Измерительный комплекс для экспресс-контроля параметров приемных катушек автоматической локомотивной сигнализации

Изобретение относится к области железнодорожной автоматики и телемеханики для контроля параметров приемных катушек АЛС. Измерительный комплекс содержит генератор, устройства имитации переменного магнитного поля и измеритель. Причем генератор выполнен на микроконтроллере с блоком ввода-вывода информации, узлом коммутации и защиты, цифроаналоговым преобразователем, цифровым аттенюатором, усилителем мощности, датчиком тока, аналого-цифровым преобразователем, устройствами для имитации переменного магнитного поля и модулем беспроводной связи. Измеритель выполнен на микроконтроллере с блоком ввода-вывода информации, узлом коммутации и защиты, цифроаналоговым преобразователем, цифровым аттенюатором, усилителем мощности, датчиком тока, усилителем, первым аналого-цифровым преобразователем, узлом коммутации и защиты, вторым аналого-цифровым преобразователем, источником высокого напряжения, источником постоянного напряжения, приемными катушками, модулем беспроводной связи, который по радиоканалу соединен с модулем беспроводной связи, установленным в генераторе. Достигается повышение оперативности проведения измерений и обработки измерительной информации. 2 ил.

 

Изобретение относится к железнодорожной автоматике и телемеханике и может быть использовано для оперативного измерения и контроля параметров приемных катушек автоматической локомотивной сигнализации.

Известен прибор ИПК-1 для измерения параметров приемных катушек АЛСН, разработанный депо Аткарск Приволжской дороги, включающий в себя измерительный механизм, входной делитель напряжения, магазин емкостей и переключатели. Измерительный механизм сделан на базе микроамперметра, измерение параметров катушек проводят на образцовых испытательных шлейфах контрольных пунктов АЛСН (http://scbist.com/zhurnal-lokomotiv/9760-pribor-dlya-izmereniya-parametrov-priemnyh-katushek-alsn.html).

Недостатками известного прибора являются необходимость генерации в шлейфах токов значительной величины (до единиц ампер) с соответствующим расходом электроэнергии, необходимость разборки клеммной коробки для измерения всех параметров приемных катушек согласно установленному перечню, необходимость использования дополнительных измерительных приборов, в частности для измерения индуктивности, сопротивления изоляции, использование морально устаревшей элементной базы.

Широко используется измеритель параметров локомотивных катушек ИП-ЛК, предназначенный для контроля аппаратуры АЛС на локомотиве и в условиях депо. Измеритель построен на принципе аналого-цифрового преобразования с цифровой обработкой данных встроенной однокристальной ЭВМ, на вход которого через аналоговый мультиплексор подаются сигналы от различных источников (http://www.jais.ru/ip-lk.htm).

Недостатком известного измерителя является необходимость разборки клеммной коробки для измерения всех параметров приемных катушек согласно установленному перечню, отсутствие возможности генерации переменного магнитного поля, имитирующего поле рельсовых сигналов АЛС/АЛС-ЕН.

Известно также устройство бесшлейфовой проверки (УБП), в котором магнитное поле, имитирующее прохождение рельсовых токов создается с помощью проводной рамки, фиксируемой на рельсах клипсами-зажимами (http://gisprofi.com/catalog/items 10299.html).

Недостатками известного устройства бесшлейфовой проверки являются необходимость использовать рельсовый шлейф, невозможность жесткой установки проводной рамки, при которой возможны провисания рамки, сползание кабеля с головки рельса, измерение параметров приемных катушек сопряжено с разборкой клеммной коробки, в которой осуществляется их электрическое соединение, отсутствие связи (информационного обмена) с персональным компьютером, существенные трудозатраты, кроме того, измерение электрических параметров приемных катушек возможно лишь совместно с измерителем параметров локомотивных катушек ИП-ЛК.

Технический результат предлагаемого изобретения заключается в повышении оперативности проведения измерений и обработки измерительной информации за счет того, что генератор и измеритель размещаются соответственно снаружи и внутри кабины локомотива, при этом информационное взаимодействие между ними осуществляется по радиоканалу на основе единого протокола обмена, а управление осуществляется в ручном или автоматическом режимах по командам от измерителя.

