Комбинированная радиальная опора

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками. Комбинированная радиальная опора содержит корпус (1) подшипника, в пазах которого установлены лепестки (2), охватывающие втулку (3), установленную на цапфе ротора (4). На внутренней поверхности цапфы ротора (4) выполнен кольцевой выступ (5), в торцевую поверхность которого упирается кольцо (6), установленное внутри цапфы ротора (4) и сопряженное с ее внутренней поверхностью. На кольце (6) шарнирно установлены рычаги (7), равномерно расположенные по окружности относительно оси вращения цапфы ротора (4), которые шарнирно связаны с ответными рычагами (8), шарнирно установленными на ответном кольце (9), расположенном внутри цапфы ротора (4) и сопряженном с ее внутренней поверхностью. В торцевую поверхность (10) ответного кольца (9) упирается подвижная втулка (11), поджатая с обратной стороны (12) осевой пружиной (13), ограниченной в осевом направлении гайкой (14), зафиксированной на наружной поверхности цапфы ротора (4). Внутренняя поверхность подвижной втулки (11) выполнена конической и контактирует с ответной конической поверхностью обоймы шарикоподшипника (15), внутреннее кольцо которого установлено на внутреннем корпусе (16), механически связанном крышкой (17) с корпусом (1) подшипника. Шарикоподшипник (15) закрыт уплотнениями (18), содержащими консистентную смазку. Технический результат: повышение ресурса опоры, снижение тепловыделения и обеспечение транспортировки турбомашины без повреждения лепесткового газодинамического подшипника. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками.

Известна опора, включающая лепестковый газодинамический подшипник, содержащая корпус подшипника, в пазах которого установлены лепестки, охватывающие втулку, установленную на цапфе ротора (патент РФ №2489615, МПК F16C 17/10, опубл. 10.08.2013).

Основным недостатком такой опоры является то, что лепестковый газодинамический подшипник работает только на рабочих частотах вращения. На режимах запуска, авторотации и пониженных частотах вращения между лепестками и валом не образуется воздушная прослойка и подшипник работает за счет механического контакта лепестков с валом, что сопровождается износом и выделением тепла. Введение износостойких покрытий на вал снижает трение, но не исключает его. Также во время транспортировки турбомашины возможна деформация лепестков из-за ударных воздействий. Следовательно, все это приводит к снижению долговечности, надежности и ресурса работы опоры.

Техническим результатом, на достижение которого направлено изобретение, является повышение ресурса опоры, снижение тепловыделения и обеспечение транспортировки турбомашины без повреждения лепесткового газодинамического подшипника.

Технический результат достигается тем, что в комбинированной радиальной опоре, содержащей корпус подшипника, в пазах которого установлены лепестки, охватывающие втулку, установленную на цапфе ротора, в отличие от известной на внутренней поверхности цапфы ротора выполнен кольцевой выступ, в торцевую поверхность которого упирается кольцо, установленное внутри цапфы ротора и сопряженное с ее внутренней поверхностью, причем на кольце шарнирно установлены рычаги, равномерно расположенные по окружности относительно оси вращения цапфы ротора, которые шарнирно связаны с ответными рычагами, шарнирно установленными на ответном кольце, расположенном внутри цапфы ротора и сопряженном с ее внутренней поверхностью, в торцевую поверхность ответного кольца упирается подвижная втулка, поджатая с обратной стороны осевой пружиной, ограниченной в осевом направлении гайкой, зафиксированной на наружной поверхности цапфы ротора, при этом внутренняя поверхность подвижной втулки выполнена конической и контактирует с ответной конической поверхностью обоймы шарикоподшипника, внутреннее кольцо которого установлено на внутреннем корпусе, механически связанном крышкой с корпусом подшипника.

Шариковый подшипник, закрыт уплотнениями, содержащими консистентную смазку.

Заявляемое решение поясняется чертежами, на которых изображены: фиг. 1 - продольный разрез опоры в нерабочем состоянии; фиг. 2 - продольный разрез опоры в рабочем состоянии.

Комбинированная радиальная опора (фиг. 1) содержит корпус подшипника 1, в пазах которого установлены лепестки 2, охватывающие втулку 3, установленную на цапфе ротора 4. На внутренней поверхности цапфы ротора 4 выполнен кольцевой выступ 5. В торцевую поверхность выступа 5 упирается кольцо 6, которое установлено внутри цапфы ротора 4 и сопряжено с ее внутренней поверхностью. На кольце 6 шарнирно установлены рычаги 7, которые равномерно расположены по окружности относительно оси вращения цапфы ротора 4. Рычаги 7 шарнирно связаны с ответными рычагами 8, шарнирно установленными на ответном кольце 9, которое расположено внутри цапфы ротора 4 и сопряжено с ее внутренней поверхностью. В торцевую поверхность 10 ответного кольца 9 упирается подвижная втулка 11, поджатая с обратной стороны 12 осевой пружиной 13. Пружина 13 ограничена в осевом направлении гайкой 14, которая зафиксирована на наружной поверхности цапфы ротора 4 при помощи, например, резьбового соединения. Внутренняя поверхность подвижной втулки 11 выполнена конической и контактирует с ответной конической поверхностью обоймы шарикоподшипника 15, внутреннее кольцо которого установлено на внутреннем корпусе 16, механически связанном крышкой 17 с корпусом подшипника 1. Также шарикоподшипник 15 закрыт уплотнениями 18, содержащими консистентную смазку.

Сборка опоры осуществляется следующим образом.

Собирается корпус подшипника 1 с лепестками 2, в который устанавливается цапфа ротора 4 с втулкой 3. Далее во внутреннюю полость цапфы ротора последовательно монтируются кольцо 6 и ответное кольцо 9 с рычагами 7 и 8. Технологически заводится внутрь цапфы ротора внутренний корпус 16 с установленным на нем шарикоподшипником 15. Далее устанавливается подвижная втулка 11, осевая пружина 13. Полученный пакет элементов фиксируется в осевом направлении гайкой 14. После этого внутренний корпус 16 скрепляется с корпусом подшипника 1 крышкой 17.

В неподвижном состоянии (фиг. 1), на режимах запуска, останова или авторотации радиальная нагрузка цапфы ротора 4 на корпус подшипника 1 осуществляется через подвижную втулку 11, обойму шарикоподшипника 15, внутренний корпус 16 и крышку 17. Это обеспечивается конической посадкой обоймы шарикоподшипника 15 с подвижной втулкой 11, которая поджата осевой пружиной 13. С увеличением частоты вращения (фиг. 2) увеличивается центробежная сила от массы рычагов 7 и 8, которые воздействуют в осевом направлении через ответное кольцо 9 на подвижную втулку 11, сжимая пружину 13. В результате отключается из работы шариковый подшипник и в работу вступает лепестковый газодинамический подшипник. Тем самым предотвращается износ лепестков на режимах запуска, останова, авторотации, а также повреждение лепестков при транспортировке турбомашины, повышается ресурс, долговечность опоры и надежность турбомашины в целом.

Таким образом, предложенная конструкция комбинированной радиальной опоры позволит повысить ресурс опоры, снизить тепловыделения и обеспечить транспортировку турбомашины без повреждения лепесткового газодинамического подшипника.

1. Комбинированная радиальная опора, содержащая корпус подшипника, в пазах которого установлены лепестки, охватывающие втулку, установленную на цапфе ротора, отличающаяся тем, что на внутренней поверхности цапфы ротора выполнен кольцевой выступ, в торцевую поверхность которого упирается кольцо, установленное внутри цапфы ротора и сопряженное с ее внутренней поверхностью, причем на кольце шарнирно установлены рычаги, равномерно расположенные по окружности относительно оси вращения цапфы ротора, которые шарнирно связаны с ответными рычагами, шарнирно установленными на ответном кольце, расположенном внутри цапфы ротора и сопряженном с ее внутренней поверхностью, в торцевую поверхность ответного кольца упирается подвижная втулка, поджатая с обратной стороны осевой пружиной, ограниченной в осевом направлении гайкой, зафиксированной на наружной поверхности цапфы ротора, при этом внутренняя поверхность подвижной втулки выполнена конической и контактирует с ответной конической поверхностью обоймы шарикоподшипника, внутреннее кольцо которого установлено на внутреннем корпусе, механически связанном крышкой с корпусом подшипника.

2. Комбинированная радиальная опора по п. 1, отличающаяся тем, что шарикоподшипник закрыт уплотнениями, содержащими консистентную смазку.



 

Похожие патенты:

Изобретение относится к области турбо- и компрессоростроения, в частности к устройству опорных сегментных подшипников скольжения, используемых для роторов высокооборотных машин.

Изобретение относится к гибридным гидродинамическим и гидростатическим жидкостным подшипникам. Втулка гибридного гидродинамического и гидростатического жидкостного подшипника прокатной клети для опоры шейки валка содержит кольцевую оболочку, имеющую внутреннюю поверхность для размещения с возможностью вращения шейки валка прокатной клети, множество выемок гидростатического вкладыша подшипника, образованных на упомянутой внутренней поверхности, и по меньшей мере один отдельный изолированный канал для смазки.

Изобретение относится к области машиностроения и может быть использовано в роторно-опорных узлах мало- и средненагруженных турбомашин, в высокочастотных бесконтактных электродвигателях, в турбогенераторах энергетических установок, в криогенных турбодетандерах установок разделения газовых смесей, в холодильных установках, а также в качестве опор, состоящих из комбинации подшипника скольжения и подшипника качения.

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор роторов высокоскоростных машин и агрегатов для обеспечения большей несущей способности при сохранении устойчивого положения ротора, нагруженного радиальными и осевыми нагрузками, при максимально высоких оборотах, а также в системах кондиционирования воздуха кабин летательных аппаратов, систем турбонадува в современном автомобилестроении и в микрогазотурбинных электроагрегатах.

Изобретение относится к опорным устройствам вала, а именно к опорным устройствам с подвижными элементами, поддерживаемым подушкой из текучей среды, и предназначено для восприятия нагрузки опорных валов погружных скважинных насосов различных типов с приводом от погружного электродвигателя.

Изобретение относится к области машиностроения и может быть применено во всех отраслях промышленности в качестве главного элемента как осевых, так и радиальных опор скольжения, работающих с принудительной подачей смазки.

Изобретение относится к устройствам для перемещения объектов (грузов) преимущественно по горизонтальной поверхности и может быть использовано в качестве подвижной опоры напольного высокоманевренного транспортного средства.

Устройство (100) содержит гидравлический цилиндр (10), устанавливаемый на нижней части тяжелого объекта таким образом, чтобы измерять вес и горизонтально транспортировать крупногабаритную структуру (300).

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками, в системах кондиционирования воздуха кабин летательных аппаратов, а также систем турбонаддува в современном автомобилестроении.

Изобретение относится к области машиностроения и предназначено для использования в высокоскоростных механизмах. Опорный подшипниковый узел включает вал (2), подшипник, в зазоре между которыми размещены лепестки, выполненные с возможностью газодинамического формирования газовой смазки, снабженный средством подвода сжатого газа в зазор (3) между валом (2) и рабочей поверхностью подшипника.

Группа изобретений относится к газотурбинному двигателестроению и может найти применение в конструкциях опор газотурбинных двигателей авиационного и наземного применения с керамическим подшипником.

Изобретение относится к устройству для создания предварительного механического напряжения, предназначенному для обеспечения механического контакта между элементами качения и их дорожкой качения. Устройство (10) для создания предварительного механического напряжения, проходящее вокруг некоторой оси (А) между первой плоскостью, по существу перпендикулярной к этой оси (А), и второй плоскостью, по существу параллельной к первой плоскости и смещенной в осевом направлении по отношению к ней.

Изобретение относится к области разработки производства, эксплуатации узлов трения - подшипников чистого качения и может быть использовано в технологических, энергетических, транспортных машинах и найти применение во всех отраслях машиностроения.

Изобретение относится к машиностроению и может быть использовано, в частности, в конически-цилиндрических зубчатых редукторах. .

Изобретение относится к области машиностроения, а в частности к многоступенчатым опорам качения. .

Изобретение относится к машиностроению, а именно к подшипникам качения, и может быть использовано в механизмах, преобразующих вращательное движение в колебательное.

Изобретение относится к машиностроению, а именно к подшипникам качения, и может быть использовано в механизмах, преобразующих вращательное движение в колебательное с меньшей частотой.

Изобретение относится к области машиностроения, а именно к подшипникам качения, и может быть использовано в механизмах, преобразующих вращательное движение в колебательное с меньшей частотой.

Изобретение относится к области машиностроения и может быть применено в конструкциях узлов высокоточного привода в машинах, работающих в условиях больших перепадов температур.

Изобретение относится к машиностроению, в частности к подшипниковым узлам, состоящим из роликовых подшипников качения и служащим опорами валов. .

Изобретение относится к области машиностроения и может быть использовано в роторно-опорных узлах мало- и средненагруженных турбомашин, в высокочастотных бесконтактных электродвигателях, в турбогенераторах энергетических установок, в криогенных турбодетандерах установок разделения газовых смесей, в холодильных установках, а также в качестве опор, состоящих из комбинации подшипника скольжения и подшипника качения.

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками. Комбинированная радиальная опора содержит корпус подшипника, в пазах которого установлены лепестки, охватывающие втулку, установленную на цапфе ротора. На внутренней поверхности цапфы ротора выполнен кольцевой выступ, в торцевую поверхность которого упирается кольцо, установленное внутри цапфы ротора и сопряженное с ее внутренней поверхностью. На кольце шарнирно установлены рычаги, равномерно расположенные по окружности относительно оси вращения цапфы ротора, которые шарнирно связаны с ответными рычагами, шарнирно установленными на ответном кольце, расположенном внутри цапфы ротора и сопряженном с ее внутренней поверхностью. В торцевую поверхность ответного кольца упирается подвижная втулка, поджатая с обратной стороны осевой пружиной, ограниченной в осевом направлении гайкой, зафиксированной на наружной поверхности цапфы ротора. Внутренняя поверхность подвижной втулки выполнена конической и контактирует с ответной конической поверхностью обоймы шарикоподшипника, внутреннее кольцо которого установлено на внутреннем корпусе, механически связанном крышкой с корпусом подшипника. Шарикоподшипник закрыт уплотнениями, содержащими консистентную смазку. Технический результат: повышение ресурса опоры, снижение тепловыделения и обеспечение транспортировки турбомашины без повреждения лепесткового газодинамического подшипника. 1 з.п. ф-лы, 2 ил.

Наверх