Уплотнительный элемент для трубопроводной арматуры

Предложен уплотнительный элемент для содержащей регулирующий элемент трубопроводной арматуры, содержащий: кольцеобразный элемент, содержащий первую часть и вторую часть, расположенные против друг друга, и сжимаемую уплотняющую часть, зафиксированную между первой и второй частями; в котором первая и вторая части содержат первую и вторую криволинейные поверхности соответственно, примыкающие к поверхности герметизации сжимаемой уплотняющей части; при этом первая и вторая криволинейные поверхности позволяют регулирующему элементу сжать уплотняющую часть до контакта с криволинейными поверхностями при движении регулирующего элемента в положение закрытия арматуры; причем радиус кривизны первой криволинейной поверхности является большим, чем радиус кривизны второй криволинейной поверхности; причем поверхность герметизации является криволинейной и имеет первый радиус кривизны и второй радиус кривизны; при этом первый радиус кривизны поверхности герметизации является практически равным радиусу кривизны первой криволинейной поверхности, а второй радиус кривизны является практически равным радиусу кривизны второй криволинейной поверхности. 6 з.п. ф-лы, 4 ил.

 

ОБЛАСТЬ ТЕХНИКИ

[0001] Данное изобретение относится к трубопроводной арматуре и, в частности, к уплотнительным элементам для использования в трубопроводной арматуре.

УРОВЕНЬ ТЕХНИКИ

[0002] Трубопроводная арматура часто используются для управления расходом жидкостей в производственных процессах. Условия производственного процесса, а именно: диапазон температур и давлений, как правило, определяют тип уплотнительного элемента, который может использоваться в трубопроводной арматуре. В условиях высоких температур часто используются металлические уплотнительные элементы, т.к. более мягкие, неметаллические уплотнительные элементы (например, из фторопласта) могут сублимироваться или воспламеняться при нагревании до температур свыше 450 градусов по Фаренгейту. Тем не менее, металлические уплотнительные элементы чаще всего не позволяют достичь герметичной отсечки (например, класса VI ANSI). Поворотный затвор с тройным эксцентриситетом позволяет достичь герметичной отсечки, находясь в условиях воздействия высоких температур, при использовании уплотнительного элемента, содержащего слоистый графитопластик, но такой затвор требует дорогостоящего, крупногабаритного исполнительного механизма для приведения в действие регулирующего элемента (например, диска) в затворе.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0003] Пример уплотнительного элемента для использования в трубопроводной арматуре включает в себя кольцеобразный элемент, состоящий из первой части и второй части. Между первой и второй частями зафиксирована сжимаемая уплотняющая часть. Первая и вторая части имеют первую и вторую криволинейные поверхности, соответственно, примыкающие к поверхности герметизации сжимаемой уплотняющей части. Криволинейные поверхности позволяет регулирующему элементу сжать уплотняющую часть до контакта с криволинейными поверхностями во время перемещения регулирующего элемента в положение закрытия.

[0004] Другой пример уплотнительного элемента для использования в трубопроводной арматуре включает в себя кольцеобразный элемент, состоящий из первой части и второй части. Первая и вторая части держат уплотняющую часть и имеют первую и вторую криволинейные поверхности, соответственно, примыкающие к поверхности герметизации уплотняющей части. Радиусы кривизны криволинейных поверхностей рассчитаны таким образом, чтобы начальная точка контакта регулирующего элемента с уплотнительным элементом находилась на поверхности герметизации во время перемещения регулирующего элемента в положение закрытия.

[0005] Другой пример уплотнительного элемента для использования в трубопроводной арматуре включает фиксирующий элемент для уплотнительного элемента. Фиксирующий элемент имеет первый и второй элемент, выполненный с возможностью обеспечить контакт регулирующего элемента с уплотнительным элементом до контакта с фиксирующим элементом.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0006] Фиг. 1 представляет собой пространственное изображение поворотного дискового затвора в частично разобранном виде с примером уплотнительного элемента.

[0007] Фиг. 2 представляет собой вид в поперечном разрезе фрагмента поворотного дискового затвора на Фиг. 1.

[0008] Фиг. 3 представляет собой увеличенный вид в поперечном разрезе примера кольцеобразного элемента, используемого с примером уплотнительного элемента на Фиг. 1.