Технический результат достигается тем, что измерительный комплекс для экспресс-контроля параметров приемных катушек автоматической локомотивной сигнализации содержит генератор, устройства имитации переменного магнитного поля и измеритель, где генератор выполнен на микроконтроллере с подключенным к нему блоком ввода информации, выход микроконтроллера соединен с входом узла коммутации и защиты через последовательно соединенные цифроаналоговый преобразователь, цифровой аттенюатор, усилитель мощности и датчик тока, выход которого через первый аналого-цифровой преобразователь подключен к первому входу микроконтроллера, первый и второй выходы управления которого соединены с управляющими входами соответственно цифрового аттенюатора и узла коммутации и защиты, к выходам которого подключены устройства имитации переменного магнитного поля, вход/выход микроконтроллера соединен с модулем беспроводной связи, измеритель выполнен на микроконтроллере с подключенным к нему блоком ввода информации, выход микроконтроллера соединен с входом узла коммутации и защиты через последовательно соединенные цифроаналоговый преобразователь, цифровой аттенюатор, усилитель мощности и датчик тока, выход которого через последовательно соединенные усилитель и первый аналого-цифровой преобразователь подключен к первому входу микроконтроллера, первый, второй и третий выходы управления которого соединены с управляющими входами соответственно цифрового аттенюатора, усилителя мощности и узла коммутации и защиты, выход которого через второй аналого-цифровой преобразователь подключен ко второму входу микроконтроллера, четвертый и пятый выходы управления которого соединены соответственно с входом управления источника высокого напряжения, подключенного к дополнительному входу узла коммутации и защиты, и с входом управления источника постоянного напряжения, подключенного к входу узла коммутации и защиты, выходы которого предназначены для подключения приемных катушек, вход/выход микроконтроллера соединен с модулем беспроводной связи, который по радиоканалу соединен с модулем беспроводной связи, установленным в генераторе.

На чертежах приведены функциональные схемы генератора и измерителя (фиг. 1 и фиг. 2 соответственно).

Измерительный комплекс для экспресс-контроля параметров приемных катушек автоматической локомотивной сигнализации содержит генератор, устройства имитации переменного магнитного поля и измеритель. Генератор выполнен на микроконтроллере 1 с подключенным к нему блоком ввода-вывода информации 2, выход микроконтроллера 1 соединен с входом узла коммутации и защиты 3 через последовательно соединенные цифроаналоговый преобразователь 4, цифровой аттенюатор 5, усилитель мощности 6 и датчик тока 7, выход которого через первый аналого-цифровой преобразователь 8 подключен к первому входу микроконтроллера 1, первый и второй выходы управления которого соединены с управляющими входами соответственно цифрового аттенюатора 5 и узла коммутации и защиты 3, к выходам которого подключены устройства 9, 10 для имитации переменного магнитного поля, вход/выход микроконтроллера 1 соединен с модулем 11 беспроводной связи. Измеритель выполнен на микроконтроллере 12 с подключенным к нему блоком ввода-вывода информации 13, выход микроконтроллера 12 соединен с входом узла коммутации и защиты 14 через последовательно соединенные цифроаналоговый преобразователь 15, цифровой аттенюатор 16, усилитель мощности 17 и датчик тока 18, выход которого через последовательно соединенные усилитель 19 и первый аналого-цифровой преобразователь 20 подключен к первому входу микроконтроллера 12, первый, второй и третий выходы управления которого соединены с управляющими входами соответственно цифрового аттенюатора 16, усилителя мощности 17 и узла коммутации и защиты 14, выход которого через второй аналого-цифровой преобразователь 21 подключен ко второму входу микроконтроллера 12, четвертый и пятый выходы управления которого соединены соответственно с входом управления источника высокого напряжения 22, подключенного к дополнительному входу узла коммутации и защиты 14, и с входом управления источника постоянного напряжения 23, подключенного к входу узла коммутации и защиты 14, выходы которого предназначены для подключения приемных катушек 24, 25, вход/выход микроконтроллера 12 соединен с модулем 26 беспроводной связи, который по радиоканалу соединен с модулем 11 беспроводной связи, установленным в генераторе.

Измерительный комплекс для экспресс-контроля параметров приемных катушек автоматической локомотивной сигнализации функционирует следующим образом.

Генератор, представленный на фиг. 1, имеет встроенный модуль 11 беспроводной связи для обмена информацией с измерителем на расстоянии не менее 100 м и обеспечивает возможность генерации синусоидальных сигналов с частотами 25, 50, 75, 100, 175 Гц. К генератору подключаются два устройства 9, 10 для имитации переменного магнитного поля, которые имеют жесткую конструкцию и устанавливаются на головки рельсов индивидуально под левую и правую приемные катушки АЛС/АЛС-ЕН.

