Катализатор изодепарафинизации углеводородного сырья с10+ для получения низкозастывающих масел и дизельных топлив и способ получения низкозастывающих масел и топлив с его использованием

Изобретение относится к области катализа и нефтепереработки, в частности к составу и способу приготовления катализатора изодепарафинизации, а также способу получения низкозастывающих масел или дизельных топлив путем преимущественной изомеризации н-парафинов углеводородного сырья с использованием данного катализатора. Катализатор изодепарафинизации углеводородного сырья С10+ для получения низкозастывающих масел или дизельных топлив содержит 20-60 мас.% цеолита структуры МТТ, 1-3 мас.% цеолита структуры MOR, 0,2-0,4 мас.% платины, остальное - связующее. Катализатор может быть дополнительно модифицирован металлом, выбранным из группы: Са, Mg, Ва, In, Се. Предложен процесс получения низкозастывающих масел или дизельных топлив путем контактирования смеси углеводородного сырья и водорода с указанным катализатором изодепарафинизации при следующих условиях: температура 250-350°С, давление 2-15 МПа, объемная скорость подачи сырья 0,5-3,0 ч-1, соотношение водорода к сырью 350-2000 нл/л. Технический результат – повышение выхода целевого продукта в процессе изодепарафинизации углеводородного сырья. 2 н. и 3 з.п. ф-лы, 9 пр., 8 табл.

 

Изобретение относится к области катализа и нефтепереработки, в частности к составу и способу приготовления катализатора изодепарафинизации и способу получения низкозастывающих масел или дизельных топлив путем преимущественной изомеризации н-парафинов углеводородного сырья с использованием данного катализатора.

Под углеводородным сырьем подразумевается смесь углеводородов минерального (углеводороды нефти) или синтетического происхождения (продукты синтеза Фишера-Тропша; углеводороды, полученные при деоксигенировании различных видов биосырья, к примеру - растительных масел), которая преимущественно состоит из молекул с длинной цепи С10 и более. Так, к углеводородному сырью С10+ относятся масляные и дизельные фракции, выделенные из нефти или полученные в синтезе Фишера-Тропша. Для получения из данных видов сырья низкозастывающих масел и топлив необходима их гидрокаталитическая переработка. Желательным является, если в ходе гидрокаталитической переработки преимущественно протекают реакции гидроизомеризации. В описании и примерах представленного изобретения процесс, направленный на получение низкозастывающих базовых масел и топлив из углеводородного сырья, в ходе которого целевыми являются реакции гидроизомеризации, обозначен термином «изодепарафинизация».

Из литературных данных известно, что высокую селективность в реакциях гидроизомеризации длинноцепочечных парафинов проявляют бифункциональные катализаторы на основе цеолитов специфичной структуры - TON (например - ZSM-22), МТТ (например - ZSM-23), *MRE (например - ZSM-48), AEL (например - SAPO-11), АТО (например - SAPO-31) и AFO (например - SAPO-41). Подобные цеолиты характеризуются одномерной системой пор с десятичленными или малыми двенадцатичленными кольцами в устьях каналов, не имеющих больших полостей и могут быть отнесены к группе так называемых 1-D, 10-R молекулярных сит [Герасимов Д.Н., Фадеев В.В., Логинова А.Н., Лысенко С.В. Гидроизомеризация длинноцепочечных парафинов: механизм и катализаторы. Катализ в промышленности, ч. I, 2015, №1. с. 27-54].

Бифункциональные катализаторы на основе цеолитов указанных типов, содержащие металлический компонент, активный в реакциях гидрирования-дегидрирования, отличаются более высокой селективностью по отношению к реакциям гидроизомеризации по сравнению с катализаторами, содержащими такие распространенные цеолиты, как Y, β, ZSM-5, а также катализаторами на основе аморфных алюмосиликатов и галогенированного оксида алюминия [Deldari Н. Suitable catalysts for hydroisomerization of long-chain normal paraffins. Applied Catalysis A. 2005, v. 293. p. 1-10. Akhmedov V.M. Al-Khowaiter S.H. Recent advances and future aspects in the selective isomerization of high n-alkanes. Catalysis Reviews. 2007. v. 49. p. 33-139. Герасимов Д.Н., Фадеев B.B., Логинова A.H., Лысенко С.В. Гидроизомеризация длинноцепочечных парафинов: механизм и катализаторы. Катализ в промышленности, ч. I, 2015, №1. с. 27-54].