[0009] Фиг. 4 представляет собой увеличенный вид в поперечном разрезе примера уплотнительного элемента на Фиг. 1, изображающий начальную точку соприкосновения регулирующего элемента с примером уплотнительного элемента.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0010] Несмотря на то, что следующие примеры уплотнительных элементов описываются в связи с поворотными дисковыми затворами, они могут также быть использованы с любой другой поворотной трубопроводной арматурой (например, шаровыми клапанами, поворотными регулирующими клапанами Fisher® Vee-Ball™ и т.д.). В производственных процессах, например, систем распределения нефти и газа, а также установок для химической переработки, расходом жидкостей часто управляют с помощью трубопроводной арматуры (например, поворотных дисковых затворов, шаровых клапанов и т.д.). Как правило, характеристики перекрытия трубопроводной арматуры влияют на ход и показатели производственного процесса. Обычно, трубопроводная арматура не может достичь герметичной отсечки (например, класса VI ANSI) без мягкого (напр., эластомерного) уплотнения. Тем не менее, условия производственного процесса, как правило, обусловливают тип уплотнительных элементов, которые могут быть использованы в трубопроводной арматуре. Например, уплотнительный элемент из фторопласта (ПТФЭ), позволяющий трубопроводной арматуре достичь герметичной отсечки, может воспламениться и/или сублимироваться, находясь в условиях воздействия температур свыше 450 градусов по Фаренгейту. По этой причине фторопластовые уплотнительные элементы обычно не подходят для применений в условиях высокой температуры. Металлические уплотнительные элементы, с другой стороны, обычно могут выдерживать высокие температуры, поэтому они традиционно используются в трубопроводной арматуре, которая находится в условиях воздействия высоких температур. Тем не менее, металлическое уплотнение обычно не позволяет достичь герметичной отсечки. Более того, уплотнительные свойства металлического уплотнения обычно ухудшаются при охлаждении уплотнения с повышенной температуры до температуры окружающей среды. В результате, трубопроводная арматура с металлическим уплотнением, находящаяся в условиях воздействия высоких рабочих температур, может значительно протекать при охлаждении ее до температуры окружающей среды, влияя, таким образом, на ход и показатели производственного процесса и затрудняя обслуживание трубопроводной арматуры.

[0011] Поворотный затвор с тройным эксцентриситетом позволяет достичь герметичной отсечки, если используется в условиях высокой температуры, при использовании уплотнительного элемента, сделанного из слоистого графитопластика. Как правило, уплотнительный элемент в затворе с тройным эксцентриситетом соединен с регулирующим элементом, а седло затвора является неотъемлемой частью корпуса. Для достижения герметичной отсечки регулирующий элемент в корпусе затвора приводится в движение исполнительным механизмом, который, как правило, является более крупногабаритным и дорогостоящим, чем исполнительные механизмы, применяемые с другими типами конструкции затворов.

[0012] Пример уплотнительного элемента, описанного здесь, может обеспечить герметичную отсечку (напр., класса VI) при высоких температурах в течение всего срока службы. Также, пример уплотнительного элемента может сохранять герметичную отсечку при охлаждении затвора с высокой температуры до температуры окружающей среды. Пример уплотнительного элемента включает в себя кольцеобразный элемент, состоящий из первой части и второй части, расположенной против первой части. Первая и вторая части держат уплотняющую часть. Первая и вторая части имеют первую и вторую криволинейные поверхности, соответственно, примыкающие к поверхности герметизации уплотняющей части. Первая и вторая криволинейные поверхности позволяют начальной точке контакта регулирующего элемента и уплотнительного элемента находиться на поверхности герметизации при перемещении регулирующего элемента в положение закрытия. Радиусы кривизны криволинейных поверхностей рассчитаны таким образом, чтобы обеспечить первый зазор между регулирующим элементом и первой частью, и второй зазор между регулирующим элементом и второй частью при первоначальном контакте регулирующего элемента с поверхностью герметизации.

[0013] Уплотняющая часть может быть сжимаемой. В примере уплотнительного элемента со сжимаемой уплотняющей частью первая и вторая криволинейные поверхности дают возможность регулирующему элементу сжать уплотняющую часть до контакта с первой или второй криволинейной поверхностью при движении регулирующего элемента в положение закрытия. Когда регулирующий элемент находится в положении закрытия, уплотняющая часть сжимается таким образом, чтобы уплотняющая часть и как минимум одна из криволинейных поверхностей обеспечивали уплотнение регулирующего элемента. В течение срока службы примера уплотнительного элемента уплотняющая часть изнашивается. Когда уплотняющая часть находится в изношенном состоянии, регулирующий элемент по-прежнему соприкасается с поверхностью герметизации до контакта с первой или второй криволинейной поверхностью. Тем не менее, когда регулирующий элемент находится в положении закрытия, первая криволинейная поверхность, уплотняющая поверхность и вторая криволинейная поверхность обеспечивают уплотнение регулирующего элемента.

[0014] Фиг. 1 представляет собой пространственное изображение поворотного дискового затвора 100 в частично разобранном виде, который включает в себя пример уплотнительного элемента 102. Дисковый затвор 100, показанный на фиг. 1, может подвергаться широкому диапазону температур и давлений при управлении потоком рабочих жидкостей. Затвор 100 имеет корпус 104, определяющий проход потока жидкости 106, и имеющий впуск и выпуск. Удерживающее кольцо 108 вставлено в корпус затвора 104 для фиксации примера уплотнительного элемента 102. Регулирующий элемент 110 (напр., диск, шар и т.д.) расположен в проходе потока жидкости 106. Регулирующий элемент 110 функционально связан со штоком 112, который поворачивает регулирующий элемент 110 из положения 1 (напр., положение открытия) в положение 2 (напр., положение закрытия). Регулирующий элемент 110, показанный на фиг. 1, находится в плотно закрытом положении для образования уплотнения жидкости между регулирующим элементом 110 и примером уплотнительного элемента 102.

