Лопасть вентилятора турбореактивного двигателя, вентилятор турбореактивного двигателя и турбореактивный двигатель

Лопасть вентилятора турбореактивного двигателя содержит хвостовик, концевую часть, переднюю и заднюю кромки. Передняя кромка лопасти имеет угол стреловидности, больший чем или равный +28° на участке лопасти, который расположен на радиальной высоте, лежащей в диапазоне от 60% до 90% от общей радиальной высоты лопасти, измеренной от ее хвостовика в направлении ее концевой части. Угол стреловидности передней кромки представляет разность, меньшую чем 10° между минимальным углом стреловидности, измеренным на радиальной высоте минимального угла стреловидности на участке лопасти, лежащем в диапазоне от 20% до 90% от радиальной высоты лопасти, и углом стреловидности, измеренным на радиальной высоте, которая на 10% больше, чем упомянутая радиальная высота минимального угла стреловидности. Другие изобретения группы относятся к вентилятору турбореактивного двигателя и турбореактивному двигателю, включающим множество указанных выше лопастей. Группа изобретений позволяет повысить аэродинамические, акустические и механические характеристики лопасти вентилятора турбореактивного двигателя. 3 н. и 2 з.п. ф-лы, 4 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к общей области лопастей для вентилятора турбореактивного двигателя. Более конкретно изобретение относится к их форме.

Подготовка лопасти вентилятора турбореактивного двигателя должна удовлетворять различным многофункциональным критериям. Лопасть вентилятора сконструирована, чтобы оптимизировать ее эффективность и ее тягу (в частности, производительность расхода на высокой скорости), в то же время гарантируя ей высокую механическую прочность, в частности, на высоких скоростях вращения, на которых механические напряжения, которым подвергается лопасть, являются самыми жесткими. Конструкция лопасти вентилятора также должна соответствовать целевым значениям шума, определенным в различных рабочих точках, описанным в современных стандартах.

Было предложено множество форм лопастей вентилятора. Они обычно отличаются накапливаемой связью для ведущих кромок своих профилей и изменением угла поворота передней кромки, для улучшения аэродинамических характеристик лопасти и снижения шума, производимого вентилятором. В качестве примера можно упомянуть публикацию ЕР 1452741, которая описывает конкретную повернутую форму лопасти для вентилятора турбореактивного двигателя или компрессора.

Задачей настоящего изобретения является разработка формы лопасти вентилятора, обеспечивающей существенное улучшение аэродинамики по сравнению с предшествующим уровнем техники, в частности характерного расхода, а также механических и акустических характеристик.

Согласно изобретению, эта задача решается лопастью вентилятора турбореактивного двигателя, содержащей хвостовик, концевую часть, переднюю кромку и заднюю кромку, причем передняя кромка лопасти имеет угол стреловидности, больший или равный +28° на участке лопасти, который расположен на радиальной высоте, лежащей в диапазоне от 60% до 90% от общей радиальной высоты лопасти, измеренной от ее хвостовика в направлении ее концевой части, причем угол стреловидности передней кромки имеет разность менее 10° между минимальным углом стреловидности, измеренным на радиальной высоте минимального угла стреловидности на участке лопасти, лежащем в диапазоне от 20% до 90% от радиальной высоты лопасти, и углом стреловидности, измеренным на радиальной высоте, которая на 10% больше, чем упомянутая радиальная высота минимального угла стреловидности, причем угол стреловидности передней кромки является положительным на участке лопасти, который расположен на радиальной высоте, лежащей в диапазоне от 0% до 15% от общей радиальной высоты лопасти. Значение, составляющее по меньшей мере +28° в точке перехода прямой стреловидности, которая соответствует точке передней кромки, в которой стреловидность изменяется на обратную для обратного поворота ведущей кромки, позволяет лопасти достигать максимального характерного расхода, превосходящего 210 килограммов в секунду на квадратный метр (кг/с/м2) с существенной работоспособностью для двигателя, то есть ограничивая увеличение угла атаки профилей без ухудшения настраиваемых устройств (изменяемый шаг, сопло, …). Его местоположение выше чем 60% от общей радиальной высоты лопасти выбирается из-за необходимости приспособления напряжений и акустических ограничений, которым подвергается лопасть. Механическое равновесие, требуемое для снижения напряжений при номинальной работе (срок службы области лопасти под каналом ступицы, продолжительные контактные поверхности между лопастью и диском), а также в экстремальных условиях (способность выдерживать заглатывание тяжелых птиц, высокие уровни вибрации), а также ограничения работоспособности, которые предотвращают слишком большое уменьшение хорды на концевом участке, накладывают ограничение на возможную амплитуду колебаний центра тяжести на высоте лопасти, и более того, на нижних 50%, где главным образом присутствуют напряжения. Расположение этой точки передней кромки, в которой стреловидность изменяется на обратную для обратного поворота ведущей кромки на радиальной высоте, меньшей чем 90% от общей радиальной высоты лопасти, служит для предотвращения чрезмерной обратной стреловидности в концевых секциях (то есть секциях, близких к корпусу, окружающему вентилятор) относительно нижних секций, чтобы гарантировать аэромеханическую стабильность лопасти.

Более того, ограничение в 10° для разности угла стреловидности передней кромки между радиальной высотой минимального угла стреловидности, расположенного в участке лопасти, лежащем в диапазоне от 20% до 90% от радиальной высоты лопасти, и углом поворота, измеренным на радиальной высоте, которая на 10% больше, чем радиальная высота минимального угла стреловидности, служит для улучшения акустических характеристик лопасти, получаемых за счет существенного уменьшения распространения турбулентности при ее запуске для рабочих точек при неполной тяге. Таким образом, только поведение (в терминах расхода, эффективности и звука) вторичного потока принимается во внимание (где вторичный поток обычно лежит в диапазоне от 20% до 100% от радиальной высоты лопасти).

Изобретение позволяет улучшить аэродинамические, акустические и механические характеристики лопасти.

Стреловидностью называется, по определению, отвод назад (положительная) или вперед (отрицательная) концевой хорды аэродинамической поверхности лопасти лопатки.

Передняя кромка может иметь отрицательный угол стреловидности (то есть стреловидность, направленная вперед) в нижней части лопасти, расположенной в диапазоне от 15% до 50%, причем разность между углом стреловидности передней кромки, составляющая менее 10°, на уровне радиальной высоты, соответствующей точке перехода прямой стреловидности, которая соответствует точке передней кромки, в которой стреловидность изменяется на обратную, и которая расположена непосредственно над высотой минимальной стреловидности, и углом стреловидности, измеренным на радиальной высоте, на 10% превышает радиальную высоту, соответствующую точке перехода прямой стреловидности. В предпочтительном варианте осуществления изобретения разность между максимальным значением абсциссы центра тяжести секций лопасти, расположенных над минимальной точкой абсциссы, и значением абсциссы центра тяжести секции лопасти, соответствующей минимальной точке абсциссы, меньше или равна 20% осевой хорды лопасти, измеренной в ее хвостовике. Преимущество такой реализации состоит в том, что она ограничивает момент лопасти и уравновешивает его, в частности, чтобы ограничить изгибающие моменты аэродинамического профиля на хвостовике лопасти.

Изобретение также относится к вентилятору турбореактивного двигателя и турбореактивному двигателю, включающему в себя множество лопастей, как определено выше.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Другие характеристики и преимущества настоящего изобретения приведены в нижеследующем описании, со ссылкой на прилагаемые чертежи, относящиеся к варианту осуществления, не имеющего ограничивающего характера, на которых:

фиг. 1 изображает частичный вид в продольном сечении секции вентилятора турбореактивного двигателя, содержащего лопасти согласно изобретению;

фиг. 2 - схему определения угла стреловидности;

фиг. 3 - профиль угла стреловидности передней кромки лопасти

согласно изобретению; и

фиг. 4 - проекцию на плоскость меридиана линии, проходящей через центры тяжести секций лопасти согласно изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение применимо к любой лопасти вентилятора турбореактивного двигателя, такой как лопасти, показанной на фиг. 1. Этот чертеж показывает фрагмент вентилятора 2 турбореактивного двигателя, содержащего множество лопастей 4 согласно изобретению, которые расположены на одинаковых расстояниях друг от друга вокруг продольной оси Х-Х турбореактивного двигателя, ориентированной в направлении воздушного потока, проходящего через вентилятор. Каждая лопасть 4 закреплена посредством хвостовика 6 на диске (или ступице) 8, который приводится во вращение вокруг продольной оси Х-Х турбореактивного двигателя в направлении стрелки F. Каждая лопасть может также содержать платформу 10, которая формирует часть внутренней стенки, определяющую внутреннюю сторону канала для потока холодного воздуха 12, проходящего через вентилятор. Стенка 14 корпуса, окружающего вентилятор, формирует наружную стенку, которая определяет наружную сторону того же самого канала.

В приведенном ниже описании для каждой лопасти 4 радиальная ось Z-Z определяется как перпендикуляр к продольной оси Х-Х, проходящий через центр тяжести секции, в которой лопасть пересекает внутреннюю стенку канала холодного воздушного потока. Касательная ось Y-Y (не показанная на чертежах) формирует правую прямоугольную систему координат вместе с осями Х-Х и Z-Z. Как показано на фиг. 1, каждая лопасть 4 содержит множество секций 16, определенных там, где лопасть пересекает плоскости, перпендикулярные радиальной оси Z-Z, с центрами тяжести, которые располагаются вдоль линии центров тяжести Cg.

Каждая лопасть 4 также расположена в радиальном направлении между хвостовиком 18 и концевой частью 20 и в продольном направлении между передней кромкой 22 и задней кромкой 24. Лопасть также закручена от своего хвостовика 18 к своей концевой части с возможностью сжатия холодного воздушного потока 12, проходящего через вентилятор во время работы.

В дальнейшем описании минимальная радиальная высота лопасти, равная 0%, определяется как соответствующая точке пересечения передней кромки лопасти с внутренней стенкой, определяющей внутреннюю сторону канала для холодного воздушного потока, а максимальная радиальная высота лопасти, равная 100%, определяется как соответствующая точка, в которой линия передней кромки радиально находится дальше всего от оси. Согласно изобретению, передняя кромка лопасти образует угол стреловидности, больший чем или равный +28° на участке лопасти, расположенном на радиальной высоте, лежащей в диапазоне от 60% до 90% от общей радиальной высоты лопасти, измеренной от ее хвостовика в направлении ее концевой части.

Как показано на фиг. 2, угол стреловидности обозначает угол, сформированный в точке на передней кромке 22 лопасти 4 между касательной Т к передней кромке и линией W, перпендикулярной вектору относительной скорости; указанная линия W, лежащая в плоскости Р, содержит как касательную Т, так и вектор относительной скорости. Указанный угол измеряется в плоскости Р.

Когда угол, сформированный между вектором (касательная, ориентированная в направлении увеличения радиуса) и вектором (ориентированным в направлении увеличения радиуса), положителен (как показано на фиг. 2), принято считать, что передняя кромка повернута назад. Напротив, когда угол α отрицателен, принято считать, что передняя кромка повернута вперед. Это определение соответствует и идентично определению, приведенному более точно в публикации авторов Leroy Н. Smith и Hsuan Yen, озаглавленной «Sweep and dihedral effects in axial-flow turbomachinery (Поворотные и двугранные эффекты в турбомашиностроении с осевым потоком)» (опубликованной в журнале базового инженерного дела (Journal of Basic Engineering) в сентябре 1963, стр. 401). Все значения, приводимые в настоящей заявке, рассчитываются в соответствии с формулами, подробно показанными в этой публикации.

Линия 26, показанная на фиг. 3, показывает пример того, как угол стреловидности передней кромки лопасти согласно изобретению меняется как функция радиальной высоты вдоль лопасти. В данном варианте осуществления передняя кромка лопасти повернута назад (то есть имеет положительный угол стреловидности) на величину, близкую к +30° для радиальной высоты в диапазоне от 70% до 80%.

Кроме того, в данном изобретении разность δ1 в угле стреловидности передней кромки меньше чем 10° (по абсолютной величине) между углом стреловидности на радиальной высоте Hmin минимального угла стреловидности, который соответствует минимальному значению угла стреловидности и который расположен на участке лопасти, проходящей между 20% и 90% от радиальной высоты лопасти, и углом стреловидности, измеренным на радиальной высоте Hmin+10, которая на 10% больше, чем радиальная высота минимального угла стреловидности.

Термин «радиальная высота Hmin минимального угла стреловидности» используется в материалах настоящей заявки, чтобы обозначать радиальную высоту передней кромки лопасти, на которой значение угла стреловидности наименьшее. В варианте осуществления по фиг. 3 эта радиальная высота Hmin минимального угла стреловидности расположена примерно на 40% от общей радиальной высоты лопасти (угол поворота -3° в этой точке является минимальным углом стреловидности по всему участку лопасти, тянущемуся между 20% и 90%).

Кроме того, в варианте осуществления по фиг. 3 разница δ1 в угле стреловидности составляет, по абсолютной величине, приблизительно 5° (угол стреловидности на Hmin: -3°, угол стреловидности на Hmin+10: +2°).

Передняя кромка лопасти также может представлять стреловидность вперед (то есть отрицательный угол стреловидности) в нижней части лопасти, лежащей в диапазоне от 15% до 50%. В варианте осуществления по фиг. 3 угол стреловидности передней кромки, таким образом, является отрицательным для радиальных высот, лежащих в диапазоне от 15% до 45%. Более точно угол стреловидности изначально является положительным между минимальной радиальной высотой лопасти (0%) и радиальной высотой около 15%, и затем он становится отрицательным до радиальной высоты 45% и вновь становится положительным с этой точки.

При таких условиях разность (δ2) между углом стреловидности передней кромки, составляющая менее 10°, на уровне радиальной высоты (Н-), соответствующей точке перехода прямой стреловидности, которая соответствует точке передней кромки, в которой стреловидность изменяется на обратную, и которая расположена непосредственно над высотой минимальной стреловидности, и углом стреловидности, измеренным на радиальной высоте (Н+), на 10% (по абсолютной величине) превышает радиальную высоту, соответствующую точке перехода прямой стреловидности.

Термин «радиальная высота Н-, соответствующая точке перехода прямой стреловидности, которая соответствует точке передней кромки, в которой стреловидность изменяется на обратную» используется в материалах настоящей заявки, чтобы обозначать радиальную высоту передней кромки лопасти, на которой угол стреловидности меняется с отрицательного на положительный. В варианте осуществления по фиг. 3 указанная радиальная высота Н - расположена примерно на 45% от общей радиальной высоты лопасти. Кроме того, в варианте осуществления по фиг. 3 разность δ2 угла стреловидности имеет абсолютное значение около 7° (значение угла стреловидности на Н-: 0°; значение угла стреловидности на радиальной высоте Н+, измеренное на 10% выше Н-: +7°). Фиг. 4 изображает проекцию на меридианную плоскость линии центров тяжести секций лопасти согласно изобретению. Эта линия соединяет вместе продольные (вдоль оси Х-Х) значения абсциссы центров тяжести каждой из секций лопасти. В предпочтительном варианте осуществления изобретения, показанном на фиг. 4, разность δXg вдоль приводной оси Х-Х, ориентированной в направлении воздушного потока, между максимальным продольным значением абсциссы центра тяжести Xg+ секций лопасти, расположенных над минимальной продольной точкой абсциссы, и значением в продольном направлении абсциссы центра тяжести Xg- секции лопасти, соответствующей минимальной продольной точкой абсциссы, меньше или равна (по абсолютной величине) 20% осевой хорды лопасти, измеренной в ее секции хвостовика, которая определена пересечением между лопастью и внутренней стенкой канала.

«Хорда» лопасти используется для обозначения прямой линии, соединяющей точки передней кромки и точки задней кромки. Осевая проекция этой хорды на приводную ось Х-Х является осевой хордой. Значение осевой хорды лопасти, измеренное в ее хвостовике, зависит от размера двигателя. В качестве примера оно может составлять около 300 миллиметров (мм). При таких условиях разность может, например, составлять около 45 мм, что намного меньше 20% осевой хорды лопасти, измеренной в ее хвостовике.

1. Лопасть (4) вентилятора турбореактивного двигателя, содержащая хвостовик (6), концевую часть (20), переднюю кромку (22) и заднюю кромку (24), отличающаяся тем, что:

передняя кромка лопасти имеет угол стреловидности, больший или равный +28° на участке лопасти, который расположен на радиальной высоте, лежащей в диапазоне от 60% до 90% от общей радиальной высоты лопасти, измеренной от ее хвостовика в направлении ее концевой части;

угол стреловидности передней кромки имеет разность (δ1) менее 10° между минимальным углом стреловидности, измеренным на радиальной высоте (Hmin) минимального угла стреловидности на участке лопасти, лежащем в диапазоне от 20% до 90% от радиальной высоты лопасти, и углом стреловидности, измеренным на радиальной высоте (Hmin+10), которая на 10% больше, чем упомянутая радиальная высота минимального угла стреловидности, причем

угол стреловидности передней кромки является положительным на участке лопасти, который расположен на радиальной высоте, лежащей в диапазоне от 0% до 15% от общей радиальной высоты лопасти.

2. Лопасть по п. 1, отличающаяся тем, что передняя кромка имеет отрицательный угол стреловидности в нижней части лопасти, расположенной в диапазоне от 15% до 50%, причем разность (δ2) между углом стреловидности передней кромки, составляет менее 10°, на уровне радиальной высоты (Н-), соответствующей точке перехода прямой стреловидности, которая соответствует точке передней кромки, в которой стреловидность изменяется на обратную, и которая расположена непосредственно над высотой минимальной стреловидности, и углом стреловидности, измеренным на радиальной высоте (Н+), на 10% превышает радиальную высоту, соответствующую точке перехода прямой стреловидности.

3. Лопасть по п. 1 или 2, отличающаяся тем, что разность между максимальным значением абсциссы центра тяжести Xg+ секций лопасти, расположенных над минимальной точкой абсциссы, и значением абсциссы центра тяжести Xg- секции лопасти, соответствующей минимальной точке абсциссы, меньше или равна 20% осевой хорды лопасти, измеренной в ее хвостовике, причем ось соответствует оси вращения (Х-Х), ориентированной в направлении воздушного потока.

4. Вентилятор (2) турбореактивного двигателя, отличающийся тем, что он включает в себя множество лопастей (4) по любому из пп. 1-3.

5. Турбореактивный двигатель, отличающийся тем, что он включает в себя множество лопастей по любому из пп. 1-3.



 

Похожие патенты:

Изобретение относится к области машиностроения, может быть использовано при конструировании ступеней паровых и газовых турбин, компрессоров и направлено на повышение аэродинамической эффективности лопаточной решетки турбомашины.

Лопатка газотурбинного двигателя, имеющая множество секций лопатки, упакованных вдоль радиальной оси (Z-Z). Каждая секция лопатки расположена вдоль продольной оси (Х-Х) между передней кромкой и задней кромкой и вдоль тангенциальной оси (Y-Y) между стороной корытца и стороной спинки.

Лопатка ротора газовой турбины, включающая в себя корневую часть, платформу и перьевую часть. Платформа содержит входную и выходную стороны, боковые стороны, проходящие от входной к выходной стороне, а также осевую и радиальную канавки в каждой боковой стороне платформы.

Изобретение относится к энергетике. Газотурбинный двигатель, включающий в себя контур (10) охлаждения окружающего воздуха, содержащий охлаждающий канал (26), расположенный в лопатке (22) турбины и в сообщении по текучей среде с источником (12) окружающего воздуха; и предварительный завихритель (18), причем упомянутый предварительный завихритель содержит внутренний обод, наружный обод и множество направляющих лопаток, каждая проходящая от внутреннего обода до наружного обода.

Изобретение относится к способу армирования передней кромки (16) лопасти (12) для ее защиты, а также к лопасти с армированием и может найти применение при изготовлении или восстановлении лопасти турбинного двигателя, вертолета или пропеллера.

Узел пера и полки хвостовика для дозвукового потока включает полку хвостовика и установленное на ней перо облопаченного колеса газотурбинного двигателя. Полка хвостовика имеет поверхность, расположенную между перьями, которая представляет собой поверхность полки хвостовика и которая радиально образует внутренность газопропускающих каналов, образованных между перьями.

Лопатка компрессора имеет аэродинамическую часть заданного профиля по существу в соответствии со значениями X, Y и Z декартовой системы координат, представленными в масштабируемой таблице, выбранной из группы таблиц, состоящей из Таблиц 1-11, в которой значения X, Y и Z декартовой системы координат являются безразмерными значениями, приведенными с возможностью преобразования в размерные расстояния путем умножения значений X, Y и Z декартовой системы координат на некоторое число, при этом X и Y представляют собой координаты, которые, будучи соединенными непрерывными дугами, задают сечения профиля аэродинамической части на каждой высоте Z, при этом сечения профиля аэродинамической части на каждой высоте Z соединены друг с другом с формированием полного профиля аэродинамической части.

Компрессор содержит поворотные статорные лопатки. Лопатка компрессора имеет аэродинамическую часть заданного профиля по существу в соответствии со значениями X, Y и Z декартовой системы координат, приведенными в масштабируемой таблице, которая выбрана из группы таблиц, состоящей из Таблиц 1-2, и в которой значения X, Y и Z декартовой системы координат являются безразмерными значениями, преобразуемыми в размерные расстояния путем умножения значений X, Y и Z декартовой системы координат на некоторое число, причем координаты X и Y представляют собой координаты, которые, будучи соединенными непрерывными дугами, определяют сечения профиля аэродинамической части на каждой высоте Z, при этом сечения профиля аэродинамической части на каждой высоте Z плавно соединены друг с другом с формированием полной формы аэродинамической части.

Изобретение относится к энергетике. Лопатка турбомашины, содержащая перо лопатки, вытянутое в осевом направлении между передней кромкой и задней кромкой, а в радиальном направлении - между хвостовиком и вершиной.

Предложена сопловая лопатка (180) турбины, содержащая аэродинамическую часть, имеющую аэродинамическую форму. Аэродинамическая часть имеет оптимальный профиль, по существу в соответствии со значениями X, Y и Z декартовой системы координат, приведенными в Таблице 1.

Изобретение относится к общей области газовых турбин для самолетных или вертолетных двигателей и более конкретно к способу изготовления лопаток, который способствует минимизации напряжений и веса во время механической обработки. При механической обработке лопатки на станке для объемной механической обработки определяют опорные точки, которые должны служить в качестве контрольных точек для механической обработки. При этом обрабатываемая лопатка содержит перо, полку, содержащую передний и задний держатели, образованные соответственно под ее передним и задним участками для поддержки уплотнительного кожуха, хвостовик лопатки и стойку, расположенную между полкой и хвостовиком лопатки. Затем позиционируют лопатку на станке, используя упомянутые передний и задний держатели в качестве двух опорных точек для шеститочечной системы позиционирования, и производят механическую обработку. Другое изобретение группы относится к газотурбинному двигателю, включающему в себя множество лопаток, полученных указанным выше способом. Группа изобретений позволяет упростить механическую обработку лопатки и снизить ее вес. 2 н. и 1 з.п. ф-лы, 1 ил.

Узел пера лопатки и полки включает перо и полку, на поверхности которой установлено перо, причем поверхность полки имеет углубление между передней кромкой и задней кромкой пера лопатки. Наиболее глубокий сегмент углубления расположен в половине, выше по потоку, пера лопатки. Скелетная кривая является кривой, представляющей собой вариации скелетного угла пера лопатки в секущей плоскости, параллельной поверхности полки, в зависимости от положения вдоль оси колеса. Линеаризованная скелетная кривая является линеаризованным представлением скелетного угла в зависимости от положения вдоль оси колеса и представляет собой прямую линию, соединяющую точки, характеризующие скелетный угол при 10 и при 90% осевого размера пера лопатки от передней кромки, в непосредственной близости от полки скелетная кривая имеет приподнятый участок, лежащий над линеаризованной скелетной кривой. Плоскость, в которой смещение между скелетной кривой и линеаризованной скелетной кривой является максимальным, расположена в осевом направлении между положением в 0,5×N и 1,5×N, где N представляет собой процентную величину, представляющую собой положение плоскости наиболее глубокого сегмента относительно осевого размера пера лопатки от его передней кромки. Другие изобретения группы относятся к лопатке, включающей указанный выше узел, рабочему колесу, выполненному с указанным выше узлом или лопаткой, а также газотурбинному двигателю с таким рабочим колесом. Группа изобретений позволяет повысить аэродинамическую эффективность рабочего колеса газотурбинного двигателя. 6 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к газотурбинному двигателю. Газотурбинный двигатель включает в себя множество лопаток, собранных в кольцеобразный ряд лопаток и частично образующих путь горячего газа и путь охлаждающей текучей среды, узел с ответвлениями, расположенный на стороне основания ряда лопаток, и нагнетающие элементы (130), распределенные вокруг узла с ответвлениями, выполненного с возможностью придавать в наиболее узком зазоре пути охлаждающей текучей среды движение потоку охлаждающей текучей среды, текущей через него. Путь охлаждающей текучей среды продолжается от полости ротора к пути потока горячего газа. Множество нагнетающих элементов (130), узел с ответвлениями и основание ряда лопаток являются эффективными для придания спиралеобразного движения потоку охлаждающей текучей среды, когда он входит в путь горячего газа. В результате улучшается аэродинамическая эффективность лопатки, тем самым увеличивая эффективность двигателя, увеличивается срок службы лопатки. 5 з.п. ф-лы, 10 ил.

Изобретение относится к способу изготовления заменяющей лопатки для турбомашины. Согласно указанному способу определяют геометрические характеристики контура ступицы и корпуса снабженного старой лопаткой проточного канала, а также осевое положение центра тяжести пера старой лопатки, которая с одной стороны зажата в ступице или в корпусе. Рассчитывают геометрические характеристики пера заменяющей лопатки, таким образом, что перо заменяющей лопатки на своей передней кромке наклоняется в направлении зажатия выше по потоку и обладает прямой стреловидностью. Задают близкую к зажатию область пера заменяющей лопатки, составляющую от 5% до 15% высоты заменяющей лопатки. Смещают участок пера заменяющей лопатки, расположенный за пределами указанной области, выше по потоку, пока осевое положение центра тяжести пера заменяющей лопатки не совпадет с осевым положением центра тяжести пера старой лопатки. В области от расположенной со стороны зажатия линии контура пера заменяющей лопатки до смещенного участка пера заменяющей лопатки переднюю кромку наклоняют в направлении зажатия ниже по потоку для образования в этой области переходной стреловидности. Затем осуществляют профилирование заменяющей лопатки. Другие изобретения группы относятся к лопатке ротора и лопатке статора для газовой турбины, изготовленным указанным выше способом, а также к соответствующей лопатке компрессора. Группа изобретений позволяет повысить аэродинамическую эффективность лопаток турбомашины без повышения нагрузки на элементы крепления указанных лопаток. 5 н. и 2 з.п. ф-лы, 2 ил.

Электрически проводящая структура для пропускания и отвода электрического тока от основного тела выходной направляющей лопасти в наружную опорную структуру содержит обшивку из металла, покрывающую переднюю кромку основного тела лопасти, и электрически проводящую прокладку из металла, содержащую контактную часть, имеющую такой размер, чтобы перекрывать одним концом обшивку, и часть в виде шайбы, предназначенную для ввода болта для затягивания в опорную структуру, при этом одно или больше соединений, выбранных из группы, содержащей сварку, точечную сварку, пайку, соединение с помощью электрически проводящей пасты и зажим, создают соединение между концом обшивки и контактной частью. Предотвращаются повреждения матричной смолы основного тела лопасти за счет безопасного отвода электрического тока при ударе в самолет молнии, ток обходит основное тело лопасти. 3 з.п. ф-лы, 8 ил.

Двухъярусная ступень паровой турбины содержит двухъярусный сопловой аппарат и двухъярусное рабочее колесо. Сопловой аппарат ступени выполнен в виде единой неразборной конструкции с конической перегородкой, разделяющей сопловые лопатки верхнего яруса от сопловых лопаток нижнего яруса. Хорды профилей лопаток в корневых сечениях верхнего яруса выполняются по меньшей мере на 30% меньше, чем хорды профилей в периферийных сечениях нижнего яруса. Лопатки соплового аппарата верхнего яруса смещены относительно лопаток соплового аппарата нижнего яруса в сторону рабочего колеса двухъярусной ступени. Перед сопловым аппаратом верхнего яруса имеется аэродинамический фильтр, состоящий из плоских радиально установленных перфорированных пластин, непрерывно расположенных с угловым шагом, не превышающим 5°. Рабочее колесо ступени изготавливается из двухъярусных рабочих лопаток, представляющих собой единую неразборную конструкцию. Достигается повышение эффективности и надежности. 2 ил.

Изобретение относится к области газотурбостроения и может быть использовано при изготовлении металлических элементов усиления, предназначенных для установки на передней или задней кромке композитной лопатки турбомашины. Двум листам придают форму, приближенную к окончательной форме элемента усиления. Листы располагают по обе стороны от стержня, который воспроизводит внутреннюю форму спинки и корытца элемента усиления. Стержень имеет по меньшей мере одну выемку для формирования полости, предназначенной для получения на элементе усиления вставки для позиционирования элемента усиления. Листы герметично соединяют в вакууме вокруг стержня. Путем горячего изостатического прессования формуют листы на стержне. Затем листы разрезают и отделяют элемент усиления и стержень. В результате обеспечивается упрощение и повышение точности позиционирования элемента усиления на передней или задней кромке лопатки. 3 н. и 6 з.п. ф-лы, 8 ил.

Изобретение может быть использовано при изготовлении моноколес, применяемых преимущественно в роторах газотурбинных двигателей. Способ включает получение заготовки лопатки газотурбинного двигателя штамповкой с образованием аэродинамического профиля в каждом сечении пера лопатки и образованием хвостовика с их последующей механической обработкой. При штамповке заготовки лопатки хвостовик выполняют в виде выступа с замкнутым вокруг пера лопатки контуром, отстоящим от контура поперечного сечения пера лопатки на 1-5 мм. После механической обработки хвостовика к нему посредством сварки присоединяют сформированные механической обработкой накладки, которые имеют сопрягаемые с выступом поверхности. Размер и форму накладок выбирают с обеспечением необходимого напуска для захвата и удержания лопатки в сварочной машине при линейной сварке трением. Накладки можно присоединять к выступу посредством диффузионной сварки. Изобретение позволяет сократить трудоемкость и материалоемкость изготовления заготовок лопаток, присоединяемых к диску линейной сваркой трением. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области турбо-машиностроения, в частности к авиационному моторостроению, и может быть использовано в рабочих колесах осевых компрессоров газотурбинных двигателей (ГТД). В известном рабочем колесе осевого компрессора газотурбинного двигателя, включающем установленные на диске ротора рабочие лопатки, каждая из которых содержит хвостовик и перо, ограниченное выпуклой и вогнутой поверхностями с выполненными на них в средней части по высоте пера лопатки бандажными полками, бандажные полки смежных лопаток соединены между собой с образованием не менее одного антивибрационного бандажного кольца несимметричного профиля, выпуклая сторона которого расположена со стороны диска вдоль линий тока воздуха в межлопаточном канале, согласно изобретению кольцо снабжено компенсационными ребрами симметричного аэродинамического профиля, выполненными по меньшей мере на одной из бандажных полок каждой лопатки и расположенных вдоль линий тока воздуха в межлопаточном канале, при этом размер ребер в радиальном направлении равен сумме 0,1 длины лопатки и величины зазора между торцом лопатки и стационарным корпусом. Профиль полок, образующих антивибрационное бандажное кольцо, выполнен в виде профиля крыла, на выпуклой и вогнутой поверхностях пера каждой лопатки могут быть выполнены расположенные по высоте две и более бандажные полки, образующие бандажные кольца, а бандажные полки выполнены в средней части пера на расстоянии от торца лопатки, равном 0,2…0,7 ее длины. Применение изобретения позволяет снизить уровень механических напряжений в перьях рабочих лопаток, замках и дисках ротора ГТД за счет частичной компенсации центробежных сил аэродинамической силой, возникающей на антивибрационных полках рабочих лопаток при обтекании их воздухом (газом). Снижение уровня механических напряжений, в свою очередь, влечет снижение массы, габаритов и стоимости узлов, повышение надежности работы из-за улучшения условий работы антивибрационных бандажных полок рабочих лопаток осевого компрессора. 3 з.п. ф-лы, 3 ил.

Изобретение относится к энергетике. Выпрямитель газотурбинного двигателя, содержащий множество лопаток, расположенных вокруг кольца с центром на оси газотурбинного двигателя, при этом каждая лопатка имеет переднюю кромку и проходит между концом ножки и концом головки. Передняя кромка на конце ножки каждой лопатки смещена в сторону входа в направлении оси газотурбинного двигателя относительно передней кромки на конце головки. Смещение передней кромки между ее двумя концами превышает на 10% высоту лопасти, измеренную в направлении оси газотурбинного двигателя, при этом касательная наборная кривая, образованная положением в касательном направлении к кольцу центров тяжести последовательных лопаточных секций по высоте лопатки, является кривой, постоянно увеличивающейся к спинке лопатки. Также представлен газотурбинный двигатель. Изобретение позволяет улучшить характеристики лопатки выпрямителя и уменьшить отрывы воздуха с головки лопатки. 2 н. и 5 з.п. ф-лы, 10 ил.

Лопасть вентилятора турбореактивного двигателя содержит хвостовик, концевую часть, переднюю и заднюю кромки. Передняя кромка лопасти имеет угол стреловидности, больший чем или равный +28° на участке лопасти, который расположен на радиальной высоте, лежащей в диапазоне от 60 до 90 от общей радиальной высоты лопасти, измеренной от ее хвостовика в направлении ее концевой части. Угол стреловидности передней кромки представляет разность, меньшую чем 10° между минимальным углом стреловидности, измеренным на радиальной высоте минимального угла стреловидности на участке лопасти, лежащем в диапазоне от 20 до 90 от радиальной высоты лопасти, и углом стреловидности, измеренным на радиальной высоте, которая на 10 больше, чем упомянутая радиальная высота минимального угла стреловидности. Другие изобретения группы относятся к вентилятору турбореактивного двигателя и турбореактивному двигателю, включающим множество указанных выше лопастей. Группа изобретений позволяет повысить аэродинамические, акустические и механические характеристики лопасти вентилятора турбореактивного двигателя. 3 н. и 2 з.п. ф-лы, 4 ил.

Наверх