Следует отметить, что бифункциональные катализаторы на основе различных 1-D, 10-R молекулярных сит имеют схожие значения селективности. При этом алюмосиликатные цеолиты (структуры МТТ, TON, *MRE), обладая кислотными центрами большей силы, активнее и позволяют проводить гидроизомеризацию при более низких температурах по сравнению с алюмофосфатами (структуры АТО, AEL, AFO) [Герасимов Д.Н., Фадеев В.В., Логинова А.Н., Лысенко С.В. Гидроизомеризация длинноцепочечных парафинов: механизм и катализаторы. Катализ в промышленности, ч. I, 2015, №1. с. 27-54]. Указанные особенности оказывают значительное влияние на протекание процесса изодепарафинизации с использованием реального сырья - масляных и дизельных фракций. Более низкие температуры процесса изодепарафинизации при использовании катализаторов на основе алюмосиликатных цеолитов позволяют снизить энергозатраты на получение продукта и избежать интенсивного протекания реакций дегидрирования нафтеновых углеводородов, содержащихся в масляных и дизельных фракциях, до ароматических углеводородов, содержание которых в конечных продуктах (базовых маслах и дизельных топливах) строго регламентировано. Таким образом, для данных типов углеводородного сырья, использование катализаторов изодепарафинизации на основе алюмосиликатных 1-D, 10-R цеолитов является предпочтительным. Так, известны катализаторы изодепарафинизации на основе цеолитов структуры МТТ, TON, *MRE [WO 2013/085533 A1, 13.06.2013, RU 2519747 C2, 20.06.2014, RU 2500473 C2, 10.12.2013, US 2011/0180453 А1].

В различных источниках упоминаются подходы, позволяющие улучшить активность и/или селективность катализаторов изодепарафинизации на основе алюмосиликатных 1-D, 10-R цеолитов:

- введение в состав катализатора модификаторов (Mg, Са, Cs, Na, Sr, Ва, K, Pr, Nd, Cr, Се, La);

- использование связующего с относительно низкой площадью поверхности;

- введения в состав катализатора дополнительного цеолита.

В ряде источников указано, что модифицирование катализатора изодепарафинизации на основе алюмосиликатных цеолитов, путем внесения в их состав таких элементов, как: Mg, Са, Cs, Na, Sr, Ва, K, Pr, Nd, Cr, Се, La, позволяет повысить его селективность, при снижении активности [US 2011/0315598, US 2011/0319685, US 8475648, US Patent 2014/0291206, US 2013/028415, US 2013/0008827, RU 2009116476/04].

Согласно данным, представленным в нескольких патентах [US 2011/0192766 А1, US 8,617,383, US 2009/0186754 А1], для использования в составе катализаторов изодепарафинизации предпочтительными являются связующие с относительно низкой площадью поверхности - не более 100 м2/г. Считается, что в таких катализаторах большая доля поверхности относится к цеолитной, что ведет к большей селективности катализатора. Следует отметить, что катализаторы, содержащие связующее с малой площадью поверхности, могут отличаться невысокой прочностью, что несколько снижает преимущества их использования [US 2011/0192766 А1].

В ряде литературных источников, посвященных катализаторам гидроизомеризации (изодепарафинизации) предложено использование катализаторов, содержащих не один 1-D, 10-R цеолит, а сочетание двух цеолитов. Так, упоминаются синергетические эффекты при использовании следующих структур цеолитов:

- TON+*MRE [Hastoy G., Guillon E., Martens J. Synergetic effects in intimate mixtures of Pt/ZSM-48 and Pt/ZSM-22 zeolites in bifunctional catalytic chain branching of n-alkanes// Studies in Surface Science and Catalysis Volume 158, Part B. - 2005. - P. 1359-1366];

- TON+FAU [Parton R., Uytterhoeven L., Martens J., Jacobs P., Froment G. Synergism of ZSM-22 and Y Zeolites in the Bifunctional Conversion of n-Alkanes// Applied Catalysis. - 1991. - V. 76.- P. 131-142];

- MTT+GON [US 2007/0029229 A1];

- МТТ или *MRE+MFI (цеолит Sn-ZSM-5) [US 8030240].