[0015] Фиг. 2 представляет собой вид в поперечном разрезе поворотного дискового затвора 100, который включает в себя пример уплотнительного элемента 102. Пример уплотнительного элемента 102, описываемый здесь, включает в себя кольцеобразный элемент 200, соединенный (напр., лазерной сваркой, или механически, слесарно, и/или с помощью химического средства) с внутренней периферийной поверхностью 202 в достаточной степени гибкого, кольцеобразного держателя 204. При движении регулирующего элемента 110 в положение закрытия, регулирующий элемент 110 контактирует с элементом 200, что приводит к изгибу держателя 204. Сменный элемент 200 располагается на внутренней периферийной поверхности 202 держателя 204 так, чтобы сменный элемент 200 не контактировал с удерживающим кольцом уплотнения 108 или корпусом затвора 104 при изгибе держателя 204 во время работы. Сменный элемент 200 включает в себя первую часть 206 и вторую часть 208, расположенную напротив первой части 206. Первая часть 206 и вторая часть 208 держат кольцеобразную уплотняющую часть 210. Первая часть 206 может быть соединена (напр., при помощи сварки, связующего вещества, или любого подходящего соединителя) со второй частью 208 для определения величины внутреннего пространства для уплотняющей части 210. В примере уплотнительного элемента 102, показанном на фиг. 1 и 2, уплотняющая часть 210 зафиксирована между первой 206 и второй 208 частями. Как описано более детально ниже, при движении регулирующего элемента 110 в положение закрытия, начальная точка контакта 400 (фиг. 4) между регулирующим элементом 110 и элементом 200 находится на поверхности герметизации 212 уплотняющей части 210.

[0016] На виде в поперечном разрезе, представленном на фиг. 2, держатель 204 имеет фланцевую часть 214 с прямым сечением и эластичную часть 216 с криволинейным сечением. Криволинейное сечение эластичной части 216 придает эластичность держателю 204. Тем не менее, любое другое сечение или форма, придающие эластичность держателю 204, могут быть использованы. Эластичная часть 216 держателя 204 обеспечивает силу упругости по отношению к регулирующему элементу 110 и позволяет примеру уплотнительного элемента 102 следовать за регулирующим элементом 110 и поддерживать уплотнение жидкости при движении или отклонении регулирующего элемента 110 в положении закрытия в связи с изменениями технологического состояния, например, большим падением давления.

[0017] Между держателем 204 и корпусом затвора 104 существует зазор для предварительной нагрузки 218 для воздействия на пружинную силу, создаваемую держателем 204, при входе регулирующего элемента 110 в уплотнительный элемент 102. Например, увеличение зазора предварительной нагрузки 218 увеличивает пружинную силу, создаваемую держателем 204. Пружинная сила держателя 204 по отношению к регулирующему элементу 110 обеспечивает образование уплотнения жидкости между примером уплотнительного элемента 102 и регулирующим элементом 110 при движении последнего в положение закрытия. К фланцевой части 214 держателя 204 присоединены (напр., при помощи клея) две прокладки (не показаны) для создания постоянного уплотнения, чтобы предотвратить выход рабочей жидкости между корпусом затвора 104 и удерживающим кольцом затвора 108.

[0018] Фиг. 3 представляет собой увеличенное изображение в поперечном разрезе примера элемента 200, являющегося частью примера уплотнительного элемента 102 на фиг. 1. Первая часть 206 и вторая часть 208 сделаны из металла (напр., нержавеющей стали) для придания жесткости элементу 200. Уплотняющая часть 210 включает в себя три слоя 300, 302 и 304, сделанные из сжимаемого материала (напр., слоистого графитопластика) и отделенные друг от друга слоями металлической (напр., из нержавеющей стали) фольги 306 и 308, которые предотвращают адгезию и/или переход сжимаемых слоев 300, 302 и 304 к регулирующему элементу 110. Как будет более детально описано ниже, регулирующий элемент 110 сжимает уплотняющую часть 210 до контакта с первой частью 206 или со второй частью 208 при перемещении регулирующего элемента 110 в положение закрытия.

[0019] На виде в поперечном разрезе, представленном на фиг. 3, первая часть 206 и вторая часть 208 имеют форму многоугольника. Первая часть 206 имеет первую криволинейную поверхность 310, а вторая часть 208 имеет вторую криволинейную поверхность 312. Первая криволинейная поверхность 310 и вторая криволинейная поверхность 312 ориентированы так, чтобы быть обращенными к проходу потока жидкости 106. Более того, первая 310 и вторая 312 криволинейные поверхности примыкают друг к другу и находятся рядом с поверхностью герметизации 212, которая также ориентирована таким образом, чтобы быть обращенной к проходу потока жидкости 106. Поверхность герметизации 212 уплотняющей части 210 является также криволинейной. Таким образом, первая криволинейная поверхность 310, вторая криволинейная поверхность 312 и поверхность герметизации 212 образуют выпуклость, внутреннюю периферийную поверхность 314 элемента 200, которая определяет внутренний диаметр примера уплотнительного элемента 102.

