Сорбент для очистки водных сред от ионов мышьяка и способ его получения

Изобретение относится к области сорбционной очистки вод. Предложен сорбент для очистки водных сред от мышьяка. Сорбент содержит 98-99 вес.% наночастиц железа и крахмал. Для получения сорбента сернокислое железо и крахмал растворяют в воде с образованием комплекса ионов железа с крахмалом, через раствор пропускают азот, восстанавливают железосодержащий комплекс борогидридом до получения наночастиц железа. Далее проводят центрифугирование, промывку осадка этанолом и сушку. Полученный сорбент обладает высокой адсорбционной активностью по отношению к ионам мышьяка. 2 н.п. ф-лы.

 

Изобретение относится к нанотехнологиям и очистке бытовых, промышленных и сточных вод предприятий. При отравлении ионами мышьяка поражается центральная и периферическая нервная система, кожа, периферическая сосудистая система. Неорганические ионы мышьяка более опасны, чем органические, трехвалентный ион более опасен, чем пятивалентный. Предельно допустимая концентрация ионов мышьяка в воде по СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» - 0,05 мг/л. Такая величина отражает очень высокую токсичность мышьяка.

Наноразмерные объекты имеют очень большую удельную поверхность и поэтому хорошо адсорбируют ионы. В статье (Iran. J. Environ. Health Sci. Eng. 2011, 8(2):175-180) представлено сравнение адсорбирующей способности нано- и микроразмерных частиц железа по отношению к мышьяку (III ). Адсорбция на наночастицах железа была лучше. Однако удалять адсорбент, состоящий только из наночастиц, из очищенного раствора сложно из-за малости объекта.

Известен наноразмерный сорбент для очистки воды от ионов тяжелых металлов, в том числе от ионов мышьяка разной валентности, и способ его получения (патент РФ 2328341, опубл. 10.07.2008 г.). Сорбент состоит из измельченного цеолита, наноразмерного гидроксида железа и наноразмерного бемита. К недостаткам способа получения сорбента следует отнести его многостадийность и сложность получения адсорбента, что приводит к его дороговизне. Вначале получают наноразмерный бемит гидролизом нанопорошка алюминия. Затем получают наноразмерный гидроксид железа гидролизом раствора хлорида железа раствором гидроксида аммония. Далее измельченный цеолит смешивают с Н2О, нанорамерным порошком бемита и гидроксида железа, перетирают и далее полученную смесь сушат 2 часа при 50-75°С, а затем 6 часов при 190°С. Во всех известных способах гидроксид железа получают гидролизом солей железа, что является многоступенчатым способом. Вначале получают соли железа, а затем из солей Fе(ОН)3.

Сорбент для очистки водных сред от мышьяка (патент РФ 2520473), взятый нами за прототип, содержит оксигидроксид железа (ОГЖ), выделенный из отходов станций обезжелезивания подземных вод, водорастворимый полимер и глицерин при следующем соотношении компонентов, %:

ОГЖ (наноразмерный) 45,9-53,3;

полимер 2,2-6,8;

глицерин остальное.

В качестве водорастворимого полимера он содержит поливиниловый спирт, или полиакриламид, или метилцеллюлозу, или полиэтиленгликоль. Для получения сорбента использовали отходы, выделенные на станциях обезжелезивания подземных вод, которые представляют собой гелеобразную массу (пасту), содержащую в своем составе ОГЖ в количестве 10-12% сухого ОГЖ с размером частиц 30-50 нм, которую модифицируют водорастворимыми полимерами, содержащими пластификатор. В качестве водорастворимого полимера рекомендуется использовать поливиниловый спирт, полиакриламид, метилцеллюлозу, полиэтиленгликоль , а в качестве пластификатора - глицерин.

Прототип имеет несколько недостатков: отходы, из которых получают сорбент, меняются по своему составу и это отражается на адсорбционной способности; отходы и водорастворимые полимеры не позволяют использовать сорбент для применения в организме человека, пищевой промышленности.

Технической задачей изобретения является улучшение качества сорбента.

Техническая задача согласно изобретению решается тем, что сорбент для очистки водных сред от мышьяка содержит наночастицы железа и крахмал при следующих отношениях компонентов, % весовых: наночастицы железа - 98-99, крахмал - 2-1.

Способ получения сорбента для очистки водных сред от мышьяка заключается в том, что сернокислое железо и крахмал растворяют в воде с образованием комплекса ионов железа и крахмала, через раствор пропускают азот, восстанавливают комплекс борогидридом до наночастиц железа, центрифугируют, промывают осадок этанолом и сушат адсорбент под вакуумом.

Наночастицы железа, покрытые крахмалом, не токсичны для организма и могут применяться для очистки крови, соков, вина в пищевой промышленности. Количество крахмала в сорбенте лимитируется его растворимостью в воде при температуре синтеза. В сорбенте он связан ковалентными связями с наночастицами железа и в воде не растворяется. Для получения сорбента лучше использовать сернокислое железо, а не хлорное.

Изобретение иллюстрируется примером.

В колбе 0,5 л тщательно перемешивают 0,12 М FeSO4-7Н2O с 0,2% вес. картофельного крахмала в 100 мл воды до полного растворения содержимого с образованием комплекса между ионами железа и крахмала. Через смесь пропускают азот для удаления растворенного кислорода. Затем в раствор при продолжении перемешивания по каплям добавляют 100 мл 0,5 М раствора борогидрида. Смесь продолжают перемешивать до полного восстановления комплекса с образованием черной суспензии сорбента. Суспензию центрифугируют при 6000 об/мин в течение 5 мин, осадок промывают 3 раза этанолом с центрифугированием. Осадок сорбента сушат под вакуумом, дробят большие частицы. На порошковом рентгеновском дифрактометре GBS EMMA определяют присутствие железа с нулевой валентностью по широкому пику два тетта 44.5°. По ширине пика расчетом по известной формуле определяют размер кристаллических наночастиц железа 8 нм. На растровом микроскопе JEOL JSM-6610 определяют размер частиц сорбента 70-95 нм, а на энергодисперсионной приставке к нему содержание железа 99±0,1%.

Для определения адсорбирующей способности ионов мышьяка растворы с сорбентом в колбе встряхивают на инкубаторе-шейкере 200 об/мин до периодов 5 мин, 120 мин. Суспензию для анализов отбирают 5 мл шприцем, центрифугируют 3000 об/мин в течение 5 мин, фильтруют через 0,2 мкм фильтр. Сухой остаток анализируют на содержание мышьяка в соответствии с ФЗ 1.31.2005, 01.553 (по Госстандарту методик, допущенных к применению).

Адсорбция увеличивается с увеличением дозы сорбента и времени контакта с раствором. При дозе 0,3 г/л рН=7 и концентрации ионов мышьяка (V) 1 мг/л достигается 100% удаление за 5 мин. Для концентрации 10 мг/л 100% удаление достигается за 120 мин. При концентрации мышьяка (III) 10 мг/л 100% удаление достигается за 120 мин.

Таким образом, предлагаемый сорбент обладает лучшим качеством по сравнению с известным сорбентом. Сорбент из наночастиц железа, покрытых крахмалом, может применяться в пищевой промышленности. Сорбент обладает хорошими адсорбирующими свойствами по отношению к ионам железа.

1. Сорбент для очистки водных сред от мышьяка, содержащий неорганические наночастицы и водорастворимый полимер, отличающийся тем, что он содержит наночастицы железа и крахмал при следующем соотношении компонентов, вес.%: наночастицы железа 98-99, крахмал 2-1.

2. Способ получения сорбента для очистки водных сред от мышьяка, характеризующийся тем, что сернокислое железо и крахмал растворяют в воде с образованием комплекса ионов железа и крахмала, через раствор пропускают азот, восстанавливают комплекс борогидридом до образования наночастиц железа, центрифугируют, промывают осадок этанолом и сушат сорбент под вакуумом.



 

Похожие патенты:
Изобретение относится к медицинскому адсорбенту для перорального введения и способам его получения. Медицинский адсорбент содержит активированный уголь в виде гранул сферической формы, полученный при карбонизации и активации регенерированной целлюлозы сферической формы, и который обладает средним диаметром пор от 1,5 до 2,2 нм, удельной площадью поверхности по методу BET от 700 до 3000 м2/г, средним размером частиц от 115 до 1002 мкм, содержанием оксида на поверхности 0,05 мг-экв./г или больше, и плотностью упаковки от 0,4 до 0,8 г/мл.

Изобретение относится к области получения сорбентов, обладающих магнитными свойствами. Способ получения магнитного композиционного сорбента включает осаждение на поверхность древесного волокна, являющегося отходом производства МДФ плит, частиц магнетита.

Изобретение относится к области получения вспененной полимерной композиции для изготовления сорбентов. Композиция для полимерного сорбента содержит (вес.%): карбамидоформальдегидная смола 25-30; эмульгирующая-стабилизирующая добавка 4-6; пенообразователь 3-5; хлорид сульфат тиосульфат натрия, являющийся отходом производства диафена 10-13; пыль электрофильтров алюминиевого производства 8-14; кислотный отвердитель 9-12; вода – остальное.

Изобретение направлено на разработку блочного композиционного сорбционно-активного материала. Способ получения включает вращение объемной проводящей металлической матрицы, погруженной в суспензию, имеющую следующий состав (масс.%): цеолит фожазитовой структуры 32-37; каолин 11-15; вода 28,5-30,0; натрий карбоксиметилцеллюлоза 8,0-8,5; поливиниловый спирт 4,5-5,0; пероксид водорода 3,0-4,5; клееканифольный пенообразователь 2,5; гидроксид натрия 4,0.

