Способ изготовления одножильного сердечника электрического провода и одножильный сердечник электрического провода, изготовленный этим способом

Изобретение относится к производству изделий из полимерных композиционных материалов, используемых в электротехнике. Пряди углеродного волокна подают на пропитку через отверстия центральной части распределительной пластины. Пряди базальтового волокна подают на пропитку через отверстия периферийной части распределительной пластины. Отверстия выполнены круглыми в количестве, соответствующем количеству прядей. Углеродное и базальтовое волокна имеют относительное удлинение 1-3%. Камера пропитки выполнена с внешней цилиндрической поверхностью и внутренней поверхностью в виде прямого кругового усеченного конуса с конусностью 0,01-0,10. Основание конуса выполнено в виде указанной распределительной пластины. В сечении, параллельном основанию, расположена пластина с круглыми отверстиями. Центральное отверстие предназначено для выхода углеродного волокна в виде пучка. Технический результат - повышение прочности на разрыв. 2 н.п. ф-лы.

 

Изобретение относится к производству изделий из полимерных композиционных материалов (ПКМ), используемых в электротехнике.

Известны способ изготовления одножильного сердечника электрического провода, включающий подачу на пропитку прядей непрерывного волокна, пропитку волокна термопластичным связующим с последующей термообработкой, и одножильный сердечник электрического провода, изготовленный этим способом (US 014102760 А1).

Недостатком известных технических решений являются низкие эксплуатационные характеристики получаемого сердечника.

Известны также способы изготовления одножильного сердечника электрического провода, включающие подачу на пропитку прядей непрерывного волокна, пропитку волокна эпоксидным связующим с последующей термообработкой, и одножильные сердечники электрического провода, изготовленные этими способами (RU 105515 U1, RU 2439728 C1, RU 2386183 C1, US 2004131851 А1).

Недостатком указанных известных технических решений также являются низкие эксплуатационные характеристики получаемого сердечника.

Известны также способы изготовления одножильного сердечника электрического провода, включающие пропитку прядей трех видов непрерывного волокна связующим с последующей термообработкой, и одножильные сердечники электрического провода, изготовленные этими способами (RU 131531 U1, RU 132242 U1, RU 131230 U1). Изготовленные известными способами сердечники содержат внутренний, средний и внешний слой, различающиеся видом армирующего волокна. Способы изготовления указанных сердечников включают стадии пропитки волокна связующим и термообработки для последовательного формирования каждого слоя сердечника в отдельности.

Недостатком указанных известных способов является сложность их технологического оформления. Недостатками сердечников, изготовленных известными способами, являются их низкие эксплуатационные характеристики и сложность процесса их изготовления.

Наиболее близкими по технической сущности и достигаемому результату являются известный способ изготовления одножильного сердечника электрического провода, включающий подачу на пропитку прядей непрерывного углеродного волокна через круглые отверстия, расположенные в центральной части, а прядей другого непрерывного волокна (стеклянного) - через круглые отверстия, расположенные в периферийной части распределительной пластины, содержащей указанные отверстия в количестве, соответствующем количеству прядей, пропитку эпоксидным связующим с последующей термообработкой, и одножильный сердечник электрического провода, изготовленный этим способом (ЕА 011625 В1 - прототип).

Недостатком известных технических решений является низкая прочность на разрыв целевого продукта способа - одножильного сердечника электрического провода.

Технической задачей предлагаемой группы изобретений является изготовление одножильного сердечника электрического провода, лишенного указанного недостатка.

Технический результат каждого из изобретений предлагаемой группы состоит в повышении прочности на разрыв одножильного сердечника электрического провода.

Указанный технический результат достигается тем, что в способе изготовления одножильного сердечника электрического провода, включающем подачу на пропитку прядей непрерывного углеродного волокна через круглые отверстия, расположенные в центральной части, а прядей другого непрерывного волокна - через круглые отверстия, расположенные в периферийной части распределительной пластины, содержащей указанные отверстия в количестве, соответствующем количеству прядей, пропитку их эпоксидным связующим с последующей термообработкой, в качестве другого непрерывного волокна используют базальтовое волокно, причем применяют углеродное и базальтовое волокно, имеющее относительное удлинение 1-3%, пропитку проводят в камере, выполненной с внешней цилиндрической поверхностью и внутренней поверхностью в виде прямого кругового усеченного конуса с конусностью 0,01-0,10, основание которого выполнено в виде указанной распределительной пластины и в сечении которого, параллельном основанию, расположена пластина с центральным круглым отверстием для выхода пропитанного углеродного волокна в виде одного пучка и по крайней мере пятью одинаковыми круглыми отверстиями, равномерно расположенными по периферии пластины, для выхода пропитанного базальтового волокна в виде соответствующего количества одинаковых пучков, каждый из которых включает не менее двух прядей, при этом диаметр каждого из отверстий для выхода пропитанного волокна рассчитывают по формуле: Dвых=a⋅Dc⋅Кп./К, где: а=1,0045-1,0050, Dc - заданный диаметр готового сердечника, Кп - количество прядей пропитанного волокна в пучке, К - общее количество прядей углеродного и базальтового волокна, используют камеру пропитки, снабженную двумя соосными отверстиями для подачи эпоксидного связующего, расположенными на оси, перпендикулярной оси конуса, а последующую термообработку пропитанного волокна осуществляют в профилирующей фильере, разделенной на три температурные зоны, поддерживая в первой зоне 120-150°С, во второй зоне 160-190°С, в третьей зоне 140-160°С, и далее - в камере термообработки при 190-205°С.

Указанный технический результат достигается тем, что одножильный сердечник электрического провода, выполненный из композита на основе эпоксидного связующего и одноосно ориентированного непрерывного армирующего волокна содержащим внутренний элемент, армированный углеродным волокном, и охватывающую его внешнюю оболочку, армированную другим волокном, изготовлен вышеуказанным способом и включает 60-80% армирующего волокна от массы композита.

В качестве исходного волокна может быть использовано углеродное и базальтовое волокно с различной линейной плотностью (предпочтительно от 54 до 9600 Текс) и различным диаметром элементарных волокон (предпочтительно от 6 до 24 мкм) при условии, что относительное удлинение этих волокон находится в узком интервале значений, составляющем 1-3%, что обеспечивает их совместную работу в композите под нагрузкой. Указанный технический результат достигается при любом массовом соотношении количеств углеродного и базальтового волокна, предпочтительно составляющем от 5:95 до 95:5 соответственно.

Осуществление предлагаемого способа состоит в следующем.

Паковки волокна устанавливают на шпулярник пултрузионной установки. Пряди углеродного и базальтового волокна через соответствующие отверстия распределительной пластины последовательно пропускают в камеру пропитки, выполняющую роль блока пропитки и отжима, и далее в холодильник, профилирующую обогреваемую фильеру, камеру термообработки и закрепляют в траках тянущего устройства. Предпочтительно, в связи с использованием базальтового волокна, являющегося абразивным материалом, всю нитепроводящую гарнитуру изготавливают из материалов с низким коэффициентом трения и высокой износостойкостью, таких как керамика. Перед включением тянущего устройства включают обогрев профилирующей фильеры и камеры термообработки для достижения необходимых температурных показателей. После этого включают тянущее устройство и выставляют заданную скорость протяжки. Пряди волокна, сходящие со шпулярника, через соответствующее количество отверстий распределительной пластины попадают непосредственно в камеру пропитки, поскольку распределительная пластина выполнена в виде основания конуса внутренней поверхности камеры. Пряди волокна подают через соответствующие отверстия распределительной пластины так, что в камере пропитки углеродное волокно оказывается равномерно окруженным базальтовым волокном. Количество отверстий в распределительной пластине выбирается в зависимости от заданного содержания волокна в получаемом ПКМ. Так, для изготовления сердечника с расчетной площадью сечения от 3,8 до 51,9 мм2 требуется, соответственно, от 8 до 64 отверстий. Диаметр отверстий, а также линейные размеры камеры выбирают в зависимости от вида и линейной плотности волокна и заданного его содержания в получаемом ПКМ. Связующее из дозатора подают в камеру пропитки через два соосных отверстия перпендикулярно направлению движения волокна. Выход пропитанного волокна осуществляется через отверстия пластины, размещенной в сечении, параллельном основанию конуса. Количество отверстий в указанной пластине меньше количества отверстий в распределительной пластине, установленной на входе в камеру пропитки, поскольку пропитанное волокно выходит из камеры пропитки не в виде отдельных прядей, а в виде пучков. При этом в центральное круглое отверстие выходит все пропитанное углеродное волокно в виде одного пучка, а в несколько (по крайней, мере пять) одинаковых круглых отверстий, равномерно расположенных по периферии пластины, выходит пропитанное базальтовое волокно в виде соответствующего количества одинаковых пучков, каждый из которых включает не менее двух прядей. Диаметр каждого из отверстий для выхода пропитанного волокна, рассчитанный по вышеуказанной формуле, обеспечивает отжим излишка связующего. На основе рассчитанного таким образом диаметра отверстий для выхода пропитанного волокна, с учетом их необходимого количества и того, что значение конусности внутренней поверхности камеры должно быть выбрано из интервала от 0,01 до 0,10, определяется длина камеры и диаметр распределительной пластины, достаточный для равномерного размещения необходимого количества отверстий для входа волокна в камеру пропитки. Под конусностью, в соответствии с ГОСТ «Основные нормы взаимозаменяемости. Нормальные конусности и углы конусов», понимается величина С, рассчитанная по следующей формуле: С=(D-d)/L, где: D - диаметр основания конуса, d - диаметр сечения, параллельного основанию, L - расстояние между основанием конуса и указанным сечением. Отверстия для входа и выхода волокна могут размещаться на пластинах с расстоянием, обусловленным технологическими возможностями используемого для их выполнения инструмента, т.к., как показали эксперименты, при условии выполнения внутренней поверхности камеры с вышеуказанными параметрами полная однородность продукта пропитки по составу достигается при любом указанном размещении отверстий. Пропитанные пучки волокна из камеры пропитки через холодильник проходят в профилирующую фильеру, где происходит формирование композитного сердечника. Холодильник может быть выполнен в виде фланца с водяным охлаждением. Задача холодильника - изолировать теплопередачу от профилирующей фильеры, работающей при высокой температуре (от 120 до 190°С), к камере пропитки, температура в которой значительно ниже (не выше 35°С), что позволяет поддерживать в камере пропитки заданный температурный режим. Профилирующая фильера может быть выполнена, например, в виде разъемной стальной конструкции, состоящей из двух параллелепипедов с отфрезерованной и обработанной цилиндрической канавкой по длине каждой части, которые при смыкании образуют цилиндрическую поверхность, соответствующую диаметру целевого продукта. Профилирующие фильеры обжаты по всей длине обогреваемыми тэнами, разделенными на 3 зоны контроля температур. Разделение профилирующей фильеры на зоны с заданной температурой (в первой зоне 120-150°С, во второй 160-190°С, в третьей 140-160°С) обеспечивает следующее: в первой зоне происходит разогрев связующего, во второй зоне - процесс гелеобразования и отверждения связующего, в третьей - релаксация (снятие внутренних напряжений). На выходе из профилирующей фильеры сформированный профиль поступает в камеру термообработки. Камера термообработки может представлять собой многосекционную туннельную печь. В камере термообработки устанавливается температура в диапазоне 190-205°С, достаточная для окончательного отверждения полимерной матрицы и термообработки профиля, необходимой для достижения оптимальных прочностных и эксплуатационных характеристик целевого продукта. Превышение данных температур может привести к деструкции полимерной матрицы профиля. Профилирующая фильера и камера термообработки снабжены пультом управления, обеспечивающим поддержание заданной температуры. На выходе из камеры термообработки композитные сердечники проходят через тянущее устройство, предпочтительно тракового типа, и сматываются. Все составные части используемой в предлагаемом способе установки, за исключением камеры пропитки, являются промышленно выпускаемыми изделиями, предназначенными для пултрузионных установок.

В предлагаемом способе используют пултрузионную установку, включающую закрытую камеру пропитки, выполняющую функцию блока пропитки и отжима, что упрощает конструктивное оформление процесса, исключает выброс вредных веществ, а также способствует снижению теплопотерь. Снижению теплопотерь способствует также выполнение внешней поверхности камеры пропитки цилиндрической. Отсутствие в установке, используемой в предлагаемом способе, направляющих и прижимных приспособлений (прижимных рам, роликов и пр.) в составе камеры пропитки, выполнение внутренней поверхности камеры пропитки в виде прямого кругового усеченного конуса, а отверстий для входа и выхода волокна круглыми упрощает конструктивное оформление процесса и повышает сохранность целостности волокна, т.к. исключает возникновение контактов волокна с углами на внутренней поверхности камеры пропитки (в связи с отсутствием таких углов), т.е. возникновение в нем микротрещин.

Как показали проведенные эксперименты, способ по предлагаемому изобретению обеспечивает по сравнению со способом-прототипом повышение прочности на разрыв целевого продукта. Изготовленный предлагаемым способом одножильный сердечник электрического провода, содержащий в своем составе 60 мас. % армирующего волокна, имеет значение прочности на разрыв 1510 МПа по сравнению со значением прочности на разрыв сердечника, полученного способом-прототипом при прочих равных условиях, 1390 МПа. При изготовлении одножильных сердечников по предлагаемому способу и способу-прототипу в конкретных примерах осуществления способов было использовано эпоксидное связующее, включающее эпоксидную смолу, отвердитель изофорондиамин, ускоритель циклоалифатический амин (аминное число 500-540 мг КОН/г). Камера пропитки для изготовления сердечника предлагаемым способом была выполнена снабженной двумя соосными отверстиями для подачи связующего, расположенными на оси, перпендикулярной оси конуса, и имеющей внутреннюю поверхность в виде прямого кругового усеченного конуса с конусностью 0.05, отверстия для выхода пропитанного волокна были выполнены имеющими диаметр, рассчитанный по вышеприведенной формуле при а=0,0045. Исходные углеродное и базальтовое волокна имели относительное удлинение 2%. В профилирующей фильере температурный режим был разделен на следующие зоны: в первой зоне средняя температура 135°С, во второй 175°С, в третьей 150°С, а в камере термообработки 200°С.

Дальнейшее повышение прочности сердечника в условиях предлагаемого способа может быть достигнуто увеличением количества армирующего волокна в композите (до 80 мас. %) и оптимальным подбором соотношений связующее: волокно и количеств углеродного и базальтового волокна. Предпочтительно диаметр внутреннего элемента сердечника, армированного углеродным волокном, равен толщине слоя охватывающей его оболочки, армированной базальтовым волокном, что достигается соответствующим подбором соотношений количеств исходных волокон. Рассчитанные по вышеприведенной формуле диаметр отверстия для выхода пучка пропитанных углеродных волокон и диаметры отверстий для выхода пучков пропитанных базальтовых волокон, при условии, что количество таких отверстий не менее 5, а количество прядей базальтовых волокон в пучке не менее 2-х, позволяют обеспечить оптимальное содержание связующего во внутреннем элементе сердечника 30-40 мас. % (60-70 мас. % армирующего углеродного волокна) и 20-25 мас. % связующего во внешней охватывающей оболочке (75-80% армирующего базальтового волокна). В результате проведенных экспериментов при оптимальных условиях осуществления способа было получено максимальное значение прочности на разрыв предлагаемого сердечника 2250 МПа по сравнению с максимальным значением прочности на разрыв, равным 2040 МПа, для сердечника, имеющего одножильную конструкцию, полученного при прочих равных условиях способом-прототипом. Кроме того, так же, как и в способе-прототипе, дальнейшее повышение прочности предлагаемого сердечника и его других эксплуатационных характеристик достигается дополнительным последующим формированием различных защитных слоев на поверхности сердечника, например, как описано в ЕА 011625 B1, RU 2439728 C1, RU 2386183 С1.

Испытания, проведенные при использовании в качестве исходного сырья другого эпоксидного связующего, а также других базальтовых и углеродных волокон, имеющих относительное удлинение в интервале 1-3%, показали те же результаты: прочность продукта предлагаемого способа, содержащего 60-80% армирующего волокна от массы композита, на 9-11% превышает прочность продукта способа-прототипа.

Указанный технический результат обусловлен следующим.

Величина конусности определяет форму внутренней поверхности камеры пропитки и является фактором, определяющим кинетику и физико-химические характеристики процесса пропитки волокна связующим. Проведенными экспериментами было подтверждено следующее: даже при минимально допустимой, согласно предлагаемому изобретению, конусности внутренней поверхности камеры пропитки, при выполнении отверстий для выхода пучков пропитанного волокна с диаметрами, рассчитанными по вышеприведенной формуле, и любом диаметре пластины на входе в камеру пропитки, достаточном для размещения отверстий в количестве, соответствующем количеству прядей углеродного и базальтового волокон, обеспечивается равномерная однородная пропитка волокна связующим при условии, что распределительная пластина с отверстиями для входа волокна является конструктивной частью камеры пропитки и располагается непосредственно на входе в нее волокна. Последнее обеспечивает, в отличие от прототипа, подачу в камеру пропитки волокна, пряди которого не прижаты друг к другу, а, напротив, отделены друг от друга. Как показали эксперименты, при указанных параметрах камеры пропитки подача связующего через два отверстия, расположенные на оси, перпендикулярной оси конуса, исключает появление застойных зон внутри камеры. Превышение значения конусности свыше допустимого согласно предлагаемому изобретению приводит к недостаточной пропитке прядей волокна в связи с отсутствием необходимого давления, что снижает однородность по составу продукта пропитки и, как следствие, прочность целевого продукта. Снижение конусности ниже 0,01 приводит к появлению застойных зон внутри камеры при размещении отверстий для подачи связующего согласно предлагаемому изобретению, что также снижает равномерность пропитки, однородность продукта пропитки по составу и, как следствие, прочность целевого продукта. Выполнение отверстий для выхода волокна из камеры пропитки имеющими диаметры, рассчитанные по вышеприведенной формуле, позволяет повысить однородность продукта пропитки и, следовательно, прочность целевого продукта, а также избавиться от излишка связующего без включения в состав пултрузионной установки дополнительных приспособлений для отжима. При прохождении пучка волокон сквозь отверстие для выхода волокна из камеры пропитки на пучок пропитанного волокна оказывается давление, завершающее процесс пропитки в массе, обеспечивающее однородность пропитки пучка по составу, в том числе за счет удаления связующего из середины пучка пропитанных волокон и, как следствие, повышение прочности целевого продукта. Выполнение отверстий для выхода волокна из камеры пропитки с диаметром, большим чем рассчитанный по вышеприведенной формуле, не создает необходимого давления, что не позволяет не только полностью отжать излишек связующего, но и дополнительно обеспечить однородность продукта пропитки. Выполнение отверстий для выхода волокна из камеры пропитки с диаметром, меньшим чем рассчитанный по вышеприведенной формуле, затрудняет выход пучков пропитанного волокна и нарушает его целостность. Разделение профилирующей фильеры на три зоны с заданной температурой (в первой зоне 120-150°С, во второй 160-190°С, в третьей 140-160°С) и поддержание в камере термообработки температуры в диапазоне 190-205°С обеспечивает постепенное отверждение связующего и снятие внутренних напряжений, не допуская деструкции полимерной матрицы профиля.

1. Способ изготовления одножильного сердечника электрического провода, включающий подачу на пропитку прядей непрерывного углеродного волокна через круглые отверстия, расположенные в центральной части, а прядей другого непрерывного волокна - через круглые отверстия, расположенные в периферийной части распределительной пластины, содержащей указанные отверстия в количестве, соответствующем количеству прядей, пропитку эпоксидным связующим с последующей термообработкой, отличающийся тем, что в качестве другого непрерывного волокна используют базальтовое волокно, причем применяют углеродное и базальтовое волокна, имеющие относительное удлинение 1-3%, пропитку проводят в камере, выполненной с внешней цилиндрической поверхностью и внутренней поверхностью в виде прямого кругового усеченного конуса с конусностью 0,01-0,10, основание которого выполнено в виде указанной распределительной пластины и в сечении которого, параллельном основанию, расположена пластина с центральным круглым отверстием для выхода пропитанного углеродного волокна в виде одного пучка и по крайней мере пятью одинаковыми круглыми отверстиями, равномерно расположенными по периферии пластины, для выхода пропитанного базальтового волокна в виде соответствующего количества одинаковых пучков, каждый из которых включает не менее двух прядей, при этом диаметр каждого из отверстий для выхода пропитанного волокна рассчитывают по формуле: Dвых=a⋅Dc⋅Kп/K, где: а=1,0045-1,0050, Dc - заданный диаметр готового сердечника, Кп - количество прядей пропитанного волокна в пучке, К - общее количество прядей углеродного и базальтового волокна, используют камеру пропитки, снабженную двумя соосными отверстиями для подачи эпоксидного связующего, расположенными на оси, перпендикулярной оси конуса, а последующую термообработку пропитанного волокна осуществляют в профилирующей фильере, разделенной на три температурные зоны, поддерживая в первой зоне 120-150°C, во второй зоне 160-190°C, в третьей зоне 140-160°C, и далее в камере термообработки при 190-205°C.

2. Одножильный сердечник электрического провода, выполненный из композита на основе эпоксидного связующего и одноосно ориентированного непрерывного армирующего волокна содержащим внутренний элемент, армированный углеродным волокном, и охватывающую его внешнюю оболочку, армированную другим волокном, отличающийся тем, что он изготовлен способом по п. 1 и включает 60-80% армирующего волокна от массы композита.



 

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано в качестве несущих тросов и силовых элементов в конструкциях проводов и кабелей, предназначенных для подвески на опорах воздушных линий электропередачи и связи и для стационарной прокладки.

Изобретение относится к электротехнике и может быть использовано в конструкциях многопроволочных проводов и тросов для воздушных линий электропередачи и линиях электрифицированного транспорта.

В изобретении предлагаются электрические передающие кабели, каждый из которых содержит сердечник кабеля и множество проводящих элементов, окружающих сердечник кабеля.

Изобретение относится к электроэнергетике, в частности к композитным сердечникам для неизолированных проводов воздушных линий электропередачи. Сердечник выполняется в форме протяженного цилиндра, содержащего композитные стержни/модули 1 с сетчатой или спиральной одно- или разнонаправленной намоткой 2 из термостойкой нити по их поверхности и заполнением объема сердечника отвержденным при полимеризации связующим 3.

Изобретение относится к спирально скрученным термопластичным полимерным композитным кабелям, которые могут использоваться в качестве кабельных линий электропередачи, подводных кабелей привязи, подводных шлангокабелей и т.д.

Изобретение относится к электрическому кабелю (10), преимущественно к высоковольтным электрическим передающим кабелям или воздушным кабелям для транспортировки энергии, называемым воздушными линиями электропередачи.

Изобретение относится к электротехнике и может быть использовано в конструкциях многопроволочных проводов для воздушных линий, предназначенных для передачи электрической энергии в воздушных электрических сетях и линиях электрифицированного транспорта в качестве несущих тросов, усиливающих, питающих и отсасывающих линий.
Наверх