Устройство для обследования внутренних стенок фонтанных арматур и иных сосудов под давлением

Изобретение относится к нефтегазодобывающей и геологоразведочной отраслям промышленности и предназначено для обследования внутренних стенок фонтанных арматур нефтяных и газовых скважин и иных сосудов под давлением. Устройство включает видеокамеру, соединенную с кабелем, размещенным во внутреннем канале, шлюз, выполненный с возможностью установки его фланцевой частью на фланцевую часть задвижки фонтанной арматуры, резьбовые штанги, установленные на корпусе шлюза, ходовые гайки с возможностью перемещения вдоль резьбовых штанг посредством вращения штурвалов, внешний шток, внутренний шток с размещенным в нем кабелем, опорную плиту со стальным стаканом, выполненным с возможностью передачи движения основному штоку, закрепленному на опорной плите, штурвал вращения видеокамеры, выполненный с возможностью установки на внутренний шток, трехходовой кран для стравливания избыточного давления, ноутбук, соединенный с камерой через USB-порт. Видеокамера крепится к кронштейну, закрепленному к торцу внутреннего штока. Герметизация между штоками обеспечивается резиновыми уплотнительными кольцами и прокладками. Герметизация кабеля обеспечивается резиновой уплотнительной шайбой. Расширяются возможности и информативность визуального обследования внутренних стенок фонтанных арматур и иных сосудов, находящихся под давлением на предмет различного рода нарушений. 7 ил.

 

Изобретение относится к нефтегазодобывающей и геологоразведочной отраслям промышленности и предназначено для обследования внутренних стенок фонтанных арматур нефтяных и газовых скважин и иных сосудов под давлением (превенторных установок, резервуаров для хранения сжиженного газа) при условии прозрачности скважинных флюидов. Техническим результатом является визуальное обследование внутренних стенок фонтанных арматур и иных сосудов под давлением на предмет различного рода нарушений: каверн, трещин, окалин, расточки внутренних диаметров элементов фонтанных арматур, сужение проходного диаметра фонтанных арматур и т.д.

Известно устройство для видеонаблюдения скважины, работающее следующим образом, видеоприбор опускают в скважину, заполненную скважинной, оптически непрозрачной жидкостью. По достижении видеоприбором зоны видеонаблюдения раскрывают зонтичный пакер для уменьшения турбулентного и гравитационного смешивания и с помощью насоса начинают закачивать оптически прозрачную жидкость, которую предварительно подготавливают в резервуаре путем смешивания двух жидкостей разной плотности, поступающих из резервуаров. Плотность готовой жидкости максимально приближена к плотности скважинной жидкости для предотвращения гравитационного смешивания жидкостей. Из резервуара 3 оптически прозрачная жидкость поступает в насос, который направляет ее по шлангокабелю в приспособление подачи оптически прозрачной жидкости и далее в зону видеонаблюдения непосредственно перед видеокамерой. Таким образом, формируется участок оптически прозрачной жидкости.

Однако данное устройство предназначено для обследования колонны скважины, а не внутренних стенок фонтанной арматуры, работы данным устройством проводятся не под давлением пластового флюида, а на скважине, заполненной раствором. Нет возможности провести обследование боковых отводов трубной головки.

Целью изобретения является визуальное обследование внутренних стенок фонтанных арматур и иных сосудов под давлением.

Эта цель достигается за счет ввода видеокамеры через открытую задвижку в полость фонтанной арматуры под давлением вращением штурвалов ходовых гаек опорной плиты, а герметизация скважиной среды обеспечивается резиновым уплотнением в шлюзе, резиновыми кольцами между основным и внутренним штоками, а также резиновым уплотнением, обжимающим кабель видеокамеры.

Конструкция данного устройства позволяет провести визуальное обследование внутренних стенок фонтанных арматур под давлением с определением геометрического места нарушения как верхнего отвода трубной головки, так и боковых отводов, а также иных сосудов, находящихся под давлением.

Устройство состоит из опорной плиты 5, ходовых гаек 6, резьбовых штанг 7, шлюза 4, основного штока 25, внутреннего штока 24, видеокамеры 31. Ходовые гайки 6 перемещаются вдоль резьбовых штанг 7, установленных на корпусе шлюза 4, посредством вращения штурвалов, закрепленных на гайках втулок 20, имеющих внутреннюю резьбу. Стальной стакан 19 опорной плиты 5 передает ходовое движение основному штоку 25, проходящему через резиновое уплотнение 11, обеспечивающему герметизацию скважинного флюида. Внутри основного штока 25 установлен внутренний шток 24, герметизация между штоками обеспечивается резиновыми уплотнительными кольцами 26 и прокладками 27. Кабель 8 видеокамеры 31, находящийся во внутреннем штоке 24, обжимается резиновыми уплотнениями 28 вследствие давления шайб 32 при завороте втулки с внешней резьбой 29 и болта 33. Видеокамера 31 крепится к кронштейну 30, который, в свою очередь, крепится к торцу внутреннего штока 24 резьбовым соединением.

Визуальное обследование внутренних стенок фонтанных арматур происходит следующим образом.

