Способ получения катодного сплава на основе металла платиновой группы и бария



Способ получения катодного сплава на основе металла платиновой группы и бария
Способ получения катодного сплава на основе металла платиновой группы и бария

Владельцы патента RU 2627709:

Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" (АО "НПП "Исток" им. Шокина") (RU)

Изобретение относится к изготовлению металлосплавных катодов для приборов СВЧ-электроники. Способ получения катодного сплава на основе металла платиновой группы и бария включает прессование навески порошка металла платиновой группы, очистку поверхности бария от оксидов, совместную дуговую плавку прессовки и бария в атмосфере аргона с использованием нерасходуемого вольфрамового электрода. Перед прессованием навески порошка металла платиновой группы проводят механоактивацию (25-70)% навески порошка в течение 5-20 минут и смешивание с остатком навески порошка. Обеспечивается улучшение однородности распределения фазы интерметаллида в матрице металла платиновой группы. 2 табл., 2 пр.

 

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторичноэмиссионных металлосплавных катодов для мощных приборов СВЧ-электроники (ламп бегущей волны, магнетронов и т.п.).

Наиболее близким к предлагаемому способу (прототипом) является способ получения двухфазных сплавов Pt-Ba и Pd-Ba (см.: Н.П. Есаулов. Методы электроплавки при разработке спецсплавов для радиоэлектроники. Электрометаллургия. 2011, №4. - С. 30-33). Указанный способ состоит в следующем. Для проведения процесса плавки используется дуговая вакуумная печь (ДВП). Печь включает форвакуумный насос ВН-2, вакуумный агрегат ВА-0,5; вакуумную камеру, водо-охлаждаемый медный кристаллизатор, нерасходуемый вольфрамовый электрод, баллон аргона марки А. Перед плавкой порошок Pd или Pt компактируют (прессуют), а с поверхности бария удаляют парафин и масло, а также слой оксидов. Очищенный барий помещают непосредственно на дно лунки медного водоохлаждаемого кристаллизатора, а сверху на него загружают металл в компактном виде. Рабочую камеру откачивают, напускают аргон. Подают питание на электрод. Происходит расплавление металлов с образованием сплава.

Полученный сплав является двухфазным и представляет собою матрицу тугоплавкого металла (Pd, Pt) с включениями интерметаллического соединения (Pd5Ba; Pt5Ba).

Основной недостаток настоящего способа - сильно неравномерное распределение фазы интерметаллида в матрице металла платиновой группы. Данный факт приводит к понижению коэффициента вторичной электронной эмиссии (КВЭЭ) сплава, понижению КПД электровакуумных приборов (ЭВП) на его основе и уменьшению процента выхода годных.

Технический результат настоящего изобретения - повышение КПД и процента выхода годных ЭВП с использованием катодов R-Ba (где R - металл платиновой группы) улучшения однородности распределения фазы интерметаллида в матрице металла платиновой группы и повышения за счет этого КВЭЭ.

Указанный технический результат достигается тем, что перед проведением операции компактирования (прессования) порошка металла платиновой группы, проводят механоактивацию (25-70)% навески данного порошка в течение 5-20 минут. После этого механоактивированный порошок смешивают с остатком навески, прессуют, а все дальнейшие операции проводят в соответствии с прототипом.

Сущность изобретения состоит в следующем.

Механоактивация порошка металла платиновой группы приводит к уменьшению среднего размера частиц более, чем в 2 раза после 5 мин активации и в 15-20 раз после 20 мин активации, уменьшению в несколько раз среднемассового размера и повышению в 3-4 раза удельной поверхности частиц порошка. Кроме этого процесс механоактивации приводит к увеличению дефектности и энергонасыщенности активируемого материала за счет пластического деформирования и дробления. Существенно меньшие размеры частиц порошка металла платиновой группы после процесса механоактивации, высокие значения удельной поверхности частиц, а также его повышенная активность еще и за счет выделения в технологическом процессе запасенной энергии позволяют добиться более равномерного распределения интерметаллида Pd5Ba (Pt5Ba) в матрице Pd (Pt) и за счет этого повысить КВЭЭ, КПД и процент выхода годных ЭВП.