Для экспериментов с использованием модельного сырья было показано, что использование сочетания цеолитов TON+*MRE, TON+FAU позволяет увеличить максимальный выход продуктов гидроизомеризации н-алканов. Введение в состав катализатора изодепарафинизации цеолита структуры GON, дополнительно к цеолиту структуры МТТ, позволило увеличить конверсию наиболее тяжелых н-парафинов сырья.

Известен катализатор гидроизомеризации, описанный в [Parton R., Uytterhoeven L., Martens J., Jacobs P., Froment G. Synergism of ZSM-22 and Y Zeolites in the Bifunctional Conversion of n-Alkanes// Applied Catalysis. - 1991. - V. 76. - P. 131-142], содержащий платину, нанесенную на смесь цеолитов ZSM-22 (структура TON) и обработанного паром цеолита Y (структура FAU). Сочетание этих двух цеолитов при их определенном соотношении (75:25 по массе) позволило увеличить выход целевых продуктов при гидроизомеризации декана по отношению к использованию каждого из этих цеолитов по отдельности. К недостаткам данного катализатора можно отнести то, что:

- в процессе гидроизомеризации использовали прессованные катализаторы, малопригодные для промышленных реакторов изодепарафинизации;

- цеолит Y требовал дополнительной паровой обработки перед использованием в составе катализатора;

- эффективность катализатора не была подтверждена с использованием реального углеводородного сырья.

Техническая задача предлагаемого изобретения заключается в разработке состава и способа приготовления катализатора изодепарафинизации углеводородного сырья С10+ для получения низкозастывающих масел и дизельного топлива на основе алюмосиликатного цеолита и способа получения низкозастывающих базовых масел и дизельных топлив с его использованием.

Технический результат заключается в повышении выхода целевого продукта в процессе изодепарафинизации углеводородного сырья.

Технический результат достигается тем, что в составе катализатора изодепарафинизации используют смесь цеолита структуры МТТ и цеолита структуры MOR, причем содержание цеолита структуры MOR в катализаторе не превышает 3% мас. Катализатор изодепарафинизации содержит в своем составе 20-60% мас. цеолита структуры МТТ, 1-3% мас. цеолита структуры MOR, 0,2-0,4% мас. платины, остальное - связующее. Катализатор может быть дополнительно модифицирован путем введения 0,1-1,0% мас. металла, выбранного из группы: Са, Mg, Ва, In, Се.

Процесс изодепарафинизации углеводородного сырья с использованием данного катализатора проводят при подаче смеси углеводородного сырья и водорода через слой катализатора при следующих условиях процесса: температура 250-350°С, давление 2-15 МПа, объемная скорость подачи сырья 0,5-3,0 ч-1, соотношение водорода к сырью 350-2000 нл/л.

Изобретение иллюстрируется следующими примерами.

Пример 1

Для приготовления катализатора 1 в качестве кислотного компонента использовали образец, представляющий собой смесь 95% мас. цеолита структуры МТТ имеющего мольное соотношение SiO2:Al2O3 (SAR), равное 30 и 5% мас. цеолита структуры MOR (SAR=30). В качестве прекурсора связующего использовали псевдобемит, который при прокаливании переходит в γ-Al2O3, имеющий площадь поверхности 250 м2/г.

Приготовление катализатора осуществляют следующим образом.