[0020] Радиус кривизны первой криволинейной поверхности 310 является большим, чем радиус кривизны второй криволинейной поверхности 312. На поперечном разрезе примера элемента 200, показанном на фиг. 3, радиус кривизны первой криволинейной поверхности 310 составляет 0,242 дюйма, радиус кривизны второй криволинейной поверхности 312 составляет 0,306 дюйма. Центры кривизны 316 и 318 первой криволинейной поверхности 310 и второй криволинейной поверхности 312 составляют 0,099 дюйма и 0,075 дюйма, соответственно, от внешней поверхности 320 первой части 206, расположенной сбоку от первой криволинейной поверхности 310. Центр 316 первой криволинейной поверхности 310 находится на 0,048 дюйма дальше от внешней периферийной поверхности 322 элемента 200, чем центр 318 второй криволинейной поверхности 312. Геометрические размеры, приведенные выше, являются лишь примером, и поэтому могут быть использованы другие размеры без отступления от объема настоящего изобретения.

[0021] Поверхность герметизации 212 является также криволинейной и имеет радиус кривизны 1 и радиус кривизны 2, которые имеют центры, совпадающие с центрами 316 и 318 первой криволинейной поверхности 310 и второй криволинейной поверхности 312, соответственно. Также, радиусы кривизны поверхности герметизации 212 практически равны радиусам первой 310 и второй 312 криволинейной поверхности, соответственно. Таким образом, часть поверхности герметизации 212 с радиусом кривизны 1 прилегает к первой криволинейной поверхности 310, а часть поверхности герметизации 212 с радиусом кривизны 2 прилегает ко второй криволинейной поверхности 312. На фиг. 3 средняя точка 324 поверхности герметизации 212 находится на пересечении радиусов кривизны 1 и 2 поверхности герметизации 212, чтобы поверхность герметизации 212 находилась по ходу движения регулирующего элемента 110 так, чтобы регулирующий элемент 110 контактировал с поверхностью герметизации 212 до контакта с первой криволинейной поверхностью 310 или второй криволинейной поверхностью 312 при движении в положение закрытия. Как будет более подробно указано ниже, первая 310 и вторая 312 криволинейная поверхности дают возможность регулирующему элементу 110 сжать уплотняющую часть 210 до контакта с первой частью 206 или второй частью 208 для образования уплотнения жидкости, достигающего герметичной отсечки (напр., класса VI ANSI).

[0022] Фиг. 4 изображает увеличенный вид в поперечном разрезе регулирующего элемента 110, контактирующего с примером уплотнительного элемента 102, изображенным на фиг. 1. Как показано на фиг. 4, радиусы кривизны первой 310 и второй 312 криволинейных поверхностей рассчитаны так, чтобы начальная точка контакта 400 между регулирующим элементом 110 и элементом 200 была на поверхности герметизации 212 при движении регулирующего элемента 110 в положение закрытия. При первоначальном контакте регулирующего элемента 110 с поверхностью герметизации 212 радиусы кривизны первой 310 и второй 312 криволинейных поверхностей обеспечивают первый зазор 402, между регулирующим элементом 110 и первой частью 206, и второй зазор 404, между регулирующим элементом 110 и второй частью 208. Второй зазор 404 может быть, как минимум, в два раза больше, чем первый зазор 402. В примере уплотнительного элемента 102, показанном на фиг. 4, первый зазор 402 составляет 0,004 дюйма, а второй зазор 404 составляет 0,008 дюйма. Тем не менее, могут применяться другие зазоры без отступления от объема настоящего изобретения. В дополнение к этому, радиусы кривизны первой криволинейной поверхности 310 и второй криволинейной поверхности 312 дают возможность соответствующей первой части 206 и второй части 208 поддерживать и сжимать уплотняющую часть 210 для предотвращения значительной деформации уплотняющей части 210 под действием потока жидкости. Если радиусы кривизны первой 310 и второй 312 криволинейных поверхностей являются слишком короткими, первая часть 206 и вторая часть 208 могут недостаточно поддерживать и сжимать уплотняющую часть 210 для предотвращения значительной деформации уплотняющей части 210 под действием потока жидкости.

[0023] После того, как регулирующий элемент 110 соприкасается с поверхностью герметизации 212, держатель 204 отклоняется во время продолжения движения регулирующего элемента 110 в положение закрытия. Сила упругости держателя 204 по отношению к силе регулирующего элемента 110, двигающегося в положение закрытия, вызывает сжатие уплотняющей части 210 регулирующим элементом 110, образуя, таким образом, уплотнение жидкости между уплотнительной поверхностью 212 и регулирующим элементом 110. Сжатие уплотняющей части 210 позволяет уплотнительному элементу 102 достичь герметичной отсечки (напр., класса VI ANSI) между уплотнительным элементом 102 и регулирующим элементом 110.