Пример 1. 50% навески порошка Pd марки ППд1 ПдАП-1 СТО 00195200-040-2008 механоактивировали в мельнице АГО-2 в течение 10 мин. В качестве мелющих тел использовались шары из оксида циркония диаметром 5 мм и керамический барабан. После окончания процесса активации контролировали размер частиц порошка Pd. Средний размер частиц уменьшился с 630 мкм до 175 мкм. Далее активированный порошок тщательно смешивали в смесителе с остатком (50%) навески исходного порошка Pd и прессовался в параллелепипед под давлением ~5,0 т/см2. Очищенную от парафина и масла навеску металлического бария помещали на дно лунки медного водоохлаждаемого кристаллизатора установки дуговой плавки А 535.02 ФО, а сверху на него загружали подготовленную прессовку порошка Pd. Производили откачку рабочей камеры установки дуговой плавки до давления 10-2 Па. После чего напускали аргон до давления 1,5 атм. Далее подавали питание на вольфрамовый электрод. Под воздействием концентрированной тепловой энергии, выделяющейся в плазме разряда, происходило расплавление металлов в лунке кристаллизатора с образованием сплава Pd-Ba. Из образовавшегося сплава Pd-Ba прокатывали фольгу толщиной h=200 мкм. Из разных частей прокатанного образца было изготовлено семь катодов для магнетронов. Для каждого катода измеряли КВЭЭ и работу выхода электрона. Полученные результаты сравнивали с результатами испытаний катодов и магнетронов, полученных по технологии прототипа (без применения механоактивации) (см. табл. 1).

Пример 2. 70% навески порошка Pt механоактивировали в течение 20 мин в мельнице АГО-2. Использовался стальной барабан. В качестве мелющих тел использовались стальные шары диаметром 3 мм.

После окончания процесса активации контролировали размер частиц порошка Pt. Измерения показали, что средний размер уменьшался с 560 мкм до 42 мкм.

Далее все операции по получению сплава Pt-Ba проводились аналогично примеру 1.

Результаты испытаний катодов на основе Pt-Ba, приготовленного с использованием операции механоактивации шихты, представлены в табл. 2.

Как видно из табл. 1 и табл. 2, операция механоактивации порошка металла платиновой группы существенно влияет на характеристики катодов Pd-Ba и Pt-Ba.

В частности, для сплава Pd-Ba КВЭЭ повышается на (8,6-11,9)%, а работа выхода электрона уменьшается на (4,4-9,5)%. Процент выхода годных магнетронов при использовании катодов на основе сплава Pd-Ba, изготовленного с использованием механоактивированного порошка Pd, увеличивается на 12%.

Для сплава Pt-Ba механоактивация порошка Pt приводит к росту КВЭЭ на (9,1-11,4)% и уменьшению работы выхода электрона на (3,3-8,3)%.

Ограничения по количеству навески порошка, проходящего операцию механоактивации выбраны исходя из следующих соображений. При механоактивации меньше 25% исходной навески порошка металла платиновой группы эффект от механоактивации не дает заметного результата. В то же время, когда механоактивируют больше 70% навески порошка, дальнейшего качественного роста свойств катодного сплава не наблюдается, но начинает сказываться появление в материале катода материала намола (материала барабана и мелющих тел).

Ограничения по количеству времени механоактивации выбраны исходя из следующих соображений. При механоактивации порошка исходной навески порошка металла платиновой группы меньше 5 мин эффект от механоактивации не дает заметного результата. В то же время, когда время механоактивации больше 20 мин, дальнейшего качественного роста свойств катодного сплава не наблюдается, но начинает сказываться появление в материале катода материала намола (материала барабана и мелющих тел).

Способ получения катодного сплава на основе металла платиновой группы и бария, включающий прессование навески порошка металла платиновой группы, очистку поверхности бария от оксидов, совместную дуговую плавку прессовки и бария в атмосфере аргона с использованием нерасходуемого вольфрамового электрода, отличающийся тем, что перед операцией прессования проводят механоактивацию (25-70)% навески порошка в течение 5-20 минут и смешивание механоактивированного порошка с остатком навески порошка.



 

Похожие патенты:

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторично-эмиссионных катодов. Путем плавки получают интерметаллид Рd5Ва, размалывают в атмосфере инертного газа или СО2 с получением порошка, полученный порошок смешивают с порошком палладия и проводят механоактивацию полученной смеси в планетарной или вибромельнице в течение 5-15 минут.

Изобретение относится к электронной технике, а именно к способам изготовления металлопористых катодов для вакуумных электронных приборов. Технический результат - повышение равномерности распределения плотности токоотдачи и долговечности катодов.