Цеолит перетирали в ступке, выделяли фракцию порошка менее 0,1 мм с помощью лабораторного сита. 44,7 г просеянного порошка цеолита смешивали с 76,5 г псевдобемита. К полученной смеси небольшими порциями приливали раствор, состоящий из 85 мл дистиллированной воды, 2,5 мл пептизатора - 65% азотной кислоты и 4,3 мл пластификатора - триэтиленгликоля. Полученную массу перемешивали до состояния однородной пасты. Полученную пасту формовали с использованием лабораторного поршневого экструдера (диаметр фильеры 1,5 мм). Экструдаты сушили при ступенчатом подъеме температуры (60, 80, 110°С) и выдержке при каждой температуре в течение 3 ч, а затем измельчали до гранул длиной 2-5 мм. Гранулы носителя прокаливали в токе воздуха при следующем температурном режиме: подъем до 550°С - 10 ч, выдержка при этой температуре - 10 ч. 104,9 г носителя (99,7 г сухого носителя) засыпали в коническую колбу. В отдельной емкости готовили 249 мл пропиточного раствора, содержащего 0,54 г Pt(NH3)4Cl2 (0,3 г в пересчете на металлическую платину) и 4,4 мл 25%-ного водного раствора аммиака, растворенных в дистиллированной воде. В коническую колбу с носителем приливали пропиточный раствор. Нанесение платины проводили при температуре 95°С в течение 6 ч без перемешивания. Для нагрева образца использовали масляную баню, а для предотвращения испарения пропиточного раствора применяли обратный холодильник. После окончания пропитки раствор декантировали и катализатор сушили при ступенчатом подъеме температуры (60, 80, 110°С) и выдержке при каждой температуре в течение 3 ч. Просушенный катализатор прокаливали в токе воздуха по следующей температурной программе: нагрев до 300°С - 6 ч, выдержка при этой температуре - 6 ч.

Полученный катализатор содержит 40% мас. цеолита структуры МТТ (SAR=30), 2% мас. цеолита структуры MOR (SAR=30), 0,3% мас. Pt, остальное - оксид алюминия.

Пример 2 (сравнение)

Катализатор 2 синтезировали аналогично катализатору 1, за исключением того, что вместо смеси цеолита структуры МТТ (95% мас.) и цеолита структуры MOR (5% мас.), использовали только цеолит структуры МТТ (SAR=30).

Пример 3

Катализатор 3 синтезировали аналогично катализатору 1, за исключением того, что катализатор 3 содержит 60% мас. цеолита структуры МТТ (SAR=40), 3% мас. цеолита структуры MOR (SAR=30), в качестве прекурсора связующего использовали псевдобемит, который при прокаливании переходит в γ-Al2O3, имеющий площадь поверхности 340 м2/г, в состав катализатора дополнительно введен модифицирующий металл: 0,2% мас. Mg (катализатор 3а) или 0,3% мас. Са (катализатор 3б) или 1,0% мас. Ва (катализатор 3в) или 0,1% мас. In (катализатор 3г) или 0,1% мас. Се (катализатор 3д);.

Внесение модифицирующего металла проводили методом ионообмена на образец цеолита, имеющего SAR=30 и представляющего собой смесь цеолита структуры МТТ (95% мас.) и цеолита структуры MOR (5% мас.). Для ионообмена цеолита использовали 0,04 М раствор соли соответствующего металла (хлорида или нитрата). Процесс проводили по следующей программе:

- выдержка смеси порошка цеолита и раствора соли при комнатной температуре - 1,5 ч;

- нагрев смеси до 70°С с использованием масляной бани и обратного холодильника; выдержка при 70°С - 5 ч.

После ионообмена образец промывали дистиллированной водой и сушили при температуре 110°С в течение 16 ч.

Пример 4

Катализатор 4 синтезировали аналогично катализатору 1, за исключением того, что катализатор 4 содержит 60% мас. цеолита структуры МТТ (SAR=50), 3% мас. цеолита структуры MOR (SAR=30), 0,4% масс. Pt, остальное - оксид алюминия; а в качестве прекурсора связующего использовали псевдобемит, который при прокаливании переходит в γ-Al2O3 имеющий площадь поверхности 170 м2/г.

Пример 5

Катализатор 5 синтезировали аналогично катализатору 1, за исключением того, что катализатор 5 содержит 20% мас. цеолита структуры МТТ (SAR=30), 1% мас. цеолита структуры MOR (SAR=30), 0,2% мас. платины, остальное - оксид алюминия.

Пример 6 (сравнение)

Катализатор 6 синтезировали аналогично катализатору 2, за исключением того, что в качестве прекурсора связующего использовали псевдобемит, который при прокаливании переходит в γ-Al2O3 имеющий площадь поверхности 100 м2/г.

Состав синтезированных катализаторов представлен в таблице 1.

Пример 7

Изодепарафинизация остатка гидрокрекинга, представляющего собой смесь углеводородов С10+.

Синтезированные катализаторы испытывали в процессе изодепарафинизации с использованием в качестве сырья фракции 280°С-КК, выделенной из продуктов гидрокрекинга вакуумного газойля. Физико-химические свойства сырья представлены в таблице 2.

Процесс изодепарафинизации проводили на проточной лабораторной установке.

Эксперименты проводили следующим образом.

При атмосферном давлении восстанавливали катализатор при ступенчатом подъеме температуры до 250 и 450°С с выдержкой на каждой ступени в течение 1 и 3 ч, соответственно. Реактор охлаждали до рабочей температуры, набирали требуемое давление водорода. Восстановление катализатора проводили однократно для каждого катализатора. После выхода на рабочую температуру включали подачу сырья с заданной объемной скоростью. Катализатор прирабатывали в токе сырья в течение 1 часа, затем производили отбор промежуточной не анализируемой пробы. После этого начинали накопление целевой пробы.

Продукты изодепарафинизации стабилизировали для удаления легких продуктов при давлении 500 Па и температуре 130°С в течение 1 часа.

Условия проведения процесса изодепарафинизации фракции 280°С-КК остатка гидрокрекинга представлены в таблице 3.

Данные по выходам и низкотемпературным свойствам полученных депарафинированных продуктов представлены в таблице 4.

Как видно из представленных данных, использование катализаторов, содержащих смесь цеолитов структуры МТТ и MOR (до 3% мас.) позволяет достичь более высоких выходов целевого низкозастывающего продукта по сравнению с образцами сравнения, не содержащими цеолита структуры MOR (катализаторы 2 и 6). Кроме того, в отличие от данных, приведенных в литературных источниках, использование связующего с относительно высокой площадью поверхности (170 м2/г и более) позволило достичь больших выходов целевого низкозастывающего продукта.

Пример 8

Катализаторы 1 и 3в были испытаны в процессе изодепарафинизации с использованием в качестве сырья фракции 280°С-КК, выделенной из продуктов гидрокрекинга вакуумного газойля по методике, описанной в примере 7, за исключением того, что параметры процесса изодепарафинизации варьировали в диапазонах: температура 250-350°С, давление 2-15 МПа, объемная скорость подачи сырья 0,5-3,0 ч-1. Результаты испытаний представлены в таблице 5.

Пример 9

Изодепарафинизация гидроочищенной дизельной фракции

Катализатор 5 был испытан в процессе изодепарафинизации с использованием в качестве сырья гидроочищенной дизельной фракции (таблица 6).

Методика проведения испытаний катализатора аналогична описанной в примере 7.

Продукты изодепарафинизации стабилизировали при давлении 1500 Па и температуре 30°С в течение 15 минут.

Условия проведения процесса изодепарафинизации дизельной фракции представлены в таблице 7.

Данные по выходам и низкотемпературным свойствам полученных депарафинированных продуктов представлены в таблице 8.

Как видно из результатов испытаний, заявленное сочетание отличительных признаков изобретения позволяет существенно повысить выход целевого продукта.

1. Катализатор изодепарафинизации углеводородного сырья С10+ для получения низкозастывающих масел или дизельных топлив, содержащий 20-60 мас.% цеолита структуры МТТ, 1-3 мас.% цеолита структуры MOR, 0,2-0,4 мас.% платины, остальное - связующее.

2. Катализатор по п. 1, отличающийся тем, что дополнительно содержит 0,1-1,0 мас.% металла, выбранного из группы: Са, Mg, Ва, In, Се.

3. Катализатор по п. 1, отличающийся тем, что в качестве связующего содержит оксид алюминия с удельной площадью поверхности 170-340 м2/г.

4. Катализатор по п. 1, отличающийся тем, что цеолит структуры МТТ имеет мольное соотношение SiO2:Al2O3 от 30 до 50.

5. Способ получения низкозастывающих масел или дизельных топлив путем контактирования смеси углеводородного сырья и водорода с катализатором изодепарафинизации по п. 1 при следующих условиях: температура 250-350°С, давление 2-15 МПа, объемная скорость подачи сырья 0,5-3,0 ч-1, соотношение водорода к сырью 350-2000 нл/л.



 

Похожие патенты:

Изобретение относится к способу и устройству для получения углеводородных компонентов. Способ получения углеводородных компонентов включает: предоставление сырья, содержащего (i) талловое масло и (ii) терпеновые соединения, представляющие собой потоки в деревообрабатывающей промышленности, содержащие С5-С10 углеводороды и серу, подвергание сырья и питающего газообразного водорода гидроочистке в присутствии NiO/MoO3 катализатора на носителе Al2O3 для получения углеводородных компонентов, включающих н-парафины, подвергание углеводородных компонентов, включающих н-парафины, изомеризации в присутствии NiW катализатора на носителе цеолит-Al2O3 и в присутствии водорода для образования смеси углеводородных компонентов.

Изобретение относится к способу получения базового состава смазочного масла, который включает первую стадию, где первое получаемое масло получают посредством приведения в контакт исходных материалов масла, которые содержат нормальный парафин, имеющий 20 или более атомов углерода, с первым катализатором в присутствии молекулярного водорода; и вторую стадию, где второе получаемое масло получают посредством приведения в контакт первого получаемого масла со вторым катализатором в присутствии молекулярного водорода.

Изобретение относится к области катализа. Описаны катализаторы гидроизомеризации, содержащие носитель, являющийся экструдированным продуктом, полученным прокаливанием, имеющим термическую обработку, которая включает термическую обработку при 350°C или выше, и, по меньшей мере, один металл, нанесенный на носитель и выбранный из группы, состоящей из металлов, принадлежащих к группам 8-10 периодической системы элементов, молибдена и вольфрама, в котором носитель содержит прошедший ионообменную обработку в растворе, содержащем аммониевые ионы и/или протоны, цеолит, содержащий органический шаблон и имеющий 10-звенную кольцевую одноразмерную пористую структуру, и неорганический оксид.
Изобретение относится к комплексному способу превращения углеводородных фракций, происходящих из нефти, в смеси углеводородов, обладающие высоким топливным качеством, включающему следующие стадии: 1) проведение крекинга с псевдоожиженным катализатором (КПК) углеводородной фракции с получением смеси, содержащей легкий рецикловый газойль (ЛРГ); 2) разделение смеси, полученной на предшествующей стадии КПК, с целью выделения по меньшей мере одной фракции ЛРГ и фракции тяжелого рециклового газойля (ТРГ); 3) повторную подачу по меньшей мере части фракции ТРГ на стадию КПК; 4) проведение гидроочистки фракции ЛРГ; 5) проведение реакции продукта, полученного на стадии (4), с водородом, в присутствии каталитической системы, включающей: а) один или более металлов, выбранных из Pt, Pd, Ir, Ru, Rh и Re; b) алюмосиликат кислой природы, выбранный из цеолита, принадлежащего к семейству MTW, и полностью аморфного микро-мезопористого алюмосиликата, имеющего мольное соотношение SiO2/Al2O3 в диапазоне от 30 до 500, площадь поверхности более чем 500 м2/г, объем пор в диапазоне от 0,3 до 1,3 мл/г, средний диаметр пор менее 40 А, при этом стадию крекинга с псевдоожиженным катализатором проводят при температуре в диапазоне от 490 до 530°С; и на стадии крекинга с псевдоожиженным катализатором температура предварительного нагрева питающего потока находится в диапазоне от 240 до 350°С.
Изобретение относится к способу производства базовых компонентов топлива. .

Изобретение относится к бифункциональному катализатору, обладающему как гидрогенизирующей, так и кислотной функцией. .

Изобретение относится к катализатору на основе благородного металла способу его получения и способу его применения. .

Изобретение относится к смешанным оксидам, которые пригодны в качестве предшественников катализаторов гидроочистки на базе сульфидов металлов, к композициям, содержащим указанные смешанные оксиды, к сульфидным соединениям металлов, полученным сульфидированием указанных смешанных оксидов или композиций, к способам получения смешанных оксидов, к способам гидроочистки, гидродеароматизации, гидрокрекинга.

Настоящее изобретение относится к способу получения основ низкозастывающих арктических масел, при этом нефтяное сырье - фракция гидрокрекинга вакуумного газойля, выкипающая при температуре 280°C-КК, подвергается гидроизомеризации путем ее контактирования с водородом при объемном соотношении водорода к сырью 500-1000 нм3/м3 на катализаторе, содержащем, мас.%: Pt - 0,30-0,35, WO3 - 3,0-4,0, SiO2 - 8,0-38,8, In2O - 0,4-0,42, алюмосиликат - остальное, при температуре 240-320°C, парциальном давлении водорода 3,5-6,0 МПа, объемной скорости подачи сырья 0,5-2,0 ч-1 с получением маловязкой основы низкозастывающего арктического масла, имеющей кинематическую вязкость при температуре 100°C - 2,11-5,05 мм2/с и температуру застывания продукта - минус 62 - минус 65°C, а для получения средневязкой и вязкой основы низкозастывающего арктического масла проводят гидрирование полученной маловязкой основы низкозастывающего арктического масла при температуре 240-260°C, парциальном давлении водорода 4,0-5,0 МПа, объемной скорости подачи сырья 0,25-0,5 ч-1, соотношении водорода к сырью 800-900 нм3/м3 на сульфидированном платиновом катализаторе, нанесенном на оксид алюминия, с содержанием платины в пересчете на прокаленный при температуре 850°C катализатор - 0,45-0,5 мас.%, последующее фракционирование с выделением средневязкой основы низкозастывающего арктического масла, имеющей кинематическую вязкость при температуре 100°C - 5,06-10,10 мм2/с и температуру застывания продукта - минус 62 - минус 65°C, и вязкой основы низкозастывающего арктического масла, имеющей кинематическую вязкость при температуре 100°C - 10,11-15,12 мм2/с и температуру застывания продукта - минус 62 - минус 65°C.

Изобретение относится к способу получения средних дистиллятов из парафинового сырья, полученного синтезом Фишера-Тропша. В способе используют катализатор гидрокрекинга/гидроизомеризации, содержащий гидрирующий-дегидрирующий металл, выбранный из группы, образованной из металлов группы VIB и группы VIII Периодической системы, и подложку, содержащую по меньшей мере один кристаллический твердый IZM-2.

Изобретение относится к области катализа. Описаны катализаторы гидроизомеризации, содержащие носитель, являющийся экструдированным продуктом, полученным прокаливанием, имеющим термическую обработку, которая включает термическую обработку при 350°C или выше, и, по меньшей мере, один металл, нанесенный на носитель и выбранный из группы, состоящей из металлов, принадлежащих к группам 8-10 периодической системы элементов, молибдена и вольфрама, в котором носитель содержит прошедший ионообменную обработку в растворе, содержащем аммониевые ионы и/или протоны, цеолит, содержащий органический шаблон и имеющий 10-звенную кольцевую одноразмерную пористую структуру, и неорганический оксид.
Изобретение относится к гидроочистке основы для топлива. .

Изобретение относится к катализаторам для раскрытия нафтеновых колец. .

Изобретение относится к катализатору окисления для окислительной обработки углеводородов (НС) и монооксида углерода (СО) в выхлопных газах, в котором данный катализатор окисления содержит поддерживающую основу и слои катализатора, закрепленные на поддерживающей основе, где каждый слой катализатора включает материал покрытия из пористого оксида, активный металл и адсорбент углеводородов, и где второй слой катализатора расположен на стороне поверхностного слоя катализатора и первый слой катализатора расположен на стороне ниже второго слоя катализатора; и где: a) количество адсорбента углеводородов во втором слое катализатора больше, чем количество адсорбента углеводородов в первом слое катализатора, и концентрация активного металла во втором слое катализатора является такой же или меньше, чем концентрация активного металла в первом слое катализатора; или (b) количество адсорбента углеводородов во втором слое катализатора является таким же, что и количество адсорбента углеводородов в первом слое катализатора, и концентрация активного металла во втором слое катализатора меньше, чем концентрация активного металла в первом слое катализатора, и при этом каждый материал покрытия выбран из SiO2, Al2O3, СеО2 и TiO2, и каждый активный металл представляет собой благородный металл и, необязательно, неблагородный металл, где каждый благородный металл представляет собой платину, палладий, или золото, или смесь двух или более из них, и где каждый неблагородный металл представляет собой никель, медь, марганец, железо, кобальт или цинк, и каждый адсорбент углеводородов представляет собой цеолит.
Наверх