Способ производства высокопрочной коррозионностойкой горячекатаной стали с низким удельным весом

Изобретение относится к области металлургии, в частности к изготовлению горячекатаной полосы из высокопрочной коррозионностойкой стали, предназначенной для применения в сооружениях и конструкциях различного назначения в Арктике и Антарктике. Для повышения прочности и коррозионной стойкости полосы при сохранении низкого удельного веса получают заготовку из стали, содержащей мас. %: углерод 0,03-0,07, кремний 0,5-0,8, марганец 0,4-0,7, сера не более 0,01, фосфор 0,005-0,015, алюминий 8,0-11,0, хром 6,0-10,0, никель 0,005-0,03, молибден 1,01-2,0, титан 0,01-0,03, ванадий 0,05-0,07, ниобий не более 0,06, азот 0,005-0,05, железо и неизбежные примеси - остальное, при этом сумма [Cr+Al]мас.% =14,1-18, нагревают заготовку в диапазоне от 1100°C до 1300°C, ведут прокатку не менее чем в пять этапов со степенью обжатия на каждом этапе от 10% до 25%, временем между двумя последующими этапами прокатки, не превышающим 9 с, и температурой окончания прокатки 810-890°C, затем полученную полосу охлаждают до температуры окружающей среды. 2 табл.

 

Изобретение относится к области металлургии, а именно к разработке горячекатаной стали с низким удельным весом, высокими прочностными и коррозионными свойствами, предназначенной для применения в сооружениях и конструкциях различного назначения в Арктике и Антарктике.

Известен способ производства высокопрочного стального листа с аустенитной структурой, включающий горячую прокатку с нагревом до 1000-1200°C и окончанием прокатки при 850°C или выше, отпуск при температуре выше 600°С. При этом сталь содержит следующие компоненты, мас. %: С 0,6-1,0, Si 0,1-2,5, Mn 10-15, Al 5-8, Ti 0,01-0,20, S≤0,015, Р≤0,02, N≤0,02, железо и неизбежные примеси - остальное, отношение содержания марганца и алюминия связано зависимостью Mn/Al=2-3, а удельный вес стали равен 7,4 г/см2. В частных случаях сталь может дополнительно содержать один или несколько элементов из групп: Cr 0,1-3,0, Mo 0,05-0,5, Ni 0,05-2,0 и Cu 0,1-2,0, и/или Nb 0,005-0,2, V 0,005-0,5, Zr 0,005-0,2 и В 0,0005-0,0030, также Sb 0,005-0,2 и Са 0,001-0,02. Свойства горячекатаной стали: предел прочности 800-1200 МПа, относительное удлинение более 30%, и отношение предела текучести 60% и более (Европейская заявка EP 2653581, МПК C21D 8/02, C22C 38/06, опубликована 23.10.2013).

Недостаток известного способа заключается в высоком содержании дорогостоящего легирующего элемента - марганца.

Наиболее близким аналогом настоящего изобретения является способ изготовления горячекатаного ферритного листа из стали с низкой плотностью, включающий литье полуфабриката, нагрев под горячую прокатку до температуры, превышающей или равной 1150°C, горячую прокатку при температуре, более или равной 1050°C, по меньшей мере за два этапа, при этом коэффициент обжатия на каждом этапе прокатки превышает или равен 30%, время между каждым этапом больше или равно 10 с. Прокатку завершают при температуре, превышающей или равной 900°C, охлаждают лист таким образом, чтобы интервал времени между 850 и 700°C превышал 3 с, затем лист наматывают при температуре, находящейся в пределах от 500 до 700°C. При этом сталь содержит, мас. %:

0,001≤С≤0,15, Mn≤1, Si≤l,5, 6≤Al≤10, 0,02≤Ti≤0,5, S≤0,050, P≤0,1 и, необязательно, один или несколько следующих элементов: Cr≤1, Mo≤1, Ni≤1, Nb≤0,1, V≤0,2, В≤0,01, железо и неизбежные примеси - остальное. Предел прочности составляет не менее 400 МПа. Плотность менее 7,3 г/см3 (Патент RU 2436849, МПК C22C 38/06, C22C 38/14, опубликован 20.12.2011 - прототип).

Недостатком способа изготовления известной стали является отсутствие возможности управлять прочностными и коррозионными свойствами стали, увеличивая содержание хрома, молибдена сверх указанных концентрационных интервалов, а также высокая температура окончания прокатки, приводящая к повышенному расходу энергии и ухудшению прочностных свойств стали.

Технической проблемой, на решение которой направлено изобретение, является оптимизация способа производства, химического состава стали и параметров ее горячей прокатки с обеспечением технического результата в виде повышения прочности и коррозионной стойкости при сохранении низкого удельного веса.

Технический результат достигается тем, что в способе производства высокопрочной коррозионностойкой горячекатаной стали с низким удельным весом, включающем получение заготовки из стали, горячую прокатку заготовки, согласно изобретению заготовку получают из стали, содержащей компоненты в следующем соотношении, мас. %:

Углерод 0,03-0,07
Кремний 0,5-0,8
Марганец 0,4-0,7
Сера не более 0,01
Фосфор 0,005-0,015
Алюминий 8,0-11,0
Хром 6,0-10,0
Никель 0,005-0,03
Молибден 1,01-2,0
Титан 0,01-0,03
Ванадий 0,05-0,07
Ниобий не более 0,06
Азот 0,005-0,05
Железо и неизбежные примеси остальное,

при этом содержание хрома и алюминия связано зависимостью [Cr+%Al]=14,1-18,

при этом нагрев заготовки перед горячей прокаткой осуществляют в диапазоне от 1100°C до 1300°C, прокатку осуществляют не менее чем в пять этапов, степень обжатия на каждом этапе от 10% до 25%, причем время между двумя последующими этапами прокатки не превышает 9 с, а окончание прокатки осуществляют при температуре 810-890°C, затем остужают до температуры окружающей среды.

Изобретение направлено на повышение показателей прочности за счет формирования выраженной ячеистой субструктуры с высокой плотностью дислокаций, твердорастворного упрочнения алюминием и вызванного большим содержанием выделений нитрида алюминия торможения рекристаллизационных процессов, что приводит к измельчению ферритного зерна, а также на повышение коррозионной стойкости за счет образования на поверхности стального листа защитных оксидных пленок, препятствующих развитию коррозионных процессов, и, дополнительно, на сохранение низкого удельного веса стали вследствие высокого содержания в ней алюминия.

Для повышения прочностных характеристик в составе стали содержится 0,005-0,05% азота, что приводит к образованию выделений нитридов и карбонитридов. Формирование большого количества выделений нитрида алюминия в процессе горячей прокатки может приводить к торможению рекристаллизационных процессов и к соответствующему измельчению ферритного зерна. Содержание азота менее 0,005 не приводит к значимому упрочняющему эффекту, а содержание свыше 0,05% приводит к заметному охрупчиванию стали.

Содержание алюминия в стали на уровне 8-11% обеспечивает достаточное снижение удельного веса стали и необходимое твердорастворное упрочнение стального листа, а также обеспечивает высокую коррозионную стойкость за счет образования на поверхности защитных оксидных пленок. Содержание алюминия меньше 8% не позволяет обеспечить достаточного снижения удельного веса стали, а содержание алюминия свыше 11% может привести к охрупчиванию.

Содержащийся в металле хром в количестве 6,0-10%, так же как и алюминий, участвует в формировании защитных оксидных пленок на поверхности стали. При этом для обеспечения наилучших коррозионных и прочностных свойств суммарное содержание хрома и алюминия (%Cr+%Al) целесообразно обеспечивать на уровне 14,1-18%. Превышение указанного значения не приводит к значительному увеличению коррозионных свойств, а меньшие значения не обеспечивают достаточную стойкость против коррозии в морской воде.

Легирование молибденом в количестве от 1,01% до 2% повышает стойкость против питтинговой коррозии. Легирование стали молибденом в количестве менее 1,01% незначительно влияет на стойкость против питтинговой коррозии, а свыше 2% нецелесообразно, так как вклад дорогостоящего легирующего элемента - молибдена в стойкость против питтинговой коррозии свыше указанных концентраций незначителен.

Нагрев под прокатку в интервале температур 1200-1300°C необходим для достаточного растворения карбонитридных выделений с целью их последующего выделения при прокатке, приводящего к измельчению зерна и повышению прочности.

Степень обжатия в процессе горячей прокатки стали должна находиться в интервале 10-25% между двумя последующими этапами прокатки, поскольку превышение этих значений может привести к хрупкому разрушению стальной заготовки в процессе прокатки по причине образования интерметаллидных фаз в стали, содержащей азот на заявленном уровне. Меньшие значения степени обжатия нецелесообразны из-за увеличения количества этапов прокатки и, следовательно, увеличения времени прокатки, что в свою очередь может привести к недопустимому падению температуры прокатываемой заготовки.

Поскольку заявленная степень обжатия относительно невелика, то для обеспечения необходимой степени проработки структуры металла необходимо повышенное количество этапов прокатки не менее пяти, а следовательно, время между двумя последовательными этапами прокатки должно быть подобрано так, чтобы обеспечить необходимую температуру стали в конце прокатки. Рекомендованное время между двумя последовательными этапами прокатки не превышает 9 сек. Превышение этого времени приведет к недопустимому падению температуры прокатываемого металла и может привести к необходимости повторного нагрева.

Температура металла в конце горячей прокатки должна находиться в интервале 810-890°C для обеспечения необходимой прочности проката. При температуре конца прокатки выше 890°C прочность получаемого проката недостаточно высока, а при температуре ниже 810°C возможен повышенный износ прокатного оборудования.

Примеры конкретного выполнения способа

В индукционной печи из чистых материалов выплавляют полупродукт, химический состав которого приведен в таблице 1. Параметры горячей прокатки и свойства получаемого проката представлены в таблице 2.

Полупродукт разливают в слитки и после полного остывания подвергают горячей прокатке в несколько этапов при степени деформации 10-25% за этап, предварительно подогрев слитки полупродукта до температуры 1100-1300°C. Прокатку заканчивают при температуре 810-890°C и толщине получаемой горячекатаной полосы около 4 мм. Горячекатаные полосы помещают в печь сопротивления, нагретую до 750-850°C, и остужают вместе с печью до комнатной температуры. Полученная сталь обладает ферритной структурой с хорошо развитой дислокационной ячеистой субструктурой, пределом прочности 700-950 МПа и скоростью коррозии в морской воде не более 0,1 мм/год при удельном весе 7,0-7,2 г/см3.

Способ производства высокопрочной горячекатаной полосы из коррозионностойкой стали с низким удельным весом, включающий получение стальной заготовки, нагрев, горячую прокатку заготовки, отличающийся тем, что заготовку получают из стали, содержащей в мас. %:

углерод 0,03-0,07
кремний 0,5-0,8
марганец 0,4-0,7
сера не более 0,01
фосфор 0,005-0,015
алюминий 8,0-11,0
хром 6,0-10,0
никель 0,005-0,03
молибден 1,01-2,0
титан 0,01-0,03
ванадий 0,05-0,07
ниобий не более 0,06
азот 0,005-0,05
железо и неизбежные примеси остальное,

при этом суммарное содержание хрома и алюминия составляет [Cr+Al]мас.%=14,1-18, нагрев заготовки перед горячей прокаткой осуществляют в диапазоне от 1100°C до 1300°C, горячую прокатку проводят не менее чем в пять этапов со степенью обжатия на каждом этапе от 10% до 25% и временем между двумя последующими этапами прокатки, не превышающим 9 с, а окончание прокатки осуществляют при температуре 810-890°C, затем полученную полосу охлаждают до температуры окружающей среды.



 

Похожие патенты:

Изобретение относится к области металлургии. Способ производства текстурированного листа из электротехнической стали включает нагревание сляба, содержащего, мас.%: C от 0,0005 до 0,005, Si от 2,0 до 4,5, Mn от 0,005 до 0,3, S и/или Se (в сумме) 0,05 или менее, растворенный Al от 0,010 до 0,04, N 0,005 или менее, остальное - Fe и неизбежные примеси, горячую прокатку сляба с получением горячекатаного листа, при необходимости, отжиг горячекатаного листа в горячей зоне, холодную прокатку горячекатаного листа в один, два или большее число проходов с промежуточным отжигом между ними и с получением холоднокатаного листа конечной толщины, отжиг холоднокатаного листа на первичную рекристаллизацию и отжиг на вторичную рекристаллизацию, при этом индекс ИС старения стального листа перед проведением конечной холодной прокатки устанавливают равным 70 МПа или менее для эффективного роста зерен с ориентацией Госса с обеспечением в результате текстурированного листа из электротехнической стали с хорошими магнитными свойствами, без ограничения содержания C в относительно большом количестве.

Изобретение относится к области металлургии, а именно к получению листа из текстурированной электротехнической стали. Лист имеет стальную подложку, основную пленку форстерита, сформированную на поверхности стальной подложки, и изоляционное покрытие, сформированное на основной пленке форстерита и создающее натяжение на поверхности стальной подложки.

Изобретение относится к области металлургии. Для обеспечения устойчивости к водородному растрескиванию поверхности магистральной трубы, используемой для высокосернистого газа, имеющей толщину 20 мм или более и прочность на разрыв 560 МПа или более, труба выполнена из стали, содержащей химическую композицию С, Si, Mn, Р, S, Al, Nb, Са, N и О, а также один или более компонентов, выбираемых из Cu, Ni, Cr, Mo, V и Ti, в качестве необязательных компонентов, и остальное Fe и неизбежные примеси.

Изобретение относится к области металлургии. Для повышения стойкости к водородному растрескиванию магистральной трубы с толщиной стенки 20 мм или больше и пределом прочности при растяжении, равным 560 МПа или выше, ее выполняют из стали, содержащей С, Si, Mn, Р, S, Al, Nb, Ca, N и О, один или несколько компонентов, выбранных из Cu, Ni, Cr, Mo, V и Ti, Fe и неизбежные примеси - остальное.

Изобретение относится к области металлургии. Для обеспечения предела прочности на растяжение YS 450 МПа или более и стойкости к разупрочнению в течение продолжительного периода времени в интервале промежуточных температур стальную трубу изготавливают с помощью электросварки сопротивлением из горячекатаного стального листа.

Изобретение относится к области металлургии. Для обеспечения равномерного нагрева листа из холоднокатаной электротехнической стали, улучшения качества формы листа стали и его магнитных свойств в линии непрерывного отжига листов стали, содержащей зону нагрева, зону выдержки и зону охлаждения, последовательно в передней половине зоны нагрева расположены два или более устройств индукционного нагрева, а в температурной зоне, где температура листа стали между двумя или более устройствами индукционного нагрева составляет от 250°C до 600°C, выполнена область остановки нагрева длиной 1-30 м или область медленного нагрева со скоростью от более 0°C/с до 10°C/с.

Изобретение относится к высокопрочной многофазной стали с минимальной устойчивостью на разрыв 580 МПа преимущественно с двухфазной структурой для холодно- или горячекатаной стальной полосы с улучшенными формовочными свойствами, в частности для производства легковесных конструкций для транспортных средств, состоящей из элементов, мас.

Изобретение относится к области металлургии, в частности к производству на реверсивном стане толстых листов из низколегированной стали класса прочности К-65 для изготовления труб магистральных газопроводов высокого давления.

Изобретение относится к области металлургии, а именно к толстостенным стальным трубам, которые могут быть использованы для бурения или транспортировки нефти и природного газа.

Изобретение относится к области металлургии, а именно к изготовлению стального листа толщиной 15-40 мм с пределом текучести свыше 480 МПа, а также к производству электросварных прямошовных труб большого диаметра, изготовленных из этих листов и предназначенных для транспортирования природного газа по магистральным трубопроводам высокого давления в районах повышенной подвижности грунтов, сейсмической активности и вечной мерзлоты.

Изобретение относится к области металлургии, а именно к высокопрочной многофазной стали с минимальным пределом прочности на растяжение 580 МПа, преимущественно с двухфазной структурой, для изготовления холодно- или горячекатаной стальной полосы толщиной 0,50-4,00 мм с улучшенными формовочными свойствами, применяемой, в частности, для автомобилестроения с применением легковесных конструкций.

Изобретение относится к области черной металлургии, в частности к производству высокотвердого износостойкого листового проката для тяжелой подъемно-транспортной техники.

Изобретение относится к области металлургии, а именно к изготовлению горячекатаной полосы с низким удельным весом, предназначенной для применения в сооружениях и конструкциях различного назначения, обладающих коррозионной стойкостью в морской воде.
Изобретение относится к области металлургии, в частности к производству проката (листов) ответственного назначения, предназначенного для судостроения. Для обеспечения в прокате толщиной более 60 мм предела текучести не менее 900 МПа, предела прочности не менее 970 МПа, относительного удлинения не менее 15%, повышенной хладостойкостью KCV (-60°C) не менее 100 Дж/см2 и хорошей свариваемости проводят выплавку стали, непрерывную разливку, нагрев слябов, черновую и чистовую прокатку, ускоренное охлаждение, при этом нагрев сляба под прокатку осуществляют при температуре 1190-1230°C в течение 5-10 часов, черновую прокатку заканчивают при температуре раската не менее 940°C и толщине раската 38-45% от толщины сляба, чистовую прокатку начинают при температуре 920-980°C и заканчивают при температуре не менее 910°C и толщине проката 19-25% от толщины сляба, после этого производят ускоренное охлаждение проката со скоростью 55-110°C/мин до температуры 20-50°C, затем нагревают прокат до температуры 610-660°C, при которой осуществляют его выдержку в течение не менее 5 часов, а после этого производят охлаждение проката на воздухе со скоростью не более 1,5°C/мин с обеспечением структуры, состоящей из бейнита и остаточного мартенсита, доля которого не превышает 5%.

Изобретение относится к области металлургии, а именно к толстолистовой стали толщиной 25 мм или больше для изготовления магистральной трубы. Сталь содержит, в мас.%: 0,040-0,080 C, 0,05-0,40 Si, 1,60-2,00 Mn, 0,020 или меньше P, 0,0025 или меньше S, 0,05-0,20 Mo, 0,0011-0,0050 Ca, 0,060 или меньше Al, 0,010-0,030 Nb, 0,008-0,020 Ti, 0,0015-0,0060 N, 0,0040 или меньше O, остальное - Fe и неизбежные примеси.

Изобретение относится к области металлургии, а именно к высокопрочной листовой стали, имеющей низкое отношение предела текучести к пределу прочности. Сталь имеет химическую композицию, содержащую в мас.%: С: 0,03-0,08, Si: 0,01-1,0, Мn: 1,2-3,0, Р: 0,015 или менее, S: 0,005 или менее, Аl: 0,08 или менее, Nb: 0,005-0,07, Ti: 0,005-0,025, N: 0,010 или менее, О: 0,005 или менее, Fe и неизбежные примеси – остальное.

Изобретение относится к области металлургии, а именно к высокопрочной листовой стали, имеющей низкое отношение предела текучести к пределу прочности. Сталь имеет химический состав, содержащий, мас.%: С 0,03-0,08, Si 0,01-1,0, Mn 1,2 - 3,0, Р 0,015 или менее, S 0,005 или менее, Al 0,08 или менее, Nb 0,005-0,07, Ti 0,005-0,025, N 0,010 или менее, О 0,005 или менее, Fe и неизбежные примеси – остальное.

Изобретение относится к области металлургии, а именно к окалиностойкой стали, используемой для изготовления закаленных деталей. Сталь имеет следующий химический состав, мас.%: С 0,04-0,50, Μn 0,5-6,0, Al 0,5-3,0, Si 0,05-3,0, Cr 0,05-3,0, Ni менее 3,0, Cu менее 3,0, Ti 0,010-0,050, В 0,0015-0,0040, Ρ менее 0,10, S от более 0,01 до 0,05, N менее 0,020, остальное железо и неизбежные примеси.

Изобретение относится к области черной металлургии. Для повышения прочности проката при одновременном повышении прокаливаемости, пластичности и ударной вязкости выплавляют сталь, содержащую, мас.%: углерод 0,04÷0,05, марганец 1,9÷2,0, кремний 0,22÷0,25, ниобий 0,07÷0,09, титан 0,02÷0,025, алюминий 0,025÷0,03, азот 0,005÷0,007, сера 0,001÷0,002, фосфор 0,006÷0,008, бор 0,0015÷0,002, железо - остальное, осуществляют непрерывную разливку стали в слябы, аустенизацию при 1050÷1100°С, черновую прокатку с деформацией 12÷20% в области температур рекристаллизации аустенита, чистовую - в области температур полного торможения рекристаллизации с общей степенью деформации 70÷80%, ускоренное охлаждение при температуре его завершения 350÷450°С и индукционный отпуск при температуре 620±10°С.
Изобретение может быть использовано для получения сварных конструкций алюминиевых сплавов методом сварки трением с перемешиванием, в частности для соединения листов из сплавов системы Al-Mg.

Изобретение относится к области металлургии, а именно к горячештампованной стали, используемой в автомобилестроении. Сталь содержит, мас.%: С: от 0,030 до 0,150, Si: от 0,010 до 1,00, Mn: от 0,50 до менее 1,50, Р: от 0,001 до 0,060, S: от 0,001 до 0,010, N: от 0,0005 до 0,0100, Al: от 0,010 до 0,050 и необязательно один или несколько из следующих элементов: В: от 0,0005 до 0,0020, Мо: от 0,01 до 0,50, Cr: от 0,01 до 0,50, V: от 0,001 до 0,100, Ti: от 0,001 до 0,100, Nb: от 0,001 до 0,050, Ni: от 0,01 до 1,00, Cu: от 0,01 до 1,00, Са: от 0,0005 до 0,0050 и РЗМ: от 0,0005 до 0,0050, остальное - Fe и неизбежные примеси. Микроструктура стали содержит от 40% до 95% по доле площади феррита и от 5% до 60% по доле площади мартенсита, а также, при необходимости, одну или несколько из следующих фаз: 10% или менее перлита по доле площади, 5% или менее остаточного аустенита по объемной доле и менее чем 40% по доле площади бейнита. Сумма доли площади феррита и доли площади мартенсита составляет 60% или более. Сталь обладает высокой формуемостью, высокими свойствами химической конверсионной обработки и адгезией покрытия. 3 н. и 17 з.п. ф-лы, 8 ил., 5 табл.
Наверх