Изобретение относится к электронной технике и может быть использовано в электровакуумных приборах, в частности в магнетронах непрерывного или импульсного действия, работающих в широком диапазоне длин волн.

Изобретение относится к электронной технике и может быть использовано при изготовлении электронных пушек с термокатодами для приборов СВЧ. Cпособ определения величины продольного смещения термокатода (Δк), вызванного его нагревом, в приборе СВЧ, включает измерения тока пушки Iизм.

Изобретение относится к электронной технике, а именно к способам реставрации мощных СВЧ-устройств, и может быть использовано для восстановления эксплуатационных характеристик приборов гиротронного типа.
Изобретение относится к электронной технике, а именно, к способу изготовления металлопористого катодов для вакуумных электронных приборов. Возможность изготовления крупногабаритных катодов со сложной формой эмитирующей поверхности, а также повышение срока его службы за счет создания ламинарного электронного потока с минимальными пульсациями, является техническим результатом заявленного изобретения.

Изобретение относится к области плазменной техники, а именно к составу материала для изготовления электродов генераторов низкотемпературной плазмы, содержащему связывающее вещество и растворитель, при этом состав дополнительно содержит оксиды лютеция Lu2O3 и неодима Nd2O3 в соотношении между собой 100:20 мас.% и имеет следующее соотношение: связывающее вещество - 10-70, оксиды лютеция Lu2O3 и неодима Nd2O3 - 80-20, растворитель - остальное.

Изобретение относится к электронной технике, а именно к способам обработки эмиттирующей поверхности металлопористых катодов электронных приборов СВЧ-типа. .
Изобретение относится к электронной технике, а именно к способам изготовления металлопористых катодов для ЭВП. .

Изобретение относится к электронной технике, а именно к способам изготовления металлопористых катодов (МПК) для однолучевых и многолучевых СВЧ-приборов, преимущественно O-типа.

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторично-эмиссионных катодов. Путем плавки получают интерметаллид Рd5Ва, размалывают в атмосфере инертного газа или СО2 с получением порошка, полученный порошок смешивают с порошком палладия и проводят механоактивацию полученной смеси в планетарной или вибромельнице в течение 5-15 минут.

Изобретение относится к области изготовления диспенсерных катодов на основе скандата бария или других материалов на основе скандата бария, а именно к материалу мишени и мишени для физического осаждения тонких пленок, дисперсному катоду на основе скандата бария и способу его получения и способу получения мишени.

Изобретение относится к катодам электровакуумных приборов, а более конкретно к цилиндрическим термокатодам, преимущественно для магнетронов, и может быть использовано в электронной технике.

Изобретение относится к полупрозрачному фотокатоду (1) для фотодетектора, имеющего повышенную степень поглощения при сохраняющейся степени переноса. Согласно изобретению фотокатод (1) содержит пропускающую дифракционную решетку (30) для дифракции фотонов, расположенную в слое подложки (10), на которую нанесен фотоэмиссионный слой (20).

Изобретение относится к электронной технике и может быть использовано в электронно-лучевых приборах с автоэлектронной эмиссией, а именно: в зондовых приборах, экранах, растровых электронных микроскопах, а также в исследовательских и аналитических установках.

Изобретение относится к приборам вакуумной и твердотельной электроники, в частности к автоэмиссионным элементам на основе углеродных нанотрубок (УНТ), используемых в качестве катодов: к диодам, к триодам и к устройствам на их основе.

Изобретение относится к технологии изготовления холодных катодов гелий-неоновых лазеров и может быть использовано в газоразрядной технике и микроэлектронике. Способ включает в себя нагрев заготовок катода из алюминия в вакууме не ниже 10-5 мм рт.ст.

Изобретение относится к электронной технике, а именно к способу изготовления катодно-сеточных узлов (КСУ) с холодными катодами из углеродного материала для вакуумных электронных приборов.
Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии углеродных структур.

Фотоумножитель может быть использован для регистрации слабых световых сигналов в исследованиях по физике высоких энергий, ядерной физике, в других различных технических приложениях, в том числе и для наблюдения крайне слабых световых сигналов.

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторично-эмиссионных катодов. Путем плавки получают интерметаллид Рd5Ва, размалывают в атмосфере инертного газа или СО2 с получением порошка, полученный порошок смешивают с порошком палладия и проводят механоактивацию полученной смеси в планетарной или вибромельнице в течение 5-15 минут.
Наверх