[0024] Когда регулирующий элемент 110 достигает закрытого положения, регулирующий элемент 110 задействует поверхность герметизации 212 и, по меньшей мере, одну из криволинейных поверхностей 310 и 312. В примере уплотнительного элемента 102, показанном на фиг. 4, регулирующий элемент 110 сжимает уплотняющую часть 210 и задействует поверхность герметизации 212, а также первую криволинейную поверхность 310 при нахождении в положении закрытия.

[0025] В течение срока службы примера уплотнительного элемента 102, описываемого здесь, регулирующий элемент 110 может взаимодействовать с поверхностью герметизации 212 десятки тысяч раз. Со временем, уплотняющая часть 210 приходит в изношенное состояние. В результате, начальная точка контакта 400 между регулирующим элементом 110 и элементом 200 перемещается вдоль внутренней периферийной поверхности 314 элемента 200. Тем не менее, первая и вторая криволинейные поверхности 310 и 312 позволяют начальной точке контакта 400 между регулирующим элементом 110 и элементом 200 оставаться на поверхности герметизации 212 в течение всего срока службы уплотнительного элемента 102. Поэтому, несмотря на возможное уменьшение первого 402 и второго 404 зазоров при изнашивании уплотняющей части 210, первая криволинейная поверхность 310 и вторая криволинейная поверхность 312 позволяют регулирующему элементу 110 избежать контакта с первой 206 и второй 208 частями до взаимодействия регулирующего элемента 110 с поверхностью герметизации 212.

[0026] При нахождении регулирующего элемента 110 в положении закрытия и износе уплотняющей части 210 регулирующий элемент 110 сжимает уплотняющую часть 210 и взаимодействует с поверхностью герметизации 212, а также первой 310 и второй 312 криволинейными поверхностями. Таким образом, регулирующий элемент 110 может взаимодействовать с уплотняющей частью 210, чтобы дать возможность примеру уплотнительного элемента 102 достигнуть герметичной отсечки (напр., класса VI) при высокотемпературных применениях в течение срока службы примера уплотнительного элемента 102. Также, пример уплотнительного элемента 102 не может рассчитывать на вторичную поверхность герметизации, а также ни одной частью примера уплотнительного элемента 102 нельзя пренебрегать. В дополнение к этому, пример уплотнительного элемента 102 может поддерживать герметичную отсечку при охлаждении примера уплотнительного элемента 102 с высокой температуры до температуры окружающей среды.

[0027] Несмотря на то, что здесь был описан определенный пример устройства, объем запатентованного изобретения им не ограничивается. Напротив, данный патент защищает все устройства, подпадающие под действие формулы изобретения.

1. Уплотнительный элемент для содержащей регулирующий элемент трубопроводной арматуры, содержащий:

кольцеобразный элемент, содержащий первую часть и вторую часть, расположенные против друг друга, и сжимаемую уплотняющую часть, зафиксированную между первой и второй частями; в котором первая и вторая части содержат первую и вторую криволинейные поверхности соответственно, примыкающие к поверхности герметизации сжимаемой уплотняющей части; при этом первая и вторая криволинейные поверхности позволяют регулирующему элементу сжать уплотняющую часть до контакта с криволинейными поверхностями при движении регулирующего элемента в положение закрытия арматуры;

причем радиус кривизны первой криволинейной поверхности является большим, чем радиус кривизны второй криволинейной поверхности;

причем поверхность герметизации является криволинейной и имеет первый радиус кривизны и второй радиус кривизны; при этом первый радиус кривизны поверхности герметизации является практически равным радиусу кривизны первой криволинейной поверхности, а второй радиус кривизны является практически равным радиусу кривизны второй криволинейной поверхности.

2. Уплотнительный элемент по п. 1, отличающийся тем, что криволинейные поверхности выполнены с возможностью обеспечить первый зазор между регулирующим элементом и первой частью и второй зазор между регулирующим элементом и второй частью при первом контакте регулирующего элемента с поверхностью герметизации; причем первый зазор является меньшим, чем второй зазор.

3. Уплотнительный элемент по п. 1 или 2, отличающийся тем, что сменный элемент соединен с преимущественно эластичным кольцеобразным держателем.

4. Уплотнительный элемент по п. 1 или 2, отличающийся тем, что первая часть соединена со второй частью с возможностью ограничения внутреннего пространства для уплотняющей части.

5. Уплотнительный элемент по п. 1, отличающийся тем, что центр первого радиуса кривизны поверхности герметизации совпадает с центром радиуса кривизны первой криволинейной поверхности.

6. Уплотнительный элемент по п. 5, отличающийся тем, что центр второго радиуса кривизны поверхности герметизации совпадает с центром радиуса кривизны второй криволинейной поверхности.

7. Уплотнительный элемент по п. 6, отличающийся тем, что уплотняющая часть включает в себя три слоя сжимаемого материала, отделенные друг от друга слоями металлической фольги.