Генератор может функционировать в следующих режимах:

- автоматический - управление генератором производится с помощью измерителя по радиоканалу с использованием модулей беспроводной связи;

- ручной - выбор текущей частоты, величины тока, подаваемого в устройство для имитации переменного магнитного поля, вид подключения устройства (согласованное, одиночное, встречное) осуществляется вручную;

- установки - ручная установка даты и времени, выбор варианта предустановок (всего три предустановки для каждой из частот).

Микроконтроллер 1 представляет основное управляющее звено внутри генератора. В его функции входит обработка входящей управляющей информации, поступающей по радиоканалу, формирование исходящей информации, формирование управляющих сигналов для других элементов. С помощью набора линий цифровых портов ввода/вывода (входов/выходов общего назначения) формируемые управляющие сигналы передаются на остальные элементы. Микроконтроллер 1 по цифровым линиям выдает управляющую комбинацию сигналов на узел коммутации и защиты 3. Коммутационные реле реализуют один из следующих видов подключения устройств 9, 10 для имитации переменного электромагнитного поля:

- согласованное - последовательно соединенные устройства 9, 10 для имитации переменного электромагнитного поля таким образом, что в приемных катушках АЛС/АЛС-ЕН наводится суммарная эдс;

- первое устройство 9 - эдс наводится только в первой приемной катушке АЛС/АЛС-ЕН;

- второе устройство 10 - эдс наводится только во второй приемной катушке АЛС/АЛС-ЕН;

- встречное - в приемных катушках АЛС/АЛС-ЕН наводится разностная эдс.

Далее инициализируется процесс генерации синусоидального сигнала требуемой частоты, при этом в памяти микроконтроллера 1 находится заранее рассчитанный массив коэффициентов, которые воспроизводятся с помощью цифроаналогового преобразователя 4 в режиме DMA - прямого доступа к памяти - с заданной скоростью.

По отдельной линиям последовательного периферийного интерфейса выдается сигнал на активизацию ключа (на чертеже не показано), через который подается питание через цифровой аттенюатор 5 на усилитель мощности 6 для усиления сигнала. С выхода усилителя мощности 6 сигнал проходит через измерительную цепь датчика тока 7, который формирует напряжение, прямо пропорциональное величине тока. Таким образом, возможна передача данных на измеритель о реальном значении тока. Этот сигнал поступает на первый аналого-цифровой преобразователь 8, после чего в микроконтроллере 1 пересчитывается напряжение обратно в ток и сравнивается с требуемым значением тока. В случае несовпадения по последовательному периферийному интерфейсу микроконтроллер 1 начинает формировать кодовые комбинации, варьируя сопротивление цифрового аттенюатора 5 до достижения приемлемого значения тока. Таким образом, организована цифровая обратная связь по току.

При выходе на установленный режим генерации микроконтроллер 1 включает светодиод индикации (на чертеже индикации) наличия генерации и посредством модуля 11 беспроводной связи выдает ответное сообщение измерителю, по которому он может проводить измерения.

Электропитание генератора осуществляется от сети переменного тока, а в отсутствие внешнего питания для сохранения данных микроконтроллера 1 и обеспечения работы часов реального времени используется внутренняя Li-Ion батарея.

Измеритель, реализует полный набор своих функций только в паре с генератором. При этом он одновременно управляет работой генератора, проводит измерения и необходимые пересчеты. Функциональная схема измерителя представлена на фиг. 2.

В процессе работы микроконтроллер 12 измерителя формирует и через модуль 26 беспроводной связи выдает команды для генератора на смену частоты, изменение величины тока и вида подключения устройств 9, 10 для имитации переменного магнитного поля. Через этот же модуль 26 беспроводной связи микроконтроллер 12 измерителя принимает ответные сообщения о начале/остановке генерации.

При измерении электродвижущей силы в приемных катушках микроконтроллер 12 измерителя двумя цифровыми сигналами устанавливает узел 14 коммутации и защиты таким образом, что последовательно соединенные приемные катушки 24, 25 оказываются подключенными к второму аналого-цифровому преобразователю 21 микроконтроллера 12, куда поступает сигнал об измеренной эдс. Проводится серия измерений при требуемом токе на частотах: 25, 50, 75, 100, 175 Гц в вариантах согласованного, одиночного и встречного включений устройств 9, 10 имитации переменного магнитного поля.

Измерения на частоте 100 Гц не входят в число измеряемых параметров приемных катушек, но к данной частоте привязывается измерение индуктивности, поэтому при последующем расчете реактивных параметров приемных катушек измеритель также проводит собственные измерения. Для этого активизируется собственный цифроаналоговый преобразователь 15 микроконтроллера 12 измерителя для генерации синусоидального сигнала частотой 100 Гц. При этом через последовательный периферийный интерфейс настраивается цифровой аттенюатор 16, а по отдельной цифровой линии выдается сигнал на включение усилителя мощности 17, обеспечивающего компенсацию затухания сигнала при прохождении через приемные катушки АЛС/АЛС-ЕН. Далее с помощью первого аналого-цифрового преобразователя 20 проводятся измерения фиксированного значения тока от датчика тока 18, снабженного дополнительным усилителем 19, повышающим чувствительность датчика тока 18, а с помощью первого аналого-цифрового преобразователя 20 измеряется фиксированное значение напряжения на приемной катушке 24, 25. Процесс сопровождается вычислением разности фаз между током и напряжением.

Источник постоянного напряжения 23 используется в качестве стабилизатора, напряжение которого необходимо для измерения сопротивления постоянному току.

Для измерения сопротивления изоляции узел 14 коммутации и защиты устанавливается таким образом, что сначала к входу первого аналого-цифрового преобразователя 20 подключается вывод первой приемной катушки 24 и корпус (масса) поезда, а затем вывод второй приемной катушки 25 аналогичным образом. По отдельной линиям последовательного периферийного интерфейса включается источник 22 высокого напряжения (500 B), а замеры производятся с помощью второго аналого-цифрового преобразователя 21.

Питание измерителя обеспечивается аккумуляторной батареей посредством модуля питания (на чертеже не показан). Модуль питания вырабатывает постоянное напряжение 12 B для усилителя мощности 17, источника высокого напряжения 22, узла коммутации и защиты 14 приемной катушки.

Блоки ввода-вывода информации 2 и 13 предназначены для ручного управления процессом измерений.

Результаты выполненных измерений записываются в энергонезависимой памяти в виде электронного файла данных, пригодного для дальнейшего использования на персональном компьютере.

Измерительный комплекс для экспресс-контроля параметров приемных катушек существенно повышает производительность труда при контроле параметров катушек за счет автоматического режима проведения измерений по командам от измерителя, обеспечивая помимо генерации токов коммутацию направлений магнитной индукции формируемых магнитных полей так, что в приемных катушках наводятся суммарная, разностная эдс, а также эдс по отдельности, сокращаются временные затраты на проведение измерений.

Полное управление измерительным комплексом для экспресс-контроля параметров приемных катушек реализовано аппаратно-программными средствами в составе измерителя, который в процессе измерений подключен непосредственно к двум последовательно соединенными приемным катушкам автоматической локомотивной сигнализации через штатный кабельный соединитель в составе аппаратуры комплексного локомотивного устройства безопасности (КЛУБ) без разбора клеммной коробки, где соединены внутренние контакты приемных катушек, а в дополнение к измеренным эдс формируются собственные измеренные параметры на постоянном и переменном токе, что использовано при комплексной обработке всей совокупности измерений для формирования окончательных значений суммарной, разностной эдс, наводимой индивидуально эдс, индуктивности, активного электрического сопротивления, добротности, сопротивления изоляции.

Измерительный комплекс для экспресс-контроля параметров приемных катушек автоматической локомотивной сигнализации, содержащий генератор, устройства имитации переменного магнитного поля и измеритель, отличающийся тем, что генератор выполнен на микроконтроллере с подключенным к нему блоком ввода-вывода информации, выход микроконтроллера соединен с входом узла коммутации и защиты через последовательно соединенные цифроаналоговый преобразователь, цифровой аттенюатор, усилитель мощности и датчик тока, выход которого через первый аналого-цифровой преобразователь подключен к первому входу микроконтроллера, первый и второй выходы управления которого соединены с управляющими входами соответственно цифрового аттенюатора и узла коммутации и защиты, к выходам которого подключены устройства для имитации переменного магнитного поля, вход/выход микроконтроллера соединен с модулем беспроводной связи, измеритель выполнен на микроконтроллере с подключенным к нему блоком ввода-вывода информации, выход микроконтроллера соединен с входом узла коммутации и защиты через последовательно соединенные цифроаналоговый преобразователь, цифровой аттенюатор, усилитель мощности и датчик тока, выход которого через последовательно соединенные усилитель и первый аналого-цифровой преобразователь подключен к первому входу микроконтроллера, первый, второй и третий выходы управления которого соединены с управляющими входами соответственно цифрового аттенюатора, усилителя мощности и узла коммутации и защиты, выход которого через второй аналого-цифровой преобразователь подключен ко второму входу микроконтроллера, четвертый и пятый выходы управления которого соединены соответственно с входом управления источника высокого напряжения, подключенного к дополнительному входу узла коммутации и защиты, и с входом управления источника постоянного напряжения, подключенного к входу узла коммутации и защиты, выходы которого предназначены для подключения приемных катушек, вход/выход микроконтроллера соединен с модулем беспроводной связи, который по радиоканалу соединен с модулем беспроводной связи, установленным в генераторе.



 

Похожие патенты:

Изобретение относится к области железнодорожной автоматики и телемеханики и может быть использовано для подавления импульсных помех на входе локомотивного приемника автоматической локомотивной сигнализации.

Изобретение относится к способам для размагничивания рельсов. Способ устранения остаточной неравномерной намагниченности рельсов заключается в том, что на размагничивающей установке устанавливают одновременно два электромагнита, включенных разнополюсно.

Изобретение относится к железнодорожной автоматике и телемеханике и может быть использовано для работы автоматической локомотивной сигнализации. Устройство содержит встречно соединенные локомотивные приемные катушки и локомотивные дешифрирующие устройства автоматической локомотивной сигнализации, два сумматора на аналоговых операционных усилителях, неинвертирующий вход первого из которых соединен с локомотивными катушками, а его инвертирующий вход через первый фазовращатель соединен с программируемым фильтром нижних частот, и выход этого сумматора соединен с неинвертирующим входом второго сумматора.

Изобретение относится к железнодорожной автоматике и телемеханике. Устройство для диагностики состояния электрического сопротивления рельсовых линий в рельсовых цепях на участках железных дорог с электротягой переменного тока содержит регистратор, сумматор, делитель напряжения, пороговый элемент и блок сигнализации.

Изобретение относится к железнодорожной автоматике и телемеханике и обеспечивает повышение помехоустойчивости работы автоматической локомотивной сигнализации (АЛС).

Изобретение относится к железнодорожной автоматике и телемеханике и может использоваться для определения параметров движения поезда. .

Изобретение относится к железнодорожному транспорту и может быть использовано на железнодорожных станциях. .

Изобретение относится к области железнодорожной автоматики, телемеханики и связи и может быть использовано на железнодорожном транспорте с использованием радиоканала.

Изобретение относится к железнодорожной автоматике и телемеханике и может быть использовано для оперативного измерения и контроля параметров напольных устройств железнодорожной автоматики.

Изобретение относится к железнодорожной технике, а именно к железнодорожной автоматике и телемеханике для интервального регулирования движения поездов. .

Изобретение относится к области железнодорожной автоматики и телемеханики для контроля параметров приемных катушек АЛС. Измерительный комплекс содержит генератор, устройства имитации переменного магнитного поля и измеритель. Причем генератор выполнен на микроконтроллере с блоком ввода-вывода информации, узлом коммутации и защиты, цифроаналоговым преобразователем, цифровым аттенюатором, усилителем мощности, датчиком тока, аналого-цифровым преобразователем, устройствами для имитации переменного магнитного поля и модулем беспроводной связи. Измеритель выполнен на микроконтроллере с блоком ввода-вывода информации, узлом коммутации и защиты, цифроаналоговым преобразователем, цифровым аттенюатором, усилителем мощности, датчиком тока, усилителем, первым аналого-цифровым преобразователем, узлом коммутации и защиты, вторым аналого-цифровым преобразователем, источником высокого напряжения, источником постоянного напряжения, приемными катушками, модулем беспроводной связи, который по радиоканалу соединен с модулем беспроводной связи, установленным в генераторе. Достигается повышение оперативности проведения измерений и обработки измерительной информации. 2 ил.

Наверх