Способ изготовления лопаток компрессора из титанового сплава вт6

Изобретение может быть использовано для изготовления лопатки компрессора из высокопрочного титанового сплава ВТ6 на основе эвтектоидной системы легирования. Проводят горячую газовую формовку слитка со сверхпластической деформацией при температуре от 870 до 1000°С и скорости деформации 10-4c-1. Затем методом ионно-плазменного конденсирования на поверхность полученных лопаток осаждают оптимально подобранную лигатуру Ni-Ti-Cr-Y. После этого проводят термическую обработку готовых лопаток компрессора при температуре от 870 до 950°С. Способ обеспечивает высокие механические свойства лопаток компрессора из титанового сплава ВТ6, в частности усталостную прочность, жаропрочность, вязкость разрушения.

 

Изобретение относится к области металлургии, преимущественно к способам получения деталей или изделий с регламентированной структурой, и может быть использовано для оптимизации технологического процесса сверхпластической формовки изделий сложной формы.

В этом отношении, титановые сплавы, в связи с их высокой удельной прочностью и коррозионной стойкостью, являются наиболее широко используемыми конструкционными материалами, особенно в таких отраслях техники, где экономия материала играет доминирующую роль, в частности, в авиационном двигателестроении. Спектр произведенных изделий включает лопасти сложных форм и диски газотурбинных двигателей, фланцы, полые цилиндры и т.д. Во время эксплуатации вышеупомянутые изделия подвергают влиянию очень высоких и низких температур, очень больших нагрузок на конструкцию, влиянию агрессивных сред и т.д. Вышеуказанные задачи могут быть эффективно решены путем внедрения современных высокоэффективных и малоотходных технологий производства металлов, работающих на основе использования явления сверхпластичности. Штамповка в условиях сверхпластичности дает возможность резко сократить расходы на дорогостоящие сплавы, а также упрощает обработку. Разработанный метод существенно расширяет доступные возможности и создает новые. Сверхпластическая деформация (формовка) позволяет обрабатывать полые лопатки, изготовленные из титановых сплавов. Эффективность процесса увеличивается за счет использования наноструктурных элементов, при этом трудоемкость процесса производства полых лопаток и энергозатраты могут быть уменьшены на 40%, а прочность конструкции может быть увеличена на 10…15%.

Для получения нанокристаллической структуры наиболее часто используются модифицированные методы осаждения материалов из газовой среды [Berringer R. // Mater. Sci. and Eng. 1989. Vol. A117. Р. 33-43]. В этом случае материал испаряется в атмосфере инертного газа при давлении 130…1000 Па. Для испарения материала используются ионно-плазменные, электронно-лучевые или лазерные потоки энергии. В результате взаимодействия с атомами инертного газа атомы испаряемого вещества теряют кинетическую энергию и конденсируются в виде малых кристалликов, которые затем осаждаются на подложках.

Для получения беспористых нанокристаллических металлических материалов более приемлема ионно-плазменная конденсация материала на подложке с регулируемой температурой. В этом случае давление инертного газа (аргона) находится в пределах 0,66…1 Па, что соответствует длине свободного пробега атомов аргона равного 3…4 см. Именно на таком расстоянии друг от друга находятся распыляемая мишень и подложка. Такой экспериментальный подбор параметров распыления и температуры обеспечивает получение на подложке материала с нанокристаллической структурой в виде фольги толщиной от 1 до 100 мкм, равной плотности исходного распыляемого материала.

Сверхпластические способы позволяют изготавливать полые лопасти из титановых сплавов. Эффективность процесса увеличивается при уменьшении температуры обработки от 0,7 Тпл. до 0,45 Тпл. за счет использования наноструктурных элементов. Трудоемкость процесса производства полых лопастей и энергозатраты могут быть уменьшены на 40%, в то время как прочность конструкции может быть увеличена на 10…15%.