На фланец закрытой задвижки 3 устанавливается устройство в собранном виде фланцевой частью шлюза 4 и крепится шпильками с гайками. После открытия шибера задвижки 3 фиксируется давление скважинного флюида на манометре 23. Вращением штурвалов ходовых гаек 6 осуществляется движение опорной плиты 5 и ввод основного штока 25 и внутреннего штока 24 с видеокамерой 31 через задвижку 3. Расстояние ввода камеры 31 фиксируется по шкале, нанесенной на основном штоке 25. После прохода через задвижку 3 и достижения исследуемой внутренней поверхности штурвалом вращения видеокамеры, установленным на внутренний шток, осуществляется круговое вращение видеокамеры 31, что позволяет провести более качественное визуальное изучение внутренней поверхности на экране электронного устройства через USB-порт. После проведения необходимого обследования осуществляется вывод видеокамеры 31 обратным вращением штурвалов ходовых гаек 6 с использованием удерживающей силы внутреннего штока 24, закрепленного на опорной плите 5 фиксирующей гайкой 21 в исходное положение на расстояние ввода видеокамеры 31. По достижении исходного положения задвижка 3 закрывается. Избыточное давление стравливается через трехходовой кран 22. Результаты обследования фиксируются видеозаписью с возможностью дальнейшего изучения.

Устройство для обследования внутренних стенок фонтанных арматур, включающее видеокамеру, соединенную с кабелем, размещенным во внутреннем канале, отличающееся тем, что оно включает шлюз, выполненный с возможностью установки его фланцевой частью на фланцевую часть задвижки фонтанной арматуры, резьбовые штанги, установленные на корпусе шлюза, ходовые гайки с возможностью перемещения вдоль резьбовых штанг посредством вращения штурвалов, внешний шток, внутренний шток с размещенным в нем кабелем, опорную плиту со стальным стаканом, выполненным с возможностью передачи движения основному штоку, закрепленному на опорной плите, штурвал вращения видеокамеры, выполненный с возможностью установки на внутренний шток, трехходовой кран для стравливания избыточного давления, ноутбук, соединенный с камерой через USB-порт, при этом видеокамера крепится к кронштейну, закрепленному к торцу внутреннего штока, герметизация между штоками обеспечивается резиновыми уплотнительными кольцами и прокладками, герметизация кабеля обеспечивается резиновой уплотнительной шайбой.



 

Похожие патенты:

Изобретение относится к подземным операциям бурения, в частности к оценке и калибровке эффективности передачи осевого усилия бурильной колонны. Техническим результатом является повышение эффективности оценки передачи осевого усилия бурильной колонны и оптимизации добычи углеводородов.

Изобретение относится к нефтяной промышленности и предназначено для снижения асфальтеносмолопарафиновых отложений (АСПО) на внутрискважинном оборудовании и разрушения водонефтяной эмульсии в скважине при эксплуатации скважины, добывающей высоковязкую нефть.

Изобретение относится к области добычи природного газа, в частности к определению коэффициента фактического гидравлического сопротивления газовых скважин в реальном масштабе времени.

Изобретение относится к термогидродинамическим исследованиям нефтяных залежей и может быть использовано для уточнения внутреннего строения массивных трещинных залежей.

Изобретение относится к области энергетики и предназначено для определения темпов изменения температуры пород недр при извлечении или аккумулировании тепловой энергии.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения динамического или статического уровня жидкости в водозаборных скважинах.
Изобретение относится к области нефтегазодобывающей промышленности, в частности к способу мониторинга горизонтальных или наклонно направленных скважин, и может быть использовано при разработке нефтяных, газовых и газоконденсатных месторождений.

Изобретение относится к телеметрической системе с гидроимпульсным каналом связи. Предложено устройство определения телеметрических импульсов, содержащее: оптический разветвитель, источник света, оптически соединенный с оптическим разветвителем, фотодетектор, оптически соединенный с оптическим разветвителем, эталонный контур, оптически соединенный с оптическим разветвителем, сенсорный контур, оптически соединенный с эталонным контуром и оптическим разветвителем, и корпус эталонного контура, содержащий внутри себя по меньшей мере указанный эталонный контур, при этом корпус заполнен эластомерным или восковым материалом для амортизации воздействия внешних вибраций на эталонный контур.

Изобретение относится к средствам управления направленным бурением для обеспечения горизонтального направленного бурения. Техническим результатом является повышение точности определения положения бурового инструмента.

Группа изобретений относится к способам и системам для выполнения работ на буровой, в частности к способам и системам для выполнения работ по интенсификации вдоль ствола скважины.

Изобретение относится к области геофизических исследований и может быть использовано для контроля технического состояния нефтяных и газовых скважин. Технический результат заключается в повышении достоверности и точности оценки качества цементирования обсадных колонн нефтегазовых скважин. Способ оценки качества цементирования нефтегазовых скважин включает акустическое секторное сканирование заколонного пространства с измерением амплитуд отраженного сигнала от внутренней стенки обсадной трубы. Выявляют сообщающиеся дефекты цