Устройство радиопередачи и способ радиопередачи

Изобретение относится к области мобильной связи и предназначено для улучшения рабочих характеристик приема индикатора качества канала (CQI), даже когда возникает задержка в тракте распространения, возникает ошибка синхронизации передачи или формируются остаточные взаимные помехи между величинами циклического сдвига разных последовательностей ZC. Для второго символа и шестого символа сигнала ACK/NACK, которые мультиплексируются посредством RS CQI, (+, +) или (-, -) применяются к частичной последовательности из последовательности Уолша. Для RS CQI, передаваемого с мобильной станции, + добавляется в качестве фазы RS второго символа, а – добавляется в качестве фазы RS шестого символа. Базовая станция (100) принимает мультиплексированные сигналы из сигналов ACK/NACK и сигналов CQI, переданные с множества мобильных станций. Блок (119) синтеза RS выполняет синтез посредством выравнивания фазы RS у CQI. 4 н. и 12 з.п. ф-лы, 17 ил.

 

Область техники

Настоящее изобретение относится к устройству радиопередачи и способу радиопередачи.

Уровень техники

Мобильная связь применяет ARQ (автоматический запрос на повторение) к данным нисходящей линии связи с устройства базовой станции беспроводной связи (в дальнейшем сокращенно используемого как «базовая станция») на устройство мобильной станции беспроводной связи (в дельнейшем сокращенно используемого как «мобильная станция»). То есть мобильная станция возвращает сигнал ACK/NACK (подтверждения/отрицательного подтверждения), показывающий результат обнаружения ошибки данных нисходящей линии связи, на базовую станцию. Мобильная станция выполняет проверку CRC (контроля циклическим избыточным кодом) данных нисходящей линии связи и, если CRC=OK (то есть нет ошибки), возвращает ACK (подтверждение) на базовую станцию или, если CRC=NG (то есть присутствует ошибка), возвращает NACK (отрицательное подтверждение) на базовую станцию. Этот сигнал ACK/NACK передается на базовую станцию с использованием канала управления восходящей линии связи, такого как PUCCH (физический канал управления восходящей линии связи).

Кроме того, базовая станция передает управляющую информацию для сообщения результата распределения ресурсов данных нисходящей линии связи на мобильную станцию. Эта управляющая информация передается на мобильную станцию с использованием канала управления нисходящей линии связи, такого как CCH L1/L2 (каналы управления L1/L2). Каждый CCH L1/L2 занимает один или множество из CCE (элементов канала управления). В случае, где один CCH L1/L2 занимает множество CCE, один CCH L1/L2 занимает множество следующих друг за другом CCE. Согласно количеству CCE, требуемых для сообщения управляющей информации, базовая станция выделяет один из множества CCH L1/L2 каждой мобильной станции и отображает управляющую информацию в физические ресурсы, ассоциативно связанные с CCE, занятыми каждым CCH L1/L2, и передает управляющую информацию.

Кроме того, чтобы ассоциативно связывать CCE и PUCCH для эффективного использования нисходящей линии связи, ресурсы связи исследуются. Согласно этой ассоциативной связи, каждая мобильная станция может выбирать номер PUCCH, чтобы использовать для передачи сигнала ACK/NACK с каждой мобильной станции, на основании номера CCE, ассоциативно связанного с физическими ресурсами, в которые отображена такая управляющая информация для такой мобильной станции.

Кроме того, как показано на фиг.1, для кодового мультиплексирования множества сигналов ACK/NACK с множества мобильных станций посредством кодирования с расширением спектра исследуется использование последовательностей ZC (Задова-Чу) и последовательностей Уолша (см. непатентный документ 1). Отметим, что длина последовательности чистой последовательности ZC является простым числом, а потому псевдопоследовательность ZC с длиной последовательности 12 формируется посредством циклического расширения части последовательности ZC с длиной последовательности 11. К тому же отметим, что псевдопоследовательность ZC ниже также будет указываться ссылкой как «последовательность ZC» для облегчения пояснения. На фиг.1 (W0, W1, W2, W3) представляет последовательность Уолша с длиной последовательности 4. Как показано на фиг.1, мобильная станция, прежде всего, выполняет первое кодирование с расширением спектра ACK или NACK в символе SC-FDMA с использованием последовательности ZC (имеющей длину последовательности 12) в частотной области.

Затем, сигнал ACK/NACK после первого кодирования с расширением спектра подвергается обратному БПФ (IFFT, обратному быстрому преобразованию Фурье) согласно с W0 по W3. Сигнал ACK/NACK, кодированный с расширением спектра с использованием последовательности ZC с длиной последовательности 12 в частотной области, трансформируется в последовательность ZC с длиной последовательности 12 во временной области посредством этого обратного БПФ. Затем, сигнал после обратного БПФ дополнительно подвергается второму кодированию с расширением спектра с использованием последовательности Уолша (имеющей длину последовательности 4). То есть один сигнал ACK/NACK отображается поверх четырех символов SC-FDMA (множественного доступа с частотным разделением каналов на одиночной несущей). Подобным образом, другие мобильные станции кодируют с расширением спектра сигналы ACK/NACK с использованием последовательностей ZC и последовательностей Уолша.

Отметим, что разные мобильные станции используют последовательности ZC с разными величинами циклического сдвига во временной области или разными последовательностями Уолша. Здесь, длина последовательности у последовательности ZC во временной области имеет значение 12, так что можно использовать двенадцать последовательностей ZC с величинами циклического сдвига с 0 до 11, сформированных из одной и той же последовательности ZC. Кроме того, длина последовательности у последовательности Уолша имеет значение 4, так что можно использовать четыре разных последовательности Уолша. Следовательно, можно осуществлять кодовое мультиплексирование сигналов ACK/NACK с максимум 48 (12×4) мобильных станций в идеальной среде связи.

Сигналы ACK/NACK с других мобильных станций кодируются с расширением спектра с использованием последовательностей ZC с разными величинами циклического сдвига или разных последовательностей Уолша, так что базовая станция может разделять сигналы ACK/NACK с мобильных станций, выполняя декодирование, обратное кодированию с расширением спектра, с использованием последовательности Уолша и корреляционной обработки последовательностей ZC. Кроме того, как показано на фиг.1, блочные коды кодирования с расширением спектра с длиной последовательности 3 используются для RS (опорных сигналов). То есть RS с разных мобильных станций подвергаются кодовому мультиплексированию с использованием второго кодирования с расширением спектра последовательностей с длиной последовательности 3. Посредством этого, компоненты RS передаются через три символа SC-FDMA.

Здесь, взаимная корреляция между последовательностями ZC с разными величинами циклического сдвига, сформированными из одной и той же последовательности ZC, практически имеет значение 0. Следовательно, в идеальной среде связи, как показано на фиг.2, множество сигналов ACK/NACK, подвергнутых кодовому мультиплексированию с использованием последовательностей ZC с разными величинами циклического сдвига (с величинами циклического сдвига от 0 до 11), могут разделяться во временной области посредством корреляционной обработки на базовой станции без межсимвольных помех.

Однако, вследствие различных влияний, таких как отставания временной привязки передачи на мобильных станциях, волны с запаздыванием вследствие многолучевого распространения и уход частоты, множество сигналов ACK/NACK с множества мобильных станций не всегда прибывают на базовую станцию одновременно. Например, как показано на фиг.3, в случае, где временная привязка передачи для сигнала ACK/NACK, кодированного с расширением спектра с использованием последовательности ZC с величиной циклического сдвига 0, задерживается от правильной временной привязки передачи, корреляционный пик последовательности ZC с величиной циклического сдвига 0 появляется в окне обнаружения для последовательности ZC с величиной циклического сдвига 1. Кроме того, как показано на фиг.4, в случае, где сигнал ACK/NACK, кодированный с расширением спектра с использованием последовательности ZC с величиной циклического сдвига 0, создает волну задержки, помехи, обусловленные этой волной задержки, рассеиваются и появляются в окне обнаружения для последовательности ZC с величиной циклического сдвига 1. То есть в этих случаях последовательность ZC с величиной циклического сдвига 0 создает взаимные помехи с последовательностью ZC с величиной циклического сдвига 1. Поэтому, в этих случаях рабочие характеристики разделения сигнала ACK/NACK, кодированного с расширением спектра с использованием последовательности ZC с величиной циклического сдвига 0, и сигнала ACK/NACK, кодированного с расширением спектра с использованием последовательности ZC с величиной циклического сдвига 1, ухудшаются. То есть, если используются последовательности ZC следующих друг за другом величин циклического сдвига, есть вероятность, что ухудшаются рабочие характеристики разделения сигналов ACK/NACK. Чтобы быть более точными, хотя есть вероятность, что помехи, обусловленные отставаниями временной привязки передачи, возникают вместе с помехами от величины циклического сдвига 1 на величину циклического сдвига 0 и помехами от величины циклического сдвига 0 на величину циклического сдвига 1, как показано на фигуре, влияние волны задержки создает помехи только от величины циклического сдвига 0 на величину циклического сдвига 1.

Поэтому, традиционно, в случае, где множество сигналов ACK/NACK подвергаются кодовому мультиплексированию посредством кодирования с расширением спектра с использованием последовательностей ZC, достаточные разности величин циклического сдвига (то есть интервалы циклического сдвига) предусматриваются между последовательностями ZC для предохранения межсимвольных помех от возникновения между последовательностями ZC. Например, при условии, что разность в величине циклического сдвига между последовательностями ZC имеет значение 2, последовательности ZC с шестью величинами циклического сдвига 0, 2, 4, 6, 8 и 10 из двенадцати величин циклического сдвига с 0 до 11, используются для первого кодирования с расширением спектра сигналов ACK/NACK. Следовательно, в случае, где сигналы ACK/NACK подвергаются второму кодированию с расширением спектра с использованием последовательностей Уолша с длиной последовательности 4, можно осуществлять кодовое мультиплексирование сигналов ACK/NACK с максимум 24 (6×4) мобильных станций. Однако, есть только три конфигурации фаз RS, а потому сигналы ACK/NACK только с 18 мобильных станций фактически могут мультиплексироваться.

Непатентный документ 1: «Multiplexing capability of CQIs and ACK/NACKs form different UEs» 3GPP TSG RAN WG1 Meeting #49, R1-072315, Kobe, Japan, May 7-11, 2007 («Способность мультиплексирования CQI и ACK/NACK с разных UE», конференция #49, WG1 RAN TSG 3GPP, R1-072315, Кобе, Япония, 7-11 мая 2007 года)

Раскрытие изобретения

Проблемы, которые должны быть решены изобретением

Между прочим, в PUCCH LTE 3GPP мультиплексируются не только описанные выше сигналы ACK/NACK, но также и сигналы CQI (индикатора качества канала). В то время как сигнал ACK/NACK является одним символом информации, как показано на фиг.1, сигнал CQI является пятью символами информации. Как показано на фиг.5, мобильная станция кодирует с расширением спектра сигнал CQI с использованием последовательности ZC с длиной последовательности 12 и величиной циклического сдвига P и выполняет обратное БПФ кодированного с расширением спектра сигнала CQI, и передает сигнал CQI. Таким образом, последовательности Уолша не применимы к сигналам CQI, а потому последовательности Уолша не могут использоваться для разделения сигнала ACK/NACK и сигнала CQI. В этом случае, посредством использования последовательностей ZC для декодирования, обратного кодированию с расширением спектра, сигнала ACK/NACK и сигнала CQI, кодированных с расширением спектра с использованием последовательностей ZC, ассоциативно связанных с разными циклическими сдвигами, базовая станция может разделять сигнал ACK/NACK и сигнал CQI с небольшими межсимвольными помехами.

Однако, хотя в идеальной среде связи базовая станция может разделять сигнал ACK/NACK и сигнал CQI с использованием последовательностей ZC, могут возникать случаи, например, зависящие от условий задержки в каналах, как описано выше, где ортогональность последовательностей циклического сдвига нарушается, и сигнал CQI подвергается помехам от сигнала ACK/NACK. Кроме того, когда декодирование, обратное кодированию с расширением спектра, выполняется с использованием последовательностей ZC для отделения сигнала CQI от сигнала ACK/NACK, остаются небольшие межсимвольные помехи от сигнала ACK/NACK. Как показано по фиг.1 и фиг.5, сигнал ACK/NACK и сигнал CQI применяют разные форматы сигнала, и их RS определены в разных положениях (то есть положения этих RS оптимизируются независимо в случае, где принимается только сигнал ACK/NACK, и в случае, где принимается только сигнал CQI). Поэтому, есть проблема, что величина помех от сигнала ACK/NACK на RS сигнала CQI меняется в зависимости от данных сигнала ACK/NACK или фаз W1 и W2, используемых для сигнала ACK/NACK. То есть, даже если RS являются важными частями для приема сигнала CQI, есть вероятность, что величина помех в этих RS не может быть предсказана, тем самым, ухудшая рабочие характеристики приема CQI.

Поэтому, цель настоящего изобретения состоит в том, чтобы предложить устройство радиопередачи и способ радиопередачи для улучшения рабочих характеристик приема CQI, например, когда в канале возникает задержка, когда возникают отставания временной привязки передачи, или когда остаточные помехи возникают между разными величинами циклического сдвига последовательностей ZC.

Средство для решения проблемы

Устройство радиопередачи согласно настоящему изобретению использует конфигурацию, которая включает в себя: секцию обработки передачи сигнала подтверждения/отрицательного подтверждения, которая кодирует с расширением спектра сигнал подтверждения/отрицательного подтверждения с использованием ортогональной последовательности; секцию добавления фазы опорного сигнала, которая добавляет фазу согласно части ортогональной последовательности опорному сигналу индикатора качества канала, мультиплексированного с подтверждением/отрицательным подтверждением, кодированным с расширением спектра с использованием ортогональной последовательности; и секцию передачи, которая передает сигнал индикатора качества канала, включающий в себя опорный сигнал, которому добавлена фаза.

Способ радиопередачи согласно настоящему изобретению включает в себя: этап обработки передачи сигнала подтверждения/отрицательного подтверждения по кодированию с расширением спектра сигнала подтверждения/отрицательного подтверждения с использованием ортогональной последовательности; этап добавления фазы опорного сигнала по добавлению фазы согласно части ортогональной последовательности опорному сигналу индикатора качества канала, мультиплексированного с сигналом подтверждения/отрицательного подтверждения, кодированным с расширением спектра с использованием ортогональной последовательности; и этап передачи по передаче сигнала индикатора качества канала, включающий в себя опорный сигнал, которому добавлена фаза.

Полезные результаты изобретения

Согласно настоящему изобретению, можно улучшать рабочие характеристики приема CQI, например, когда происходит задержка в канале, когда возникают отставания временной привязки передачи, или когда остаточные помехи возникают между разными величинами циклического сдвига последовательностей ZC.

Краткое описание чертежей

Фиг.1 показывает способ кодирования с расширением спектра сигнала ACK/NACK;

фиг.2 показывает корреляционную обработку сигнала ACK/NACK, кодированного с расширением спектра с использованием последовательности ZC (в случае идеальной среды связи);

фиг.3 показывает корреляционную обработку сигнала ACK/NACK, кодированного с расширением спектра с использованием последовательности ZC (в случае, где есть отставания временной привязки передачи);

фиг.4 показывает корреляционную обработку сигнала ACK/NACK, кодированного с расширением спектра с использованием последовательности ZC (в случае, где есть волны задержки);

фиг.5 показывает способ кодирования с расширением спектра сигнала CQI;

фиг.6 – структурная схема, показывающая конфигурацию базовой станции согласно варианту 1 осуществления настоящего изобретения;

фиг.7 – структурная схема, показывающая конфигурацию мобильной станции согласно варианту 1 осуществления настоящего изобретения;

фиг.8 показывает, каким образом передается сигнал ACK/NACK и формируется сигнал CQI;

фиг.9 показывает, каким образом последовательность Уолша, которая часто используется, и фазы RS у CQI делаются ортогональными;

фиг.10 показывает, каким образом фазы RS у CQI адаптивно регулируются согласно последовательности Уолша, которая часто используется;

фиг.11 показывает, каким образом передается сигнал ACK/NACK и формируется сигнал CQI в случае, где положения RS у CQI мультиплексируются с RS у ACK/NACK;

фиг.12 показывает, каким образом мультиплексируются сигнал ACK/NACK и сигнал CQI согласно варианту 2 осуществления настоящего изобретения;

фиг.13 показывает, каким образом мультиплексируются сигнал ACK/NACK и сигнал CQI еще одним способом согласно варианту 2 осуществления настоящего изобретения;

фиг.14 – структурная схема, показывающая конфигурацию базовой станции согласно варианту 3 осуществления настоящего изобретения;

фиг.15 – структурная схема, показывающая конфигурацию мобильной станции согласно варианту 3 осуществления настоящего изобретения;

фиг.16 показывает, каким образом формируются сигнал ACK/NACK и сигнал CQI, которые передаются одновременно;

фиг.17 показывает, каким образом мультиплексируются сигнал ACK/NACK и сигнал CQI+ответ согласно варианту 4 осуществления настоящего изобретения.

Наилучший вариант осуществления изобретения

В дальнейшем варианты осуществления настоящего изобретения будут подробно пояснены со ссылкой на прилагаемые чертежи.

(Вариант 1 осуществления)

Фиг.6 показывает конфигурацию базовой станции 100 согласно варианту 1 осуществления настоящего изобретения, а фиг.7 показывает конфигурацию мобильной станции 200 согласно варианту 1 осуществления настоящего изобретения.

Кроме того, чтобы избежать сложного пояснения, фиг.6 показывает компоненты, которые имеют отношение к передаче данных нисходящей линии связи и приему сигнала ACK/NACK в ответ на эти данные нисходящей линии связи в восходящей линии связи, которые тесно связаны с настоящим изобретением, а компоненты, имеющие отношение к приему данных восходящей линии связи, показываться и поясняться не будут. Подобным образом, фиг.7 показывает компоненты, которые имеют отношение к приему данных нисходящей линии связи и передаче сигнала ACK/NACK в ответ на эти данные нисходящей линии связи в восходящей линии связи, которые тесно связаны с настоящим изобретением, а компоненты, имеющие отношение к передаче данных восходящей линии связи, не будут показываться и поясняться.

Кроме того, ниже будет пояснен случай, где последовательность ZC используется для первого кодирования с расширением спектра, а последовательность Уолша используется для второго кодирования с расширением спектра. Однако, вместо последовательностей ZC для первого кодирования с расширением спектра могут использоваться последовательности, которые могут быть разделены на основании разных величин циклического сдвига. Подобным образом, ортогональные последовательности, иные, чем последовательности Уолша, могут использоваться для второго кодирования с расширением спектра.

Кроме того, ниже будет пояснен случай, где используются последовательность ZC с длиной последовательности 12 и последовательность Уолша (W0, W1, W2 и W3) с длиной последовательности 4. Однако настоящее изобретение не ограничено этими длинами последовательностей.

Кроме того, в последующем описании двенадцать последовательностей ZC с величинами циклического сдвига с 0 до 11 представлены в качестве с ZC #0 по ZC #11, и четыре последовательности Уолша с номерами с 0 по 3 последовательностей представлены в качестве с W #0 по W #3.

Более того, в последующем описании допустим, что CCH #1 L1/L2 занимает CCE#1, CCH #2 L1/L2 занимает CCE#2, CCH #3 L1/L2 занимает CCE#3, CCH #4 L1/L2 занимает CCE#4 и CCE#5, CCH #5 L1/L2 занимает CCE#6 и CCE#7, и CCH #6 L1/L2 занимает с CCE#8 по CCE#11.

Кроме того, еще, в последующем пояснении, предположим, что номер CCE и номер PUCCH, определенные величиной циклического сдвига последовательности ZC, и номер последовательности Уолша ассоциативно связаны один за другим. То есть CCE#1 соответствует PUCCH #1, CCE#2 соответствует PUCCH #2, CCE#3 соответствует PUCCH #3 и ... .

На базовой станции 100, показанной на фиг.6, результат распределения ресурсов данных нисходящей линии связи вводится в секцию 101 определения фазы RS восходящей линии связи, секцию 102 формирования управляющей информации и секцию 108 отображения.

Секция 101 определения фазы RS восходящей линии связи определяет, какой один из «+» и «-» используется для фаз RS (то есть фазы второго символа и фазы шестого символа) CQI, переданного с мобильной станции, и выдает определенные фазы в секцию 102 формирования управляющей информации. Например, в случаях, где требуемое количество PUCCH является малым, и используются только два кода Уолша, W #0=[1, 1, 1, 1] и W #1=[1, -1, -1, 1], кодами Уолша в положениях, где передаются RS CQI, являются (+, +) и (-, -), а потому секция 101 определения фазы RS восходящей линии связи определяет, что следует использовать (+, -), который ортогонален обоим, (+, +) и (-, -) для фазы RS.

Секция 102 формирования управляющей информации формирует управляющую информацию для сообщения результата распределения ресурсов и фаз RS, принятых в качестве входных данных из секции 101 определения фазы RS, для каждой мобильной станции и выдает управляющую информацию в секцию 103 кодирования. Управляющая информация для каждой мобильной станции включает в себя информацию ID (идентификатора) мобильной станции, указывающую, какой мобильной станции адресована управляющая информация. Например, управляющая информация включает в себя CRC, который маскируется номером ID мобильной станции, на которую управляющая информация сообщается в качестве информации ID мобильной станции. Управляющая информация для каждой мобильной станции кодируется в секции 103 кодирования, модулируется в секции 104 модуляции и принимается в качестве входных данных в секции 108 отображения. Кроме того, согласно количеству CCE, требуемых для сообщения управляющей информации, секция 102 формирования управляющей информации выделяет множество CCH L1/L2 каждой мобильной станции и выдает номер CCE, ассоциативно связанный с выделенным CCH L1/L2, в секцию 108 отображения. Например, в случае, где количеством CCE, требуемым для сообщения управляющей информации на мобильную станцию #1, является один, а потому CCH #1 L1/L2 выделен мобильной станции #1, секция 102 формирования управляющей информации выдает номер #1 CCE в секцию 108 отображения. Кроме того, в случае, где количеством CCE, требуемым для сообщения управляющей информации на мобильную станцию #1, является четыре, а потому CCH #6 L1/L2 выделен мобильной станции #1, секция 102 формирования управляющей информации выдает номера с #8 по #11 CCE в секцию 108 отображения.

Секция 105 кодирования кодирует данные передачи (например, данные нисходящей линии связи) для каждой мобильной станции и выдает данные передачи в секцию 106 управления повторной передачей.

При первой передаче секция 106 повторной передачи хранит кодированные данные передачи для каждой мобильной станции и выдает данные передачи в секцию 107 модуляции. Секция 106 управления повторной передачей хранит данные передачи до тех пор, пока ACK не принят с каждой мобильной станции в качестве входных данных из секции 118 принятия решения. Кроме того, когда NACK принят с каждой мобильной станции в качестве входных данных из секции 118 принятия решения, то есть когда выполняется повторная передача, секция 106 управления повторной передачей выдает данные передачи, соответствующие этому NACK, в секцию 107 модуляции.

Секция 107 модуляции модулирует кодированные данные передачи, принятые в качестве входных данных из секции 106 управления повторной передачей, и выдает данные передачи в секцию 108 отображения.

Когда передается управляющая информация, секция 108 отображения отображает управляющую информацию, принятую в качестве входных данных из секции 104 модуляции, в физические ресурсы согласно номеру CCE, принятому в качестве входных данных из секции 102 формирования управляющей информации, и выдает управляющую информацию в секцию 109 обратного БПФ. То есть секция 108 отображения отображает управляющую информацию для каждой мобильной станции в поднесущую, соответствующую номеру CCE, в множестве поднесущих, образующих символ OFDM (мультиплексирования с ортогональным частотным разделением каналов).

В противоположность этому, когда передаются данные нисходящей линии связи, секция 108 отображения отображает данные передачи для каждой мобильной станции в физические ресурсы согласно результату распределения ресурсов и выдает данные передачи в секцию 109 обратного БПФ. То есть секция 108 отображения отображает данные передачи для каждой мобильной станции в одну из множества поднесущих, образующих символ OFDM, согласно результату распределения ресурсов.

Секция 109 обратного БПФ формирует символ OFDM, выполняя обратное БПФ множества поднесущих, в которые отображаются управляющая информация или данные передачи, и выдает символ OFDM в секцию 110 добавления CP (циклического префикса).

Секция 110 добавления CP добавляет такой же сигнал, как задняя часть символа OFDM, в качестве CP, в головную часть такого символа OFDM.

Секция 111 радиопередачи выполняет обработку передачи, такую как цифро-аналоговое (D/A) преобразование, усиление и преобразование с повышением частоты, по отношению к символу OFDM, к которому добавлен CP, и передает символ OFDM с антенны 112 на мобильную станцию 200 (фиг.7).

Между тем, секция 113 радиоприема принимает сигнал, переданный с мобильной станции 200, через антенну 112 и выполняет обработку приема, такую как преобразование с понижением частоты и аналого-цифровое (A/D) преобразование, по отношению к принятому сигналу. Отметим, что, в принятом сигнале, сигнал ACK/NACK, переданный с заданной мобильной станции, и сигналы CQI, переданные с других мобильных станций, подвергаются кодовому мультиплексированию.

Секция 114 удаления CP удаляет CP, добавленный в сигнал, после обработки приема.

Секция 115 корреляционной обработки находит значение корреляции между сигналом, принятым в качестве входных данных из секции 114 удаления CP, и последовательностью ZC, используемой для первого кодирования с расширением спектра, на мобильной станции 200. То есть значение корреляции, определенное с использованием последовательности ZC, ассоциативно связанной с величиной циклического сдвига, назначенной сигналу ACK/NACK, и значение корреляции, определенное с использованием последовательности ZC, ассоциативно связанной с величиной циклического сдвига, назначенной сигналу CQI, выдаются в секцию 116 разделения.

Секция 116 разделения выдает сигнал ACK/NACK в секцию 117 декодирования, обратного кодированию с расширением спектра, а сигнал CQI в секцию 119 объединения RS, на основании значений корреляции, принятых в качестве входных данных из секции 115 обработки корреляции.

Секция 117 декодирования, обратного кодированию с расширением спектра, выполняет декодирование, обратное кодированию с расширением спектра, сигнала ACK/NACK, принятого в качестве входных данных из секции 116 разделения, с использованием последовательности Уолша, используемой для второго кодирования с расширением спектра на мобильной станции 200, и выдает сигнал после декодирования, обратного кодированию с расширением спектра, в секцию 118 принятия решения.

Секция 118 принятия решения детектирует сигнал ACK/NACK каждой мобильной станции, обнаруживая корреляционный пик каждой мобильной станции с использованием окна обнаружения, установленного для каждой мобильной станции во временной области. Например, в случае, где корреляционный пик обнаружен в окне #1 обнаружения для мобильной станции #1, секция 118 принятия решения детектирует сигнал ACK/NACK с мобильной станции #1. Затем, секция 118 принятия решения выносит решение, является ли детектированным сигналом ACK/NACK ACK или NACK, и выдает ACK или NACK с каждой мобильной станции в секцию 106 управления повторной передачей.

Секция 119 объединения RS координирует и объединяет фазы множества RS CQI, принятых в качестве входных данных из секции 116 разделения, и оценивает канал с использованием объединенного RS. Оцененная информация о канале и сигналы CQI, принятые в качестве входных данных из секции 116 разделения, выдаются в секцию 120 демодуляции.

Секция 120 демодуляции демодулирует сигнал CQI, принятый в качестве входных данных из секции 119 объединения RS, с использованием информации о канале, и секция 121 декодирования декодирует демодулированный сигнал CQI и выдает сигнал CQI.

По контрасту с этим, на мобильной станции 200, показанной на фиг.7, секция 202 радиоприема принимает через антенну 201 символ OFDM, переданный с базовой станции 100, и выполняет обработку приема, такую как преобразование с понижением частоты и аналого-цифровое преобразование, по отношению к принятому символу OFDM.

Секция 203 удаления CP удаляет CP, добавленный в сигнал OFDM, после обработки приема.

Секция 204 БПФ (быстрого преобразования Фурье, FFT) выполняет обработку по отношению к символу OFDM для получения управляющей информации или данных нисходящей линии связи, отображенных во множество поднесущих, и выдает результат в секцию 205 извлечения.

Для приема управляющей информации секция 205 извлечения извлекает управляющую информацию из множеств поднесущих и выдает управляющую информацию в секцию 206 демодуляции. Эта управляющая информация демодулируется в секции 206 демодуляции, декодируется в секции 207 декодирования и принимается в качестве входных данных в секции 208 принятия решения.

По контрасту с этим, для приема данных нисходящей линии связи секция 205 извлечения извлекает данные нисходящей линии связи, адресованные мобильной станции 200, из множества поднесущих согласно результату распределения ресурсов в качестве входных данных из секции 208 принятия решения и выдает данные нисходящей линии связи в секцию 210 демодуляции. Эти данные нисходящей линии связи демодулируются в секции 210 демодуляции, декодируется в секции 211 декодирования и принимаются в качестве входных данных в секции 212 CRC.

Секция 212 CRC выполняет обнаружение ошибок по отношению к декодированным данным нисходящей линии связи с использованием CRC и формирует ACK, если CRC=OK (то есть нет ошибок), или формирует NACK, если CRC=NG (то есть присутствует ошибка), и выдает сформированный сигнал ACK/NACK в секцию 213 модуляции. Кроме того, если CRC=OK (то есть нет ошибок), секция 212 CRC выдает декодированные данные нисходящей линии связи в качестве принятых данных.

Секция 208 принятия решения выполняет слепое решение в отношении того, адресована или нет управляющая информация, принятая в качестве входных данных из секции 207 принятия решения, мобильной станции 200. Например, посредством выполнения демаскирования с использованием номера ID мобильной станции 200 секция 208 принятия решения принимает решение, что управляющая информация, показывающая, что CRC=OK (то есть нет ошибок), адресована мобильной станции 200. Затем, секция 208 принятия решения выдает управляющую информацию, адресованную мобильной станции 200, то есть результат распределения ресурсов данных нисходящей линии связи для мобильной станции 200, в секцию 205 извлечения. Секция 208 принятия решения выбирает номер PUCCH, используемый для передачи сигнала ACK/NACK с мобильной станции 200, на основании номера CCE, ассоциативно связанного с поднесущей, в которую отображена управляющая информация, адресованная мобильной станции 200, и выдает результат решения (то есть номер PUCCH) в секцию 209 управления. Например, управляющая информация отображается в поднесущую, ассоциативно связанную с CCE #1, и, поэтому, секция 208 принятия решения мобильной станции 200, которой выделен вышеприведенный CCH #1 L1/L2, принимает решение, что PUCCH #1, ассоциативно связанный с CCE #1, является PUCCH для мобильной станции 200. Кроме того, управляющая информация отображается в поднесущие, ассоциативно связанные с CCE #8 по CCE #11, и, поэтому, секция 208 принятия решения мобильной станции 200, которой выделен вышеприведенный CCH #6 L1/L2, принимает решение, что PUCCH #8, ассоциативно связанный с CCE #8, наименьшего номера среди с CCE #8 по CCE #11, является PUCCH для мобильной станции 200. Более того, секция 208 принятия решения извлекает фазы RS, включенные в управляющую информацию, принятую в качестве входных данных из секции 207 декодирования, и выдает фазы RS в секцию 209 управления.

Согласно номеру PUCCH, принятому в качестве входных данных из секции 208 принятия решения, секция 209 управления управляет величиной циклического сдвига последовательности ZC, используемой для первого кодирования с расширением спектра в секции 214 кодирования с расширением спектра и секции 219 кодирования с расширением спектра, и последовательности Уолша, используемой для второго кодирования с расширением спектра в секции 217 кодирования с расширением спектра. То есть секция 209 управления устанавливает последовательность ZC с величиной циклического сдвига, ассоциативно связанной с номером PUCCH, принятым в качестве входных данных из секции 208 принятия решения, в секции 214 кодирования с расширением спектра и секции 219 кодирования с расширением спектра и устанавливает последовательность Уолша, ассоциативно связанную с номером PUCCH, принятым в качестве входных данных из секции 208 принятия решения, в секции 217 кодирования с расширением спектра. Кроме того, секция 209 управления управляет секцией 222 добавления фазы RS согласно фазам RS, принятым в качестве входных данных из секции 208 принятия решения. Кроме того, секция 209 управления управляет секцией 223 выбора сигнала передачи для выбора передачи сигнала CQI, если базовая станция 100 заблаговременно дает команду передачи CQI, и для передачи сигнала ACK/NACK, сформированного на основании CRC=NG (то есть присутствует ошибка) в секции 208 принятия решения, если базовая станция 100 не дает заблаговременно команду передачи CQI.

Секция 213 модуляции модулирует сигнал ACK/NACK, принятый в качестве входных данных из секции 212 CRC, и выдает сигнал ACK/NACK в секцию 214 кодирования с расширением спектра. Секция 214 кодирования с расширением спектра выполняет первое кодирование с расширением спектра сигнала ACK/NACK с использованием последовательности ZC, установленной в секции 209 управления, и выдает сигнал ACK/NACK после первого кодирования с расширением спектра в секцию 215 обратного БПФ. Секция 215 обратного БПФ выполняет обратное БПФ по отношению к сигналу ACK/NACK после первого кодирования с расширением спектра и выдает сигнал ACK/NACK после обратного БПФ в секцию 216 добавления CP. Секция 216 добавления CP добавляет такой же сигнал, как задняя часть сигнала ACK/NACK после обратного БПФ, в головную часть сигнала ACK/NACK, в качестве CP. Секция 217 кодирования с расширением спектра выполняет второе кодирование с расширением спектра сигнала ACK/NACK, в который добавлен CP, с использованием последовательности Уолша, установленной в секции 209 управления, и выдает сигнал ACK/NACK после второго кодирования с расширением спектра в секцию 223 выбора сигнала передачи. Кроме того, секция 213 модуляции, секция 214 кодирования с расширением спектра, секция 215 обратного БПФ, секция 216 добавления CP и секция 217 кодирования с расширением спектра функционируют в качестве средства обработки передачи сигнала ACK/NACK.

Секция 218 модуляции модулирует сигнал CQI и выдает сигнал CQI в секцию 219 кодирования с расширением спектра. Секция 219 кодирования с расширением спектра кодирует с расширением спектра сигнал CQI с использованием последовательности ZC, установленной в секции 209 управления, и выдает сигнал CQI кодирования с расширением спектра в секцию 220 обратного БПФ. Секция 220 обратного БПФ выполняет обратное БПФ по отношению к кодированному с расширением спектра сигналу CQI и выдает сигнал CQI после обратного БПФ в секцию 221 добавления CP. Секция 221 добавления CP добавляет такой же сигнал, как задняя часть сигнала CQI после обратного БПФ, в головную часть такого сигнала CQI, в качестве CP.

Секция 222 добавления фазы RS добавляет фазы, установленные в секции 209 управления, сигналу CQI, принятому в качестве входных данных из секции 221 добавления CP, и выдает сигнал CQI, которому добавлены фазы, в секцию 223 выбора сигнала передачи.

Согласно установке в секции 209 управления, секции 223 выбора сигнала передачи выбирает один из сигнала ACK/NACK, принятого в качестве входных данных из секции 217 кодирования с расширением спектра, и сигнала CQI, принятого в качестве входных данных из секции 222 добавления фазы RS, и выдает выбранный сигнал в секцию 224 радиопередачи в качестве сигнала передачи.

Секция 224 радиопередачи выполняет обработку передачи, такую как цифро-аналоговое преобразование, усиление и преобразование с повышением частоты, по отношению к сигналу передачи, принятому в качестве входных данных из секции 223 выбора сигнала передачи, и передает сигнал передачи с антенны 201 на базовую станцию 100 (фиг.6).

Затем, будет пояснено, каким образом сигнал CQI формируется на мобильной станции 200, показанной на фиг.7. Отметим, что, вместо передачи одновременно сигнала ACK/NACK и сигнала CQI, мобильная станция 200 передает один из этих. Кроме того, сигнал ACK/NACK формируется, как показано на фиг.7.

Как показано на фиг.5, пять символов информации кодируются с расширением спектра секцией 219 кодирования с расширением спектра с использованием последовательности ZC, CP добавляется секцией 221 добавления CP, а затем CQI отображается поверх пяти символов SC-FDMA. Кроме того, последовательность ZC отображается в два символа SC-FDMA второго символа и шестого символа в качестве RS.

Здесь, допустим, что базовая станция 100 использует только две последовательности Уолша, заблаговременно определенные для передачи ACK/NACK. То есть, хотя система может использовать четыре последовательности Уолша, базовая станция 100 указывает использование только двух последовательностей Уолша, W #0=[1, 1, 1, 1] и W #1=[1, -1, -1, 1]. Мобильная станция 100, передающая сигналы ACK/NACK, использует только эти последовательности Уолша. Подобным образом, базовая станция 200 указывает использование (+, -) в качестве фаз RS (фазы второго символа и фазы шестого символа) CQI. То есть, как описано выше, секция 222 добавления фазы RS мобильной станции 200 на фиг.7, передающей сигналы CQI, добавляет фазы RS CQI. В это время, то, каким образом передается сигнал ACK/NACK и формируется сигнал CQI, является таким, как показано на фиг.8.

Как показано на фиг.8, последовательность W #1 Уолша применяется к данным (соответствующим начерченной части на фигуре) сигнала ACK/NACK. По контрасту с этим, «+» добавляется в RS CQI в качестве фазы RS второго символа, а «-» добавляется в RS CQI в качестве фазы RS шестого символа. То есть подпоследовательности (W1 и W2) последовательности Уолша, мультиплексированной с RS CQI и примененной ко второму символу и шестому символу сигнала ACK/NACK, показывают (+, +) или (-, -), а секция 119 объединения RS базовой станции 100 координирует и объединяет фазы RS CQI (преобразуя результат приема в шестом символе), тем самым инвертируя во втором символе и шестом символе фазы сигнала, кодированного с расширением спектра с использованием последовательностей Уолша, так что фазы нейтрализуют друг друга, и могут уменьшаться помехи от сигнала ACK/NACK на RS CQI.

Кроме того, последовательность Уолша и результат выбора фаз RS CQI на заданной базовой станции 100 широковещательно передаются с базовой станции 100 через равные промежутки времени.

Таким образом, согласно варианту 1 осуществления, установлением RS CQI, переданного с мобильной станции, ортогональным вторым кодам кодирования с расширением спектра сигнала ACK/NACK, мультиплексированного в тех же самых положениях, что и эти RS, и координированием и усреднением фазы RS CQI на базовой станции влияние шумов может быть снижено, и могут быть уменьшены помехи, принимаемые из сигналов ACK/NACK, переданных с других мобильных станций, так что можно улучшать точность оценки канала в CQI и улучшать точность приема сигналов CQI. Кроме того, сигнал ACK/NACK кодируется с расширением спектра, когда принимаются сигналы ACK/NACK, а потому добавляются обратные фазы частей RS CQI, так что можно уменьшать сигналы помех от частей RS CQI в отношении сигнала ACK/NACK. То есть можно улучшать точность приема сигналов ACK/NACK.

Кроме того, хотя был пояснен случай с настоящим вариантом осуществления, где используются две из четырех последовательностей Уолша, которые могут использоваться в системе, равным образом можно заблаговременно определять приоритет для четырех последовательностей Уолша и использовать последовательности Уолша в порядке, начиная с наивысшего приоритета. Ниже будет пояснен случай, где приоритет назначен четырем последовательностям Уолша.

Базовая станция широковещательно передает на мобильные станции, что каждая мобильная станция должна передавать CQI с использованием фаз, ортогональных подпоследовательностям (W1 и W2) последовательности Уолша, которая используется часто. Величина помех в отношении RS CQI увеличивается в зависимости от количества мобильных станций, использующих последовательности Уолша, которые не ортогональны RS CQI, и установлением фаз RS CQI и последовательностей Уолша, которые часто используются, ортогональными друг другу, можно уменьшать общую величину помех в отношении RS CQI. Эта ситуация показана на фиг.9.

Кроме того, даже если базовая станция не осуществляет широковещательную передачу информации, имеющей отношение к фазам RS CQI восходящей линии связи, заблаговременно, мобильные станции могут обозначать фазы RS CQI каждый раз согласно временным привязкам для передачи CQI. Хотя то, какая мобильная станция передает сигнал восходящей линии связи в данном подкадре, или какие кодовые ресурсы восходящей линии связи используются для выполнения передачи на мобильных станциях, изменяется на основе по каждому подкадру, базовая станция заранее изучила, какие последовательности Уолша чаще используются в кадрах для передачи CQI, и, следовательно, может адаптивно давать команду мобильным станциям для передачи RS CQI, делая RS CQI и последовательность Уолша (W1 и W2), которые используются чаще, ортогональными друг другу. Посредством этого можно уменьшать общую величину помех в отношении RS CQI. Эта ситуация показана на фиг.10. Кроме того, случай, где положения RS CQI мультиплексируются с RS ACK/NACK, показан на фиг.11.

Кроме того, в случае, где вторая последовательность кодирования с расширением спектра, иная, чем последовательность Уолша, используется для ACK/NACK, являются ли коды S1 и S2 синфазными или противофазными, проверяется посредством обращения внимания на коды на участках (S1 и S2), ассоциативно связанных с RS CQI во второй кодированной с расширением спектра последовательности (S0, S1, S2 и S3), используемой на этой базовой станции.

То есть проверяется, являются ли второй и третий коды во второй кодированной с расширением спектра последовательности, используемой на базовой станции, синфазными последовательностями или противофазными последовательностями, и если используется большее количество последовательностей, в которых второй и третий символы являются синфазными, (+, -) может использоваться в качестве фаз RS, а если используется большее количество последовательностей, в которых второй и третий символы являются противофазными, (+, +) может использоваться в качестве фаз RS.

Отметим, что (-, +) и (-, -) могут использоваться в качестве фаз вместо (+, -) и (+, +).

(Вариант 2 осуществления)

Конфигурации базовой станции и мобильной станции согласно варианту 2 осуществления настоящего изобретения являются такими же, как конфигурации, показанные на фиг.6 и фиг.7 по варианту 1 осуществления, а потому будут пояснены с использованием фиг.6 и фиг.7.

Каким образом мультиплексируются сигнал ACK/NACK и сигнал CQI (то есть распределение ресурсов) согласно варианту 2 осуществления настоящего изобретения показано на фиг.12. Здесь, допустим, что базовая станция выполняет распределение ресурсов, показанное на фиг.12. Отметим, что горизонтальная ось представляет величину циклического сдвига, а вертикальная ось представляет последовательность Уолша.

Кроме того, принимается во внимание, что RS CQI подвергается помехам, главным образом, от сигналов ACK/NACK, кодированных с расширением спектра с использованием последовательностей ZC, ассоциативно связанных со следующими друг за другом величинами циклического сдвига. Чтобы быть более точным, RS CQI принимают значительные помехи от ближайших сигналов ACK/NACK с малой величиной циклического сдвига и прикладывают большие помехи к ближайшим сигналам ACK/NACK с большой величиной циклического сдвига.

Как показано на фиг.12, мобильная станция, которая передает CQI #1, кодирует с расширением спектра и передает сигнал CQI с использованием последовательности ZC, ассоциативно связанной с величиной циклического сдвига 2. В это время, CQI #1 принимает наибольшие помехи от ACK #5, и, поэтому, сосредотачиваясь на фазах (W1=1 и W2=-1) у W1 и W2 ACK #5, секция 101 определения фазы RS восходящей линии связи базовой станции 100 определяет (+, +) в качестве фаз RS CQI. Кроме того, CQI #2 принимает помехи от ACK #3 и ACK #11, и, поэтому, сосредотачиваясь на фазах (W1=1 и W2=1) у W1 и W2 ACK #3 и фазах (W1=-1 и W2=-1) у W1 и W2 ACK #11, секция 101 определения фазы RS восходящей линии связи базовой станции 100 определяет (+, -) в качестве фаз RS CQI.

Таким образом, согласно варианту 2 осуществления, фазы RS CQI определяются, сосредотачиваясь на кодах Уолша сигнала ACK/NACK, который фактически принимает значительные помехи, так что можно эффективно уменьшать величину помех в RS.

Кроме того, хотя распределение ресурсов, показанное на фиг.12, предполагается при настоящем варианте осуществления, базовая станция может свободно распределять ресурсы ACK/NACK. Например, в случае, где сигнал ACK/NACK и сигнал CQI мультиплексированы, как показано на фиг.13, три ACK #2, ACK #8 и ACK #9 являются смежными с CQI #1, и используется дополнительная W #2=[1, 1, -1, -1]. Поэтому, секция 101 определения фазы RS восходящей линии связи базовой станции 100 определяет (+, +) в качестве фаз RS CQI #1. Кроме того, три ACK #4, ACK #11 и ACK #16 являются смежными с CQI #2, и количество мобильных станций, использующих W #0=[1, 1, 1, 1] и W #1=[1, -1, -1, 1], является большим, чем количество мобильных станций, использующих W #2. Поэтому, секция 101 определения фазы RS восходящей линии связи базовой станции 100 определяет (+, -) в качестве фаз RS CQI #2.

Кроме того, обращая внимание, что требуемой частотой появления ошибок у CQI является приблизительно 10-2 наряду с тем, что требуемой частотой появления ошибок сигнала ACK/NACK является 10-4, фазы RS CQI могут быть установлены из условия, чтобы качество ACK/NACK дополнительно увеличивалось. То есть, как описано выше, посредством установки фаз RS CQI, а также W1 и W2 сигнала ACK/NACK ортогональными друг другу, можно снижать помехи в отношении CQI, а также помехи от CQI на сигнал ACK/NACK. Поэтому, в случае, показанном на фиг.13, фазы RS устанавливаются, чтобы снижать влияние на ACK #9, который подвергается помехам от CQI #1, и ACK #11, которые подвергаются помехам от CQI #2. То есть ACK #9 и ACK #11 оба используют W #2, а потому фазы RS, обе установленные в CQI #1 и CQI #2, являются (+, +), соответственно.

(Вариант 3 осуществления)

Вариантом 3 осуществления настоящего изобретения будет пояснен случай, где сигнал CQI и ответный сигнал (то есть сигнал ACK/NACK) передаются одновременно. То есть, хотя базовая станция задает в отношении мобильной станции временную привязку для передачи сигнала CQI, происходят случаи, зависящие от временной привязки для выделения сигнала данных нисходящей линии связи базовой станции, где данная мобильная станция передает одновременно сигнал CQI и ответный сигнал (то есть ACK или NACK) в ответ на сигнал данных нисходящей линии связи. В это время сигнал CQI и ответный сигнал, которые передаются одновременно, представлены вместе как «CQI+ответный сигнал». Отметим, что CQI+ответный сигнал представлен в качестве «сигнала CQI+NACK» в случае, где ответным сигналом является NACK, и представлен в качестве «сигнала CQI+ACK» в случае, где ответным сигналом является ACK.

Фиг.14 показывает конфигурацию базовой станции 150 согласно варианту 3 осуществления настоящего изобретения. Отметим, что фиг.14 отличается от фиг.6 заменой секции 101 определения фазы RS восходящей линии связи на секцию 151 определения фазы RS и заменой секции 119 объединения RS на секцию 152 объединения RS.

Секция 151 определения фазы RS восходящей линии связи определяет, задают ли фазы RS (то есть фаза второго символа и фаза шестого символа) CQI+ответного сигнала, переданного с мобильной станции, что (+, -) является CQI+ACK, и (+, +) является CQI+NACK, или задают, что (+, +) является CQI+ACK, и (+, -) является CQI+NACK, и выдает определенное задание фаз RS в секцию 102 формирования управляющей информации и секцию 152 объединения RS.

Например, в случае, где количество требуемых PUCCH является малым, и используются только два, W #0=[1, 1, 1, 1] и W #1=[1, -1, -1, 1], в качестве кодов Уолша, кодами Уолша в положениях, где передаются RS CQI, являются (+, +) и (-, -), а потому секция 151 определения фазы RS восходящей линии связи выделяет (+, -), которая ортогональна обоим кодам Уолша, в качестве фаз RS, а затем определяет, что следует устанавливать, что (+, +) является CQI+ACK, и устанавливать, что (+, -) является CQI+NACK.

В случае, где мобильная станция передает только сигнал CQI, секция 152 объединения RS координирует и объединяет фазы множества RS CQI, принятых в качестве входных данных из секции 116 разделения, и оценивает канал с использованием объединенного RS. Оцененная информация о канале и сигналы CQI, принятые в качестве входных данных из секции 116 разделения, выдаются в секцию 120 демодуляции.

Кроме того, в случае, где мобильная станция передает CQI+ответный сигнал, секция 152 объединения RS решает, является ли мощность множества RS CQI, принятого в качестве входных данных из секции 116 разделения, большей в случае, где фазы RS координируются при условии (+, +), либо в случае, где фазы RS координируются при условии (+, -), и принимает решение, что фазы большей мощности являются фазами RS CQI. С использованием этого результата решения о фазах RS и определения фаз RS, принятого в качестве входных данных из секции 151 определения фазы RS восходящей линии связи, принимается решение, является ли ответный сигнал, переданный одновременно с CQI, ACK или NACK. То есть секция 152 объединения RS предусматривает два коррелятора, имеющих коэффициенты (+, +) и коэффициенты (+, -) сигналов RS, и принимает решение, является ли сигнал, переданный одновременно с CQI, ACK или NACK, с использованием выходных данных из этих корреляторов. Этот результат решения выдается в секцию 106 управления повторной передачей. Кроме того, на основании этого результата решения RS, полученные посредством координации и объединения этих фаз, используются для оценки канала для декодирования части данных CQI. Оцененная информация о канале и сигналы CQI, принятые в качестве входных данных из секции 116 разделения, выдаются в секцию 120 демодуляции.

Затем, фиг.15 показывает конфигурацию мобильной станции 250 согласно варианту 3 осуществления настоящего изобретения. Отметим, что фиг.15 отличается от фиг.7 заменой секции 209 управления на секцию 251 управления.

Согласно номеру PUCCH, принятому в качестве входных данных из секции 208 принятия решения, секция 251 управления управляет величиной циклического сдвига последовательности ZC, используемой для первого кодирования с расширением спектра в секции 214 кодирования с расширением спектра и секции 219 кодирования с расширением спектра, и последовательности Уолша, используемой для второго кодирования с расширением спектра в секции 217 кодирования с расширением спектра. То есть секция 251 управления устанавливает последовательность ZC с величиной циклического сдвига, ассоциативно связанной с номером PUCCH, принятым в качестве входных данных из секции 208 принятия решения, в секции 214 кодирования с расширением спектра и секции 219 кодирования с расширением спектра и устанавливает последовательность Уолша, ассоциативно связанную с номером PUCCH, принятым в качестве входных данных из секции 208 принятия решения, в секции 217 кодирования с расширением спектра. Кроме того, секция 251 управления управляет секцией 222 добавления фазы RS согласно фазам RS, принятым в качестве входных данных из секции 208 принятия решения.

Кроме того, секция 251 управления управляет секцией 223 выбора сигнала передачи для выбора передачи сигнала CQI, то есть передачи выходного сигнала из секции 222 добавления фазы RS, если базовая станция 150 заблаговременно дает команду передачи CQI, и для выбора передачи сигнала ACK/NACK, сформированного на основании CRC=NG (то есть присутствует ошибка) в секции 208 принятия решения, то есть передачи выходного сигнала из секции 217 кодирования с расширением спектра, если базовая станция 150 не дает команду передачи сигнала CQI.

Более того, в случае, где базовая станция 150 заблаговременно дает команду передачи CQI, и сигналу ACK/NACK необходимо одновременно передаваться с CQI, секция 251 управления определяет фазы RS для секции 222 добавления фазы RS согласно фазам RS, заданным базовой станцией 150, и сигналу из секции 212 CRC. Например, в случае, где базовая станция 150 заблаговременно указывает, что (+, +) является CQI+ACK, а (+, -) является CQI+NACK в качестве определения фаз RS, а CQI и сигнал NACK передаются одновременно, базовая станция 150 дает команду секции 222 добавления фазы RS использовать фазы (+, -).

Затем, будет пояснено, каким образом мобильная станция 250, показанная на фиг.15, формирует CQI+ответный сигнал. То есть будет пояснен случай, где мобильная станция 250 одновременно передает сигнал ACK/NACK и сигнал CQI.

Как показано на фиг.15 и фиг.16, пять символов информации в сигнале CQI кодируются с расширением спектра с использованием последовательности ZC в секции 219 кодирования с расширением спектра, добавляются CP посредством секции 221 добавления CP и отображаются поверх пяти символов SC-FDMA. Кроме того, последовательность ZC отображается поверх двух символов SC-FDMA второго символа и шестого символа в качестве RS.

Здесь, допустим, что базовая станция 150 использует только две последовательности Уолша, заблаговременно определенные для передачи сигнала ACK/NACK. То есть, хотя система может использовать четыре последовательности Уолша, базовая станция 150 указывает использование только двух последовательностей Уолша, W #0=[1, 1, 1, 1] и W #1=[1, -1, -1, 1]. Мобильная станция 250, передающая только сигналы ACK/NACK, использует только эти последовательности Уолша. Подобным образом, базовая станция 150 широковещательно передает, что, для фаз RS CQI (то есть фазы второго символа=X1 и фазы шестого символа=X2), (+, +) определены в качестве CQI+ACK, а (+, -) определены в качестве CQI+NACK. То есть, как описано выше, секция 222 добавления фазы RS мобильной станции 250 на фиг.15, которая передает CQI+ответный сигнал, добавляет фазы RS CQI. В это время, то, каким образом формируются сигнал ACK/NACK и сигнал CQI, является таким, как показано на фиг.16.

Как показано на фиг.8, последовательность W #1 Уолша применяется к данным (соответствующим начерченной части на фигуре) сигнала ACK/NACK. По контрасту с этим, «+» добавляется в RS сигнала CQI+NACK в качестве фазы RS второго символа, а «-» добавляется в RS сигнала CQI+NACK в качестве фазы RS шестого символа. То есть подпоследовательности (W1 и W2) последовательности Уолша, применяемой ко второму символу и шестому символу сигнала ACK/NACK, мультиплексированного с RS CQI, показывают (+, +) или (-, -), сигнал ACK/NACK не создает помех в отношении результата, который выдается посредством координирования фаз (инвертированием результата приема в шестом символе) при условии, что коэффициентами являются (+, -), когда секция 152 объединения RS базовой станции 150 делает выбор RS CQI. Это происходит потому, что корреляционная обработка, используемая для приема сигнала CQI+NACK, инвертирует фазы второго символа и шестого символа сигнала, кодированного с расширением спектра с использованием последовательности Уолша, и фазы нейтрализуют друг друга, так что можно снижать помехи от сигнала ACK/NACK на RS сигнала CQI+NACK. То есть можно снижать помехи от окружающих отдельных сигналов ACK/NACK на сигналы CQI+NACK.

Отметим, что последовательность Уолша и определение фаз RS CQI на заданной базовой станции 150 широковещательно передаются с базовой станции 150 через равные промежутки времени.

Таким образом, согласно варианту 3 осуществления, установлением RS сигнала CQI+NACK, переданного с мобильной станции, ортогональным вторым кодам кодирования с расширением спектра сигнала ACK/NACK, мультиплексированного в тех же самых положениях, что и эти RS, и координированием и усреднением на базовой станции фаз RS сигнала CQI+NACK влияние шумов может быть снижено, и могут быть уменьшены помехи от сигналов ACK/NACK, переданных с других мобильных станций, так что можно улучшать точность выбора сигналов NACK, когда принимаются сигналы CQI+NACK.

В случае, где базовая станция претерпевает неудачу в приеме сигнала ACK, базовая станция вновь передает сигнал нисходящей линии связи, даже если данные достигли терминала. Однако, в этом случае расходуются всего лишь небольшие ресурсы нисходящей линии связи, которые не оказывают значительного влияния на систему. Однако, в случае, где базовая станция претерпевает неудачу в приеме сигнала NACK, базовая станция узнает, что мобильная станция успешно приняла данные и не передает данные повторно. Соответственно, в этом случае требуемые данные не достигают мобильной станции. В случае, где привнесен механизм для проверки содержимого данных на верхнем уровне и запроса данных, которые не достигли терминала, вновь с базовой станции, хотя проблема, что не прибывают данные, не возникает, значительная задержка в передаче данных происходит в случае, где базовая станция претерпевает неудачу в приеме сигнала NACK. Поэтому, согласно настоящему изобретению, эффективность системы улучшается посредством улучшения точности выбора сигналов NACK, когда принимаются сигналы CQI+NACK.

Кроме того, хотя был пояснен случай с настоящим вариантом осуществления, где используются две из четырех имеющихся в распоряжении последовательностей Уолша в системе, равным образом можно заблаговременно определять приоритет для четырех последовательностей Уолша и использовать последовательности Уолша одну за другой, начиная с наивысшего приоритета. Ниже будет пояснен случай, где приоритет назначен четырем последовательностям Уолша.

Базовая станция 150 широковещательно передает на все мобильные станции 250, что каждая мобильная станция 250 должна определять фазы, ортогональные подпоследовательностям (W1 и W2) последовательности Уолша, которая часто используется, в качестве CQI+NACK. Величина помех в отношении RS у CQI+NACK увеличивается в зависимости от количества мобильных станций, которые используют последовательности Уолша, которые не ортогональны RS сигнала CQI+NACK, можно уменьшать общую величину помех в отношении RS сигнала CQI+NACK, делая последовательности Уолша, которые часто используются, и фазы RS сигналов CQI+NACK ортогональными друг другу.

Кроме того, даже если базовая станция 150 не осуществляет широковещательную передачу информации, имеющей отношение к фазам сигнала CQI+NACK восходящей линии связи, заблаговременно, мобильные станции 250 могут указывать определение фаз RS у CQI+ответных сигналов каждый раз, в зависимости от временных привязок для передачи CQI+ответных сигналов. Хотя то, какая мобильная станция передает сигнал восходящей линии связи в данном подкадре, или какие кодовые ресурсы восходящей линии связи используются для выполнения передачи на мобильной станции, изменяется на основе по каждому подкадру, базовая станция 150 заранее узнала, какие последовательности Уолша часто используются в кадрах для передачи CQI+ответного сигнала, и, следовательно, может давать команду мобильным станциям для передачи RS сигналов CQI+NACK, делая RS сигналов CQI+NACK и последовательность Уолша (W1 и W2), которые часто используются, ортогональными друг другу. Посредством этого можно уменьшать общую величину помех в отношении сигналов CQI+NACK.

(Вариант 4 осуществления)

Конфигурации базовой станции и мобильной станции согласно варианту 4 осуществления настоящего изобретения являются такими же, как конфигурации, показанные на фиг.14 и фиг.15 согласно варианту 3 осуществления, а потому будут пояснены с использованием фиг.14 и фиг.15.

Каким образом мультиплексируются сигнал ACK/NACK и CQI+ответный сигнал (то есть распределение ресурсов) согласно варианту 4 осуществления настоящего изобретения показано на фиг.17. Здесь, допустим, что базовая станция 150 выполняет распределение ресурсов, показанное на фиг.17. Отметим, что горизонтальная ось представляет величину циклического сдвига, а вертикальная ось представляет последовательность Уолша.

Кроме того, отметим, что RS CQI+ответного сигнала подвергается помехам, главным образом, от сигналов ACK/NACK, кодированных с расширением спектра с использованием последовательностей ZC, ассоциативно связанных со следующими друг за другом величинами циклического сдвига. Чтобы быть более точным, RS CQI+ответного сигнала принимают значительные помехи от ближайших сигналов ACK/NACK с малой величиной циклического сдвига и прикладывают значительные помехи к ближайшим сигналам ACK/NACK с высокой величиной циклического сдвига.

Как показано на фиг.17, мобильная станция 250, которая передает CQI+NACK #1, кодирует с расширением спектра и передает сигнал CQI+NACK #1 с использованием последовательности ZC, ассоциативно связанной с величиной циклического сдвига 2. В это время, CQI+NACK #1 принимает наибольшие помехи от ACK #5, и, поэтому, секция 151 определения фазы RS восходящей линии связи базовой станции 150 определяет (+, +) в качестве фаз RS у CQI+NACK #1, обращая внимание на фазы (W1=1 и W2=-1) W1 и W2 у ACK #5.

Затем, принимаются во внимание помехи от CQI+ответных сигналов на соседние сигналы ACK/NACK. Когда данная мобильная станция передает CQI и ответный сигнал одновременно, ответные сигналы являются сигналами ACK на уровне в 90 процентов. Это происходит потому, что базовая станция 150 выполняет адаптивную обработку модуляции из условия, чтобы целевая частота появления ошибок передачи данных нисходящей линии связи становилась приблизительно 10 процентами. То есть уменьшение помех от сигналов CQI+ACK на соседние сигналы ACK/NACK является эффективным для снижения помех от CQI+ответного сигнала на соседние сигналы ACK/NACK. Здесь, вернемся к фиг.17, обращено внимание на CQI+ACK #2. CQI+ACK #2 прикладывает значительные помехи к ACK #7. Сосредотачиваясь на фазах (W1=-1 и W2=1) W1 и W2 у ACK #7, секция 151 определения фазы RS восходящей линии связи базовой станции 150 определяет (+, +) в качестве фаз RS у CQI+ACK #2.

Посредством этого, базовая станция 150 выполняет декодирование, обратное кодированию с расширением спектра, когда принимается ACK #7, а потому добавляются обратные фазы частей RS сигнала CQI+ACK, так что можно уменьшать сигналы помех от частей RS сигнала CQI+ACK на ACK #7.

Таким образом, согласно варианту 4 осуществления, фазы RS у CQI+ответного сигнала определяются с обращением внимания на коды Уолша сигнала ACK/NACK, который фактически принимает и накладывает значительные помехи, так что можно уменьшать величину помех, которые принимает RS CQI+ответного сигнала, и величину помех, которые накладывает RS CQI+ответного сигнала.

Варианты осуществления были пояснены выше.

Кроме того, хотя вышеприведенные варианты осуществления были пояснены при условии, что одна базовая станция формирует одну соту, и базовая станция выполняет одинаковое управление кодами RS и управление ресурсами ACK/NACK в своей зоне администрирования, настоящее изобретение также применимо к случаю, например, где одна базовая станция формирует множество сот посредством направленных антенн, администрирует множество сот и независимо управляет этими сотами.

К тому же, хотя были описаны случаи с вышеприведенными вариантами осуществления в качестве примеров, где настоящее изобретение сконфигурировано аппаратными средствами, настоящее изобретение также может быть осуществлено программным обеспечением.

Каждый функциональный блок, используемый в описании каждого из вышеупомянутых вариантов осуществления, типично может быть реализован в виде БИС (большой интегральной схемы, LSI), составленной интегральными схемами. Таковые могут быть отдельными микросхемами, либо частично или полностью содержаться в одиночной микросхеме. Здесь выбрана «БИС», но это также может указываться ссылкой как «ИС» («интегральная схема», «IC»), «системная БИС», «супербольшая БИС» или «ультрабольшая БИС», в зависимости от отличающихся степеней интеграции.

Кроме того, способ схемной интеграции не ограничен БИС, и реализация, использующая специализированную схему или процессоры общего применения, также возможна. После промышленного изготовления БИС также возможно использование программируемых FPGA (программируемых пользователем вентильных матриц) или процессора с перестраиваемой конфигурацией, где могут реконфигурироваться соединения и настройки ячеек схемы в пределах БИС.

Кроме того, если, в результате развития полупроводниковой технологии или другой производной технологии, появляется технология интегральных схем для замещения БИС, естественно, также можно выполнять интеграцию функциональных блоков с использованием этой технологии. Применение биотехнологии также возможно.

Раскрытия заявки № 2007-211101 на выдачу патента Японии, зарегистрированной 13 августа 2007 года, и заявки № 2007-280797 на выдачу патента Японии, зарегистрированной 29 октября 2007 года, в том числе, описания изобретений, чертежи и рефераты, включены в материалы настоящей заявки посредством ссылки во всей своей полноте.

Промышленная применимость

Устройство радиопередачи и способ радиопередачи согласно настоящему изобретению могут улучшать рабочие характеристики приема CQI и, например, применимы к устройству базовой станции беспроводной связи и устройству мобильной станции беспроводной связи, например, в системе мобильной связи.

1. Способ радиосвязи, содержащий этапы, на которых:

принимают сигнал подтверждения или отрицательного подтверждения (ACK/NACK), кодированный с расширением спектра с помощью ортогональной последовательности, которая выбрана из множества ортогональных последовательностей, причем множество ортогональных последовательностей включает в себя больше ортогональных последовательностей, которые представляют синфазными два значения, соответственно соответствующие N-му символу и M-му символу интервала передачи сигнала ACK/NACK, чем ортогональных последовательностей, которые представляют упомянутые два значения во взаимно противоположных фазах,

декодируют с помощью декодирования, обратного кодированию с расширением спектра, сигнал ACK/NACK, кодированный с расширением спектра, в интервале передачи сигнала ACK/NACK с помощью ортогональной последовательности,

принимают два опорных сигнала (RS), которые получены посредством умножения двух последовательностей опорных сигналов на значения, которые находятся взаимно в противофазе, размещенные в N-м символе и M-м символе интервала передачи сигналов CQI, и сигналы индикатора качества канала (CQI), размещенные в символах интервала передачи сигналов CQI, отличных от N-го и M-го символов, и

демодулируют сигналы CQI, размещенные в интервале передачи сигналов CQI.

2. Способ радиосвязи по п. 1, в котором

физический ресурс, который поддерживает сочетание формата для передачи сигнала ACK/NACK и формата для передачи сигналов CQI, используют для приема сигнала ACK/NACK, кодированного с расширением спектра, в интервале передачи сигнала ACK/NACK или опорных сигналов (RS) и сигналов CQI, размещенных в интервале передачи сигналов CQI.

3. Способ радиосвязи по п. 2, в котором

в упомянутом блоке физических ресурсов формат для передачи сигнала ACK/NACK связан с последовательностью, определяемой значением первого циклического сдвига, и формат для передачи сигналов CQI связан с последовательностью, определяемой значением второго циклического сдвига, отличным от значения первого циклического сдвига.

4. Способ радиосвязи по п. 1, в котором

множество ортогональных последовательностей включает в себя ортогональные последовательности [+1,+1,+1,+1] и [+1,-1,-1,+1], имеющие длину последовательности, равную 4, и соответствующие 1-му, 2-му, 6-му и 7-му символам из 7 символов, входящих в интервал передачи сигнала ACK/NACK; и

N-й символ является 2-м символом, а M-й символ является 6-м символом.

5. Способ радиосвязи по п. 1, дополнительно содержащий этап, на котором

передают сигнал в мобильную станцию для управления умножением двух последовательностей опорных сигналов на значения, имеющие взаимно противоположные фазы.

6. Способ радиосвязи, содержащий этапы, на которых:

принимают сигнал подтверждения или отрицательного подтверждения (ACK/NACK), кодированный с расширением спектра с помощью ортогональной последовательности, которая выбрана из множества ортогональных последовательностей, причем множество ортогональных последовательностей включает в себя больше ортогональных последовательностей, которые представляют синфазными два значения, соответственно соответствующие 2-му символу и 6-му символу интервала передачи сигнала ACK/NACK, чем ортогональных последовательностей, которые представляют упомянутые два значения во взаимно противоположных фазах, причем каждая последовательность из упомянутого множества ортогональных последовательностей имеет длину последовательности, равную 4, и соответствует 1-му, 2-му, 6-му и 7-му символам из 7 символов, входящих в интервал передачи сигнала ACK/NACK, причем сигнал ACK/NACK, кодированный с расширением спектра, размещен в 1-м, 2-м, 6-м и 7-м символах интервала передачи сигнала ACK/NACK, а первые опорные сигналы (первые RS) размещены в 3-м, 4-м, 5-м символах интервала передачи сигнала ACK/NACK,

декодируют с помощью декодирования, обратного кодированию с расширением спектра, сигнал ACK/NACK с помощью ортогональной последовательности,

принимают сигналы CQI, размещенные в 1-м, 3-м, 4-м, 5-м и 7-м символах интервала передачи сигналов CQI, и два вторых опорных сигнала (вторые RS), которые получены умножением двух последовательностей опорных сигналов на значения, имеющие взаимно противоположные фазы, размещенных во 2-м и 6-м символах интервала передачи сигналов CQI, и

демодулируют сигналы CQI, размещенные в интервале передачи сигналов CQI.

7. Способ радиосвязи по п. 6, в котором

физический ресурс, который поддерживает сочетание формата для передачи сигнала ACK/NACK и формата для передачи сигналов CQI, используют для приема сигнала ACK/NACK и первых опорных сигналов (первых RS), размещенных в интервале передачи сигнала ACK/NACK или сигналов CQI, и вторых опорных сигналов (вторых RS), размещенных в интервале передачи сигналов CQI.

8. Способ радиосвязи по п. 7, в котором

в упомянутом блоке физических ресурсов формат для передачи сигнала ACK/NACK связан с последовательностью, определяемой значением первого циклического сдвига, и формат для передачи сигналов CQI связан с последовательностью, определяемой значением второго циклического сдвига, отличным от значения первого циклического сдвига.

9. Устройство радиосвязи, содержащее:

блок приема, выполненный с возможностью приема сигнала подтверждения или отрицательного подтверждения (ACK/NACK), кодированного с расширением спектра с помощью ортогональной последовательности, которая выбрана из множества ортогональных последовательностей, причем множество ортогональных последовательностей включает в себя больше ортогональных последовательностей, которые представляют синфазными два значения, соответственно соответствующие N-му символу и M-му символу интервала передачи сигнала ACK/NACK, чем ортогональных последовательностей, которые представляют упомянутые два значения во взаимно противоположных фазах,

блок декодирования, обратного кодированию с расширением спектра, выполненный с возможностью декодирования, обратного кодированию с расширением спектра, сигнала ACK/NACK, кодированного с расширением спектра, в интервале передачи сигнала ACK/NACK,

блок приема, дополнительно выполненный с возможностью приема двух опорных сигналов (RS), которые получены посредством умножения двух последовательностей опорных сигналов на значения, имеющие взаимно противоположные фазы, размещенных в N-м символе и M-м символе интервала передачи сигналов CQI, и сигналов индикатора качества канала (CQI), размещенных в символах интервала передачи сигналов CQI, отличных от N-го символа и M-го символа, и

блок демодуляции, выполненный с возможностью демодуляции сигналов CQI, размещенных в интервале передачи сигналов CQI.

10. Устройство радиосвязи по п. 9, в котором

блок приема принимает сигнал ACK/NACK, кодированный с расширением спектра, в интервале передачи сигнала ACK/NACK или опорные сигналы (RS) и сигналы CQI, размещенные в интервале передачи сигналов CQI, с помощью физического ресурса, который поддерживает сочетание формата для передачи сигнала ACK/NACK и формата для передачи сигналов CQI.

11. Устройство радиосвязи по п. 10, в котором

в блоке физических ресурсов формат для передачи сигнала ACK/NACK связан с последовательностью, определяемой значением первого циклического сдвига, и формат для передачи сигналов CQI связан с последовательностью, определяемой значением второго циклического сдвига, отличным от значения первого циклического сдвига.

12. Устройство радиосвязи по п. 9, в котором

множество ортогональных последовательностей включает в себя ортогональные последовательности [+1,+1,+1,+1] и [+1,-1,-1,+1], имеющие длину последовательности, равную 4, и соответствующие 1-му, 2-му, 6-му и 7-му символам из 7 символов, входящих в интервал передачи сигнала ACK/NACK; и

N-й символ является 2-м символом, а M-й символ является 6-м символом.

13. Устройство радиосвязи по п. 9, в котором

блок передачи дополнительно передает сигнал в мобильную станцию для управления умножением двух последовательностей опорных сигналов на значения, имеющие взаимно противоположные фазы.

14. Устройство радиосвязи, содержащее:

блок приема, выполненный с возможностью приема сигнала подтверждения или отрицательного подтверждения (ACK/NACK), кодированного с расширением спектра с помощью ортогональной последовательности, которая выбрана из множества ортогональных последовательностей, причем множество ортогональных последовательностей включает в себя больше ортогональных последовательностей, которые представляют синфазными два значения, соответственно соответствующие 2-му символу и 6-му символу интервала передачи сигнала ACK/NACK, чем ортогональных последовательностей, которые представляют упомянутые два значения во взаимно противоположных фазах, причем каждая последовательность из упомянутого множества ортогональных последовательностей имеет длину последовательности, равную 4, и соответствует 1-му, 2-му, 6-му и 7-му символам из 7 символов, входящих в интервал передачи сигнала ACK/NACK, причем сигнал ACK/NACK, кодированный с расширением спектра, размещен в 1-м, 2-м, 6-м и 7-м символах интервала передачи сигнала ACK/NACK, а первые опорные сигналы (первые RS) размещены в 3-м, 4-м и 5-м символах интервала передачи сигнала ACK/NACK,

блок декодирования обратного кодированию с расширением спектра, выполненный с возможностью декодирования, обратного кодированию с расширением спектра, сигнала ACK/NACK с помощью ортогональной последовательности,

блок приема, дополнительно выполненный с возможностью приема сигналов CQI, размещенных в 1-м, 3-м, 4-м, 5-м и 7-м символах интервала передачи сигналов CQI, и двух вторых опорных сигналов (вторых RS), которые получены умножением двух последовательностей опорных сигналов на значения, имеющие взаимно противоположные фазы, размещенных во 2-м и 6-м символах интервала передачи сигналов CQI, и

блок демодуляции, выполненный с возможностью демодуляции сигналов CQI, размещенных в интервале передачи сигналов CQI.

15. Устройство радиосвязи по п. 14, в котором

блок приема принимает сигнал ACK/NACK и первые опорные сигналы (первые RS), размещенные в интервале передачи сигнала ACK/NACK, или вторые опорные сигналы (вторые RS) и сигналы CQI, размещенные в интервале передачи сигналов CQI, с помощью физического ресурса, который поддерживает сочетание формата для передачи сигнала ACK/NACK и формата для передачи сигналов CQI.

16. Устройство радиосвязи по п. 15, в котором

в упомянутом блоке физических ресурсов формат для передачи сигнала ACK/NACK связан с последовательностью, определяемой значением первого циклического сдвига, и формат для передачи сигналов CQI связан с последовательностью, определяемой значением второго циклического сдвига, отличным от значения первого циклического сдвига.



 

Похожие патенты:

Изобретение относится к спутниковой навигации и предназначено для формирования двухчастотного сигнала с постоянной огибающей с использованием четырех расширяющих сигналов.

Изобретение относится к радиолокации и может использоваться в приемных устройствах. Технический результат состоит в повышении помехозащищенности РЛС путем использования высокоскоростных оптических линий связи для передачи с модуля информации и подачи на модуль комплексного сигнала хронизации и управления и сигнала тактовой частоты.

Предлагаемое изобретение относится к области передачи, приема информации с применением магнитоэлектрических волн и может быть использовано при разработке и создании наземных, спутниковых радиолиний как в традиционном радиочастотном спектре, так и в звуковом диапазоне частот.

Изобретение относится к передаче и приему данных, используя множество частот. Технический результат состоит в предотвращении ухудшения качества при передаче и приеме данных.

Изобретение относится к передаче и приему данных, используя множество частот. Технический результат состоит в предотвращении ухудшения качества при передаче и приеме данных.

Изобретение относится к технике связи и может использоваться в беспроводных системах связи. Технический результат состоит в повышении пропускной способности передачи.

Изобретение относится к технике связи и может использоваться в системах MIMO. Технический результат состоит в повышении пропускной способности каналов передачи.

Изобретение относится к системе беспроводной связи, использующей распределение полосы частот в восходящем звене связи посредством планирования и предназначено для повышения производительности нисходящего звена связи и восходящего звена связи даже при выполнении динамического распределения символов.

Изобретение относится к технике связи. .

Изобретение относится к области устройств для размещения идентификационных карт в мобильных терминалах пользователей, а именно к держателю карты. Техническим результатом является упрощение замены карты в терминале с несменяемым аккумулятором за счет конструкции соединителя, содержащего листовую пружину в гнезде карты.

Изобретение относится к радиолокации и гидролокации. Технический результат – обеспечение подавления боковых лепестков для кода P3 нечетной длины.

Изобретение относится к средствам, используемым в качестве электронных этикеток, а также к системам электронных этикеток. Технический результат заключается в повышении надежности защиты данных электронных этикеток.

Изобретение относится к технике радиосвязи и может использоваться в передающей аппаратуре радиолинии телеграфной и телефонной связи различного назначения. Задача изобретения - расширение функциональных возможностей путем обеспечения дистанционного управления от внешних устройств и местного управления параметрами сигналов, формируемых блоками, входящими в возбудитель для радиопередатчиков, при обеспечении радиосвязи, обеспечение номинального уровня сигнала на выходе при снижении уровня искажений и помех.

Изобретение относится к радиоэлектронике и может быть использовано для защиты радиоэлектронной аппаратуры от сверхкоротких импульсов. Устройство защиты состоит из трех в поперечном сечении одинаковых и прямоугольных проводников на диэлектрическом слое, причем первый и второй проводники расположены на одной его стороне, а третий - между ними по центру, отличающееся тем, что два дополнительных проводника расположены зеркально-симметрично относительно первого и второго проводников на обратной стороне диэлектрического слоя, третий проводник расположен в диэлектрическом слое на равном расстоянии от внешних проводников, толщина и относительная диэлектрическая проницаемость диэлектрического слоя равны 1,105 мм и 5, ширина всех проводников одинакова и равна 0,3 мм, толщина проводников равна 105 мкм, расстояние между проводниками равно 0,4 мм, на обоих концах устройства подключены резисторы сопротивлением 92 Ом между вторым и третьим проводниками, а также между двумя дополнительными и третьим проводниками, значение минимального модуля разности погонных задержек мод линии, умноженное на длину линии, не меньше суммы длительностей фронта, плоской вершины и спада импульса, подающегося между первым и третьим проводниками.

Изобретение относится к импульсной технике и может быть использовано для формирования импульсов управления СВЧ-приборами с сеточным управлением (Клистроны, ЛБВ и т.п.) в передающих и других электрофизических устройствах.

Изобретение относится к области радиотехники и связи и может быть использовано в системах связи с расширенным спектром сигналов. Достигаемый технический результат - повышение скорости передаваемой информации при псевдослучайной время-импульсной модуляции.Способ увеличения скорости передачи информации при время-импульсной модуляции осуществляется путем одновременной работы одного широкополосного радиопередающего устройства двумя и более каналами с псевдослучайной время-импульсной модуляцией, при этом на приеме на одном временном интервале в одном канале прием ведется на одной частоте, а на втором канале – на другой.

Изобретение относится к технике связи и может использоваться в беспроводной системе связи. Технический результат состоит в повышении точности оптимизации.

Изобретение относится к области радиосвязи. Техническим результатом является уменьшение удельного коэффициента поглощения.

Изобретение относится к области цифрового телевизионного вещания, в частности к измерению параметров ретрансляторов. Техническим результатом является определение динамического диапазона входного сигнала ретранслятора DVB-T2 на основе проверки способности восстанавливать тип канала принимаемого сигнала до канала Гаусса.

Изобретение относится к радиоэлектронике и может быть использовано в профессиональных радиоприемных устройствах. Многоканальное устройство для селекции, усиления и преобразования сигналов содержит М поддиапазонных каналов, при этом у каждого канала вход соединен с входом устройства, а выход одновременно является выходом как канала, так и устройства. Каждый канал содержит соединенные последовательно вход, входной поддиапазонный полосовой фильтр, первый управляемый аттенюатор, первый усилитель радиочастоты, поддиапазонный перестраиваемый полосовой фильтр, второй усилитель радиочастоты, второй управляемый аттенюатор, аналого-цифровой преобразователь и выход. Поддиапазонный полосовой фильтр содержит первую катушку индуктивности, у которой первый вывод соединен с входной потенциальной клеммой устройства, а второй вывод соединен с первым выводом первого конденсатора, второй вывод которого соединен с первыми выводами второго и третьего конденсаторов, второй вывод второго конденсатора соединен с общей шиной, второй вывод третьего конденсатора соединен с первым выводом второй катушки индуктивности, у которой второй вывод соединен с первыми выводами четвертого и пятого конденсаторов, второй вывод четвертого конденсатора соединен с общей шиной, второй вывод пятого конденсатора соединен с первым выводом третьей катушки индуктивности, у которой второй вывод соединен с первым выводом шестого конденсатора и с выходной потенциальной клеммой, второй вывод шестого конденсатора соединен с общей шиной. Поддиапазонный перестраиваемый полосовой фильтр содержит общую шину, входную и выходную потенциальные клеммы, первую и вторую катушки. Технический результат - повышение чувствительности в каждом радиоприемном канале. 4 ил.
Наверх