 

Похожие патенты:

Изобретение относится к машиностроению, в частности к регулирующей трубопроводной арматуре, предназначенной для перекрытия и регулирования потока проходящей среды.

Изобретение относится к машиностроению, а именно к финишным технологическим операциям, которые могут быть использованы для обработки уплотнительных поверхностей затворного узла запорной трубопроводной арматуры, как в основном производстве, так и ремонтом.

Изобретение относится к трубопроводному арматуростроению и предназначено для установки в качестве запорных устройств на технологических линиях газовых, химических, нефтеперерабатывающих, целлюлозно-бумажных и других производств с жидкими, газообразными, в том числе агрессивными, рабочими средами, кристаллизующимися при понижении температуры, где по условиям эксплуатации необходим подогрев рабочей среды во избежание застывания.

Изобретение относится к арматуростроению, в частности к регулирующим клапанам осевого потока, применяемым в промышленной трубопроводной арматуре, и предназначено для регулирования и перекрытия рабочих сред жидкостей и газов.

Изобретение относится к арматуростроению и предназначено для использования, например, в устройствах пневматической аппаратуры. Корпус клапана шарового запорного выполнен с внутренней полостью, со сквозными радиальными цилиндрическими отверстиями, поверхность которых контактирует с фиксирующими элементами, и стопорным элементом, жестко зафиксированным со стороны наружной ступенчатой боковой поверхности корпуса.

Изобретение относится к машиностроению, в частности к регулирующей трубопроводной арматуре, предназначенной для перекрытия и регулирования потока проходящей среды.

Изобретение относится к воздухоплаванию. Комбинированный газовый клапан дирижабля имеет корпус с отверстием проточной части для пропуска газа, тарелку клапана с герметичным посадочным поясом, механизм управления открытием и закрытием тарелки клапана.

Изобретение относится к области машиностроения, в частности к гидропневмоавтоматике, и предназначено для управления подачей рабочей жидкости к исполнительным сервомеханизмам в гидро- или пневмоприводах различных машин.

Изобретение относится к арматуростроению и предназначено для использования при разработке устройств для систем перекрытия и сброса давления в коммуникациях. Клапан запорный игольчатый картриджного монтажа содержит корпус, состоящий из двух взаимодействующих между собой частей.

Изобретение относится к трубопроводной арматуре, предназначенной для регулирования давления и расхода на нагнетательных трубопроводах, и может быть использовано в газовой, нефтяной, химической и металлургической промышленности при регулировании процессов перекачки жидких и газовых сред.

Группа изобретений относится к арматуростроению и предназначена в качестве уплотнительной вставки для седла шарового крана. Уплотнительная вставка имеет многослойную структуру, в которой слои графита чередуются с металлическими листами. Металлические листы представляют собой, например, листы стали. Наружные части уплотнительной вставки образованы графитовыми слоями. Имеются варианты выполнения седла шарового крана с такой уплотнительной вставкой и шаровой кран с таким седлом. Группа изобретений направлена на повышение герметичности шарового крана, в особенности в условиях работы при высокой температуре и при наличии текучих сред, которые содержат взвешенные в них твердые частицы. 3 н. и 28 з.п. ф-лы, 4 ил.

Изобретение относится к клапану высокого давления, к установке для обработки высоким давлением продуктов в камере высокого давления, причем продукты, подвергаемые воздействию среды высокого давления, обрабатываются давлением до 10000 бар, содержащему корпус (1) с впускным отверстием (2) и выпускным отверстием (3), седло (4) между впускным отверстием (2) и выпускным отверстием (3), причем седло (4) имеет впускную сторону (4a) и выпускную сторону (4b), и впускная сторона (4a) образует впускное отверстие (2), расточку (8) внутри седла (4), через которую в открытом состоянии клапана среда высокого давления течет от впускного отверстия (2) к выпускному отверстию (3), шток (5), причем вершина (6) штока (5) образует часть штока (5), причем в закрытом состоянии клапана вершина (6) штока (5) герметизирует седло (4) от его впускной стороны (4a) до выпускной стороны (4b), причем вершина (6) штока (5) содержит конусообразный конец (11) и хвостовик (12), седло (4) имеет концентричную раззенковку (10), причем концентричная раззенковка (10) имеет в направлении впускной стороны (4a) седла (4) коническую поверхность (13), концентричная раззенковка (10) имеет в направлении выпускной стороны (4b) седла (4) ответную хвостовику (12) поверхность (15) цилиндрической или конической формы с углом наклона до 6° по отношению к оси седла (4), причем в закрытом состоянии клапана конусообразный конец (11) вершины (6) штока (5) герметизирует коническую поверхность (13) раззенковки (10) клапана (4), а хвостовик (12) вершины (6) штока (5) образует с ответной хвостовику (12) поверхностью (15) зазор. 8 з.п. ф-лы, 3 ил.