Изобретение относится к способу формирования угольного слоя, применяемого в фильтрующей коробке для респиратора. Способ формирования конформного фильтрующего слоя включает определение внутреннего периметра впуска контейнера для образования фильтрующего слоя, предоставление заполняющей трубы, имеющей внутренний периметр первого размера, причем первый размер заполняющей трубы является меньшим, чем внутренний периметр фильтрующего слоя, и штормовое заполнение, по меньшей мере частично, фильтрующего слоя фильтрующими гранулами, причем фильтрующие гранулы пропускают через первую заполняющую трубу для формирования слоя в фильтрующем слое.
Изобретение относится к способам получения титаносиликатов, используемых в качестве сорбентов с ионообменными и восстановительными свойствами, и может найти применение для концентрирования и выделения благородных металлов.

Изобретение относится к производству гранулированных сорбентов на основе природных полимеров, которые могут применяться для очистки водных сред от нефти и нефтепродуктов, а также для сбора нефтепродуктов с почвы и других поверхностей вблизи автозаправочных станций.

Изобретение относится к области промышленной экологии и касается вопроса утилизации отхода лесохимии – лигнина - и использования материала, полученного на его основе, в качестве сорбента для очистки сточных вод от соединений тяжелых металлов.

Изобретение относится к способу получения нанокомпозитного сорбента для засушливых почв. Сорбент получают путём инициированной радикальной полимеризации акриловых мономеров в присутствии бентонита в водной среде при перемешивании.
Изобретение относится к области производства сорбционно-активных материалов. Предложен способ получения импрегнированного сорбента, включающий приготовление пропиточного раствора, импрегнирующей добавки, пропитку основы, вылеживание и термообработку.

Изобретение относится к сорбентам, которые могут быть использованы для сбора и удаления жидких и газообразных отходов производства, в частности для сбора и утилизации выделений продуктов жизнедеятельности человека и домашних животных.

Изобретение относится к технологии получения органоминеральных сорбентов, которые могут быть использованы для очистки водных растворов и сточных вод от тяжелых металлов.

Изобретение относится к производству гранулированных сорбентов на основе природных полимеров, которые могут применяться для очистки водных сред от нефти и нефтепродуктов, а также для сбора нефтепродуктов с почвы и других поверхностей вблизи автозаправочных станций.
Изобретение относится к области очистки газов от органических и неорганических химических веществ и может быть использовано для очистки воздушной среды. Предложен новый композиционный сорбент для газовой среды, содержащий силикагель или гидролизный лигнин в качестве основы, при этом на поверхности частиц силикагеля и лигнина, и частично в макропорах, закреплены частицы ультрадисперсного политетрафторэтилена, образующиеся в процессе термодеструкции твердых отходов политетрафторэтилена методом исчерпывающего фторирования в присутствии катализатора трифторида кобальта.

Изобретение относится к сорбентам для поглощения нефти. Предложен сорбент-активатор, представляющий собой наноструктурированный углерод-кремнеземный композит, полученный из смеси шунгита с рисовой шелухой при их массовом соотношении в смеси на 6 частей шунгита 1-24 части рисовой шелухи.
Изобретение относится к области очистки воды от катионов металлов. Предложены гуминовые вещества, выделенные из черноольхового низинного торфа, имеющие молекулярную массу 98 кДа, общую кислотность 3,2 ммоль/г, содержание карбоксильных групп 0,3 ммоль/г, содержание фенольных групп 2,9 ммоль/г.
Изобретение относится к области получения композиционных пористых углеродсодержащих сорбентов. В качестве исходных компонентов используют увлажнённую монтмориллонитсодержащую глину и растительную углеродсодержащую основу в виде продуктов шелушения зерновых и технических сельскохозяйственных культур.

Изобретение относится к способам получения сорбентов из растительного сырья. Способ получения сорбента включает обработку предварительно высушенного и измельченного листового опада низкотемпературной плазмой высокочастотного разряда при давлении в разрядной камере 26,6 МПа, при силе тока на аноде 0,5 A и напряжении 7,5 кВ в течение 60 секунд.

Изобретение относится к области природоохранных технологий и технологий водообработки и может быть использовано для очистки поверхностных и грунтовых вод от железа.
Изобретение относится к области полимерных материалов, а именно к способу получения гранул сшитого хитозана, который включает сшивание хитозана глутаровым альдегидом с использованием раствора соляной кислоты, содержащего глутаровый альдегид, при мольном соотношении хитозан : соляная кислота : глутаровый альдегид, равном 1:(0,5-1,0):(0,1-1,0), а затем экструзивное формирование геля в виде нитей, которые механически нарезают на гранулы и сушат при температуре 40-70°C в течение 1-2 часов.

Настоящее изобретение относится к удалению тяжелых металлов из газового потока. Предложена задерживающая масса для улавливания ртути, которая содержит активную фазу, нанесенную на пористую подложку из оксида алюминия.
Наверх