Некоторые из высокотемпературных жаропрочных титановых сплавов применяются в изготовлении лопаток сложной формы и компрессорных дисков газотурбинных двигателей. Титановые сплавы - труднодеформируемые материалы. Высокая трудоемкость обработки титановых сплавов определяется их низкой механической пластичностью в двухфазной (α+β) - структуре и значительной неоднородностью структуры. Именно поэтому для получения однородной микрокристаллической структуры используется метод многократной штамповки (ковки).

Известны способы изготовления лопаток компрессора из этвектоидных из титановых сплавов (ВТ3-1, ВТ6, ВТ22 и др.) методом сверхпластической деформации (формовки) и диффузионной сварки (СПФ/ДС) (А.с. СССР №1577378, C22F 1/04, 1988; А.с. СССР №1759583, В23К 20/14, 1990; патент США №4582244, 1985, European Patent №0568201, 1993).

Наиболее близким по набору существенных признаков является техническое решение по патенту РФ №2569441, В23К 20/14, 2015, которое было принято авторами за ближайший аналог.

Недостатком данного способа является то, что при использовании титановых заготовок из сплава Ti-6Al-4V (аналог ВТ6) применяемая технология изготовления лопаток компрессора не позволяет добиться необходимой прочности готовых изделий (предел выносливости, длительная прочность, увеличение уровня вибраций, недостаточный ресурс и т.д.). Это связано с тем, что при повышении температуры и повышенным уровнем переменных вибронапряжений возникает вероятность усталостных поломок лопаток компрессора, вследствие образования зон интенсивного течения, которые характеризуются резко выраженной макро- и микроструктурной неоднородности.

Технической задачей является улучшение механических свойств лопаток компрессора из титанового сплава ВТ6 (усталостная прочность, жаропрочность, вязкость разрушения, предел выносливости и т.д.) за счет значительного сокращения макро- и микроструктурной неоднородности фазового превращения и осаждением специально подобранной лигатуры на поверхности лопаток.

Способ осуществляется следующим образом.

Для изготовления лопаток компрессора по разработанной ранее технологии изготавливают слитки из партии высокопрочного титанового сплава ВТ6. Далее проводят горячую сверхпластическую деформацию (газовая формовка на основе эффекта сверхпластичности) при температуре от 870 до 1000°С и скорости деформации 10-4c-1. Затем методом ионно-плазменного конденсирования напыляется специально подобранная лигатура в составе Ni-Ti-Cr с редкоземельным металлом Y. После этого проводят термическую обработку готовых лопаток компрессора по экспериментальным режимам. С целью оптимизации параметров термической обработки температура варьировалась от 870 до 950°С и продолжительность выдержки от 450 до 600°С.

Таким образом, на поверхности лопаток образуется упрочненная поверхность конденсата легирующих элементов с редкоземельным металлом, которая наряду с образованием вторичной интерметаллической β-фазы твердого раствора позволяет значительно снизить переменные напряжения, которые возникают с возрастанием уровня вибрация и тем самым обеспечить надежную работу двигателя и увеличить его ресурс.

Способ изготовления лопаток компрессора из титанового сплава ВТ6, включающий осуществление газовой формовки слитков со сверхпластической деформацией при температуре от 870 до 1000°C и скорости деформации 10-4 с-1, проведение термической обработки лопаток при температуре от 870 до 950°C, отличающийся тем, что перед термической обработкой на поверхность полученных лопаток методом ионно-плазменной конденсации осаждают лигатуру Ni-Ti-Cr-Y.



 

Похожие патенты:

Изобретение может быть использовано для получения сварных конструкций из разнородных металлических материалов, в частности переходника титан-алюминий. Заготовка для проведения последующей диффузионной сварки в условиях горячего изостатического прессования содержит размещенные в капсуле титановую и алюминиевую заготовки.

Изобретение может быть использовано для получения сварных конструкций из разнородных металлических материалов, в частности из титановых сплавов и нержавеющей стали.

Изобретение может быть использовано для изготовления биметаллического изделия, выполненного из литого интерметаллидного сплава на основе Ni3Al и дисперсионно-твердеющего никелевого сплава.

Термическая печь может быть использована для формирования композиционных материалов и изделий путем диффузионной сварки стеклянного и металлического узлов заготовок.

Изобретение может быть использовано для высокотемпературной обработки стержневых деталей, в том числе для формирования композиционных, например стеклометаллических, материалов и изделий путем диффузионной сварки стеклянного и металлического узлов-заготовок.

Изобретение может быть использовано для изготовления многослойных труб, в том числе тонкостенных, в частности биметаллических труб из драгоценных металлов. Трубчатую заготовку с меньшей температурой плавления выполняют из первого металлического сплава, компоненты которого образуют твердый раствор с низкоплавкой эвтектической фазой.
Изобретение может быть использовано для получения ультрамелкозернистых сверхпластичных листов титано-алюминиевых сплавов при изготовлении сложных деталей методом сверхпластической формовки и диффузионной сварки.

Изобретение может быть использовано при изготовлении сваркой давлением с подогревом многослойных панелей из титановых сплавов, в частности, для аэрокосмического машиностроения.

Изобретение может быть использовано для получения биметалла из меди и низкоуглеродистой стали при изготовлении деталей, применяемых в конструкциях установок для электролиза алюминия.
Изобретение относится к способу сварки давлением металлических деталей и может быть использовано в различных отраслях машиностроения. Свариваемые детали сжимают.
Изобретение может быть использовано для изготовления методом сверхпластической деформации ответственных силовых деталей из титанового сплава ВТ6, в частности шпангоутов, люков, обтекателей.
Изобретение относится к области металлургии и может быть использовано для оптимизации технологического процесса сверхпластической формовки ответственных силовых деталей.

Изобретение относится к приводному валу, в частности к приводному валу для транспортных средств, изготовленному посредством гидроформовки. Гидроформованная труба (200) приводного вала содержит первую концевую часть (202), вторую концевую часть (214), среднюю часть (208), по меньшей мере частично представляющую собой образованную дугой окружности поверхность вращения и по меньшей мере участок средней части, диаметр которого больше диаметра первой и второй концевых частей (202, 214), первый переходный участок (204), первое сужение (206), второе сужение (210) и второй переходный участок (212).
Изобретение может быть использовано для оптимизации технологического процесса сверхпластической формовки при изготовлении ответственных силовых деталей, в частности шпангоутов, силовых нервюр, балок шассийных и т.д.

Изобретение может быть использовано при изготовлении полых, например, авиационных вентиляторных лопаток. На поверхность участков, не подвергаемых соединению при диффузионной сварке, наносят антиадгезионное покрытие.
Изобретение может быть использовано при изготовлении сверхпластической формовки изделий сложной формы, в частности лопаток компрессора. Изготавливают лопатки компрессора из высокопрочного титанового сплава ВТ6 на основе эвтектоидной системы легирования.

Изобретение может быть использовано для получения металлических панелей из титановых сплавов. Изготавливают заготовки заполнителя из двух листов титанового сплава ВТ6 толщиной 1 мм с продольной формой прокатки.

Способ может быть использован при изготовлении титановых конструкций методом сварки трением с перемешиванием. Соединяют сваркой титановые листы (802, 804) с образованием заготовки, имеющей несколько литых зон швов (918).

Изобретение относится к машиностроению, преимущественно к тем его отраслям, где осуществляется производство турбин, и может быть использовано при изготовлении компрессорных и турбинных лопаток газотурбинных двигателей, лопаток турбокомпрессорных агрегатов жидкостных реактивных двигателей и различных паровых турбин.
Изобретение относится к получению деталей газотурбинных двигателей из титанового псевдо-β-сплава с лигатурой Ti-Al-Mo-V-Cr-Fe. Проводят дополнительное легирование титанового сплава псевдо-β-сплава с лигатурой Ti-Al-Mo-V-Cr-Fe редкоземельным металлом. Осуществляют последующую вакуумно-дуговую плавку с получением заготовки. Производят сверхпластическую деформацию упомянутой заготовки при температуре от 850 до 950°C и скорости деформации 10-4 с-1 с последующей выдержкой 400…550°C. В результате улучшаются механические, технологические и эксплуатационные характеристики готовых деталей газотурбинных двигателей.
Наверх