Насос // 2629859
Изобретение относится к устройствам для перекачивания густых и газосодержащих жидкостей с абразивами, в частности к поршневым насосам, в частности к буровым и нефтепромысловым насосам. Насос содержит корпус с нагнетательным коллектором и всасывающей полостью и приводом. В корпусе выполнено одно отверстие для размещения одного цилиндра, закрепленного в отверстии с возможностью его фиксации. Внутри цилиндра, с образованием рабочей и штоковой полостей, размещен поршень, связанным со штоком, снабженным буртом и пропущенным через центральное отверстие в донной части цилиндра. Всасывающий клапан выполнен в виде охватывающей поршень втулки с горловиной и установлен в цилиндре, с образованием кольцевого канала, с размещенными в донной и средней частях цилиндра, направляющими втулками. Соосно всасывающему и нагнетательному клапанам, между ними, установлено разъемное седло, включающее верхнее, среднее и нижнее кольца. В среднем кольце с образованием буртов выполнены кольцевые углубления, в которые установлены верхнее и нижнее кольца с образованием кольцевых канавок. В канавках, ширина основания которых больше ширины их проема на входе, установлены уплотнительные элементы. Повышается герметичность клапанов при одновременном снижении трудоемкости их обслуживания. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области трубопроводной арматуры, в частности к малошумным клапанам с эластичными элементами, и может быть использовано в судостроительной, нефтехимической и других отраслях промышленности. Технический результат, на который направлено заявленное изобретение, заключается в повышении надежности работы дросселя и в снижении вибрации и шума, вызываемых потоком, а также в возможности использовать дроссель в реверсивном потоке. Технический результат достигается за счет того, что в дросселе используется ограничитель расширения эластичного элемента, который за счет своей формы и материала одновременно обеспечивает надежное ограничение расширения и снижение шума и вибрации. Дроссель по первому варианту содержит корпус, формирующий проходной канал, установленный в проходном канале сердечник с эластичным элементом, по меньшей мере один ограничитель деформации эластичного элемента, выполненный цилиндрическим с продольными каналами и углублением в форме усеченного конуса со стороны, обращенной к эластичному элементу. По второму варианту вместо ограничителя с продольными каналами используется сплошной ограничитель из пористого глушащего материала. Дроссель по третьему варианту содержит корпус, формирующий проходной канал, эластичный элемент, установленный во внутренней стенке корпуса, установленный в проходном канале сердечник, по меньшей мере один ограничитель деформации эластичного элемента, выполненный цилиндрическим с продольными каналами и выступом в форме усеченного конуса со стороны, обращенной к сердечнику. В четвертом варианте используется компоновка третьего варианта, при этом вместо ограничителя с продольными каналами используется сплошной ограничитель из пористого глушащего материала, например из прессованной проволоки. 4 н. и 21 з.п. ф-лы, 6 ил.

Устройство для предотвращения вращения для гидравлического клапана содержит фиксатор, предотвращающий вращение, жестко присоединенный к элементу регулирования потока, жестко присоединенному к штоку клапана гидравлического клапана для функционирования как одна сборка, и приспособление для предотвращения вращения, выполненное с возможностью сцепления с фиксатором, предотвращающим вращение, причем приспособление для предотвращения вращения содержит первую поверхность сцепления, выполненную с возможностью сцепления со второй поверхностью сцепления фиксатора для предотвращения вращения для препятствования вращению фиксатора, предотвращающего вращение относительно продольной оси данного фиксатора при расположении фиксатора в клапане. 17 з.п. ф-лы, 4 ил.

Описывается кольцо (8) седла клапана и многоходовой клапан, имеющий кольцо (8) седла клапана. Многоходовой клапан содержит верхнюю часть (1) корпуса клапана, нижнюю часть (2) корпуса клапана и поворотную среднюю часть (3) клапана, в котором кольцо (8) седла клапана находится в поворотной средней части (3) клапана, кольцо (8) седла клапана содержит корпус (10). Корпус (10) снабжен проходящим внутрь сквозным отверстием (18), первый кольцевой выступ (13) располагается на наружной стенке (11) корпуса (10) и второй кольцевой выступ (14) располагается на внутренней стенке (12); верхние поверхности первого кольцевого выступа (13) и второго кольцевого выступа (14) соответственно находятся на одном уровне с верхней поверхностью корпуса (10), образуя уплотнительную поверхность (15), которая примыкает к уплотнительной поверхности (9) верхней части (1) корпуса клапана герметичным образом; и между нижней поверхностью первого кольцевого выступа (13) и поворотной средней частью (3) клапана образуется кольцевой зазор, благодаря чему жидкость в камере (4) и канале (5) поступающей нефти соответственно действует на нижнюю поверхность первого кольцевого выступа (13) или второго кольцевого выступа (14), создавая уплотняющую нагрузку. Давление прикладывается или из камеры (4) или из дозирующего отверстия (6), уплотняющая нагрузка, гидравлически действующая на кольцо (8) седла клапана, создается гидравлической действующей силой камеры (4) или дозирующего отверстия (6), и реализуется гидравлическое саморегулирование для уплотнения кольца (8) седла клапана, таким образом выполняя требование уплотнения в многоходовом клапане на уровне герметичности уровня уплотнения VI при высокой разнице давления. 2 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится, в общем, к клапану регулирования давленияи, в частности к штоку клапана регулирования давления и узлу шток клапана/седло клапана. Клапан содержит корпус клапана, ограничивающий камеру давления; седло клапана, прикрепленное к корпусу клапана; и шток клапана, расположенный с возможностью скольжения в седле клапана. Причем шток клапана содержит первую часть, которая отстоит от внутренней поверхности седла клапана, тем самым образуя первый канал для текучей среды, и вторую часть, которая проходит аксиально от одного конца первой части и находится в направляемом зацеплении с внутренней поверхностью седла клапана, тем самым образуя второй канал для текучей среды. При этом зона циркуляции первого канала для текучей среды меньше зоны циркуляции второго канала для текучей среды. Таким образом, снижается вероятность обледенения входной части седла клапана, упрощается направляющая конструкция клапана. 8 з.п. ф-лы, 8 ил.

Изобретение относится к технологическим процессам. Способ мониторинга устройства управления процессом, реализуемый в системе мониторинга устройства управления процессом, включает измерение параметров рабочих состояний устройства управления процессом. Связь метки времени с параметрами рабочего состояния устройства управления процессом осуществляют в ответ на сигнал, основывающийся на измерениях возможных рабочих состояний. Сигнал указывает на неконтролируемый выброс в окружающую атмосферу. Передают метку времени и указания о рабочих состояниях мониторинга. Клапанная сборка управления процессом содержит клапан для управления процессом; датчик положения части клапана и систему мониторинга. Система мониторинга клапана содержит процессор, энергонезависимый накопитель памяти и интерфейс связи для передачи данных от системы мониторинга клапана. Повышается точность расчета выбросов. 2 н. и 22 з.п. ф-лы, 5 ил.

Изобретение касается клапана (1) регулирования расхода для жидкостных установок отопления или охлаждения, состоящего из корпуса (2), имеющего впуск (3), выпуск (4) и расположенный между ними соединительный патрубок (13), в который вставлено устройство (14) регулирования давления, поддерживающее постоянную разность давлений между областями давлений перед и после расположенного в соединительном патрубке узла (8) регулирования расхода, а также шпиндель (7), имеющий выдающийся из корпуса (2) элемент управления и находящийся в корпусе (2) первый дроссельный элемент (9), который воздействует на узел регулирования расхода или на его части. Этот узел (8) регулирования расхода состоит из первого дроссельного устройства, которое образовано из закрепленного на шпинделе (7) первого дроссельного элемента (9) и седла (10), и второго дроссельного устройства, которое образовано из установленного на шпинделе (7) с возможностью продольной перестановки по нему второго дроссельного элемента (11) и седла. Второй дроссельный элемент (11) выполнен с возможностью движения в направлении первого дроссельного элемента (9). В результате клапан имеет более простую конструкцию и занимает меньшее пространство. 3 н. и 26 з.п. ф-лы, 11 ил.

Изобретение относится к области трубопроводной арматуры и может быть использовано в качестве запорной арматуры, в том числе в устройствах для разбора воды, преимущественно в водоразборных колонках. Запорный нажимной клапан содержит корпус со сквозным каналом, входной и выходной патрубки, запорный орган со штоком, седло запорного органа, нажимное средство для линейного перемещения штока запорного органа, возвратную пружину. Клапан дополнительно содержит металлическую сильфонную камеру, размещенную вокруг выступающей части штока запорного органа, при этом возвратная пружина размещена внутри сильфонной камеры. Выходной патрубок размещен в боковой стенке корпуса с возможностью прохождения выходящего из корпуса потока рабочей среды через сильфонную камеру. Нажимное средство выполнено в виде нажимной пятки с шарнирным винтом. Технический результат заключается в повышении надежности запорного нажимного клапана. 4 з.п. ф-лы, 2 ил.

Предложен уплотнительный элемент для содержащей регулирующий элемент трубопроводной арматуры, содержащий: кольцеобразный элемент, содержащий первую часть и вторую часть, расположенные против друг друга, и сжимаемую уплотняющую часть, зафиксированную между первой и второй частями; в котором первая и вторая части содержат первую и вторую криволинейные поверхности соответственно, примыкающие к поверхности герметизации сжимаемой уплотняющей части; при этом первая и вторая криволинейные поверхности позволяют регулирующему элементу сжать уплотняющую часть до контакта с криволинейными поверхностями при движении регулирующего элемента в положение закрытия арматуры; причем радиус кривизны первой криволинейной поверхности является большим, чем радиус кривизны второй криволинейной поверхности; причем поверхность герметизации является криволинейной и имеет первый радиус кривизны и второй радиус кривизны; при этом первый радиус кривизны поверхности герметизации является практически равным радиусу кривизны первой криволинейной поверхности, а второй радиус кривизны является практически равным радиусу кривизны второй криволинейной поверхности. 6 з.п. ф-лы, 4 ил.

Наверх