

Изобретение относится к области энергетического машиностроения, в частности к методам промывки контурных систем атомных паропроизводящих установок (АППУ), и может быть использовано при промывке трубопроводов различных энергетических объектов, а также при ремонте энергетических и транспортных систем.

Изобретение относится к устройствам обезвреживания средств хранения и транспортирования от остатков токсичных жидкостей, в частности от ракетного горючего. Технологический комплекс, размещенный на автомобиле, содержит систему (1) удаления остатков ракетного горючего, включающую бак-накопитель (14) и самовсасывающий насос (15), подогреваемую емкость для воды (2) с насосом-дозатором (3), баки (4) и (5) с технологическими растворами и насосом-дозатором (6).

Изобретение относится к области транспортирования и хранения нефтепродуктов, в частности к очистке внутренних полостей магистральных нефтепроводов и нефтепродуктопроводов от отложений и остатков транспортировавшегося продукта перед сменой вида транспортируемого продукта.

Изобретение относится к области машиностроения и может быть использовано в ракетной, авиационной и других областях техники, в которых применяются системы, включающие баки, в частности топливные баки, основным элементом конструкции которых является обечайка вафельной структуры.

Изобретение относится к способам очистки внутренних поверхностей трубопроводов, жидкостных отопительных систем, радиаторов центрального отопления и т. п.

Изобретение относится к области безопасной очистки резервуаров для хранения нефти, нефтепродуктов и других опасных жидкостей, соприкосновение которых с воздухом недопустимо.

Изобретение относится к области строительства, а именно к способам очистки трубопроводов и стояков канализационной сети населенных пунктов и промышленных предприятий.

Изобретение относится к машиностроению, а именно к устройствам для очистки от технологических загрязнений и сушки поверхностей деталей вращения типа колец подшипников, осей, валов, втулок, зубчатых колес.

Предложены способ и устройство для снятия заусенцев струей жидкости под высоким давлением, в которых с механически обработанной детали (44) снимают заусенцы посредством воздействия струи жидкости под высоким давлением/ с высокой скоростью из струйного сопла (30) высокого давления, которое связано с контуром (32) жидкости высокого давления.

Изобретение относится к области энергетики, а именно к способу очистки технологических поверхностей (электрофильтров, скрубберов, бункеров, силосов), теплообменных поверхностей энергетического оборудования (котлов, промышленных печей), и может быть использовано для разрушения и удаления скоплений и отложений твердых, связанных и сыпучих материалов, образующихся в производственных и природных условиях.

Изобретение относится к пищевой промышленности и используется, в частности, для введения продувочного или вытеснительного газа в предназначенные для наполнения продуктами питания банки, в том числе в банки для напитков.

Изобретение относится к области машиностроения, а именно к установке очистки внутренних полостей деталей и сварных узлов со сложной формой внутренних полостей от посторонних предметов (стружки, окалины, мелких твердых частиц и т.д.), и может быть использовано в технологическом процессе изготовления газотурбинных двигателей (ГТД).

Изобретение относится к области заполнения, чистки, проникновения разблокирующего типа в закрытую или практически закрытую полость. .

Изобретение относится к трубопроводному транспорту и используется при очистке внутренней поверхности трубопроводов от органических и неорганических отложений, в том числе для очистки от загрязнений технологических трубопроводов, канализационных труб, ливневых систем и других внутренних поверхностей различных инженерных сооружений, выполненных из металлических и неметаллических материалов.

Изобретение относится к пневмоимпульсной технике и может быть использовано в различных областях народного хозяйства для импульсного воздействия на газообразные, жидкие и твердые среды.

Изобретение относится к очистке внутренней поверхности отопительных приборов от загрязнений и может быть использовано в коммунальном хозяйстве для очистки и прочистки забившихся и засорившихся радиаторов центрального отопления и стояков, автономных систем теплоснабжения.

Изобретение относится к эксплуатации железнодорожных вагонов-цистерн, предназначенных для транспортировки сжиженных углеводородных газов, и может быть использовано в стационарных условиях вагоноремонтных депо для безопасной подготовки вагона-цистерны к наливу сжиженного углеводородного газа и вагона-цистерны, требующего ремонта. Согласно способу осуществляют сброс избыточного давления остатков газа из сосуда с контролем давления с помощью измерителя давления. Далее осуществляют продувку сосуда инертным газом. Подачу инертного газа производят непосредственно или через рассеиватель со скоростью, обеспечивающей разность давлений на входе и выходе из сосуда вагона-цистерны не более 0,5 кгс/см2. Давление инертного газа, поступающего на продувку, поддерживают на уровне не менее 20 кгс/см2. Перед окончанием продувки проверятся работа скоростных клапанов, путем создания в сосуде избыточного давления 1,5-2 кгс/см2. Об окончании процесса продувки судят по величине безопасной концентрации газа, определяемой с помощью газоанализатора. При превышении безопасной концентрации газа осуществляют повторную продувку сосуда. Технический результат: уменьшение времени проведения продувки и снижение расхода инертного газа при сохранении качества подготовки железнодорожного вагона-цистерны. 3 н.п. ф-лы, 2 ил.

Изобретение относится к области машиностроения, а именно к очистке от технологических загрязнений и сушке поверхностей деталей вращения типа колец подшипников, осей, валов, втулок, зубчатых колес и др. Способ очистки и сушки деталей вращения, при котором детали придают вращение и направляют на ее поверхность поток сжатого воздуха. Частоту вращения детали устанавливают достаточной для удаления мелких частиц и влаги под действием центробежной силы с очищаемой поверхности и определяют по формуле: . Время очистки и сушки определяют в соответствии с зависимостью: где n - частота вращения детали, обс; λ - коэффициент трения загрязнений относительно обрабатываемой поверхности; g - ускорение свободного падения, ммс2; d - диаметр очищаемой поверхности, мм, τ - потребное время обработки, с; wν - удельная энергия недиссоциативной адсорбции молекул жидкости на очищаемой поверхности, Джкг. Сопло, с помощью которого осуществляют подачу сжатого воздуха в направлении, противоположном направлению вращения детали, устанавливают под углом к очищаемой поверхности, оказывающим максимальное воздействие на очистку поверхности. Технический результат: повышение качества очистки и сушки поверхности тел вращения, обеспечение более равномерной очистки поверхности, повышение производительности обработки за счет высокой интенсивности очистки, упрощение возможности практической реализации способа. 1 ил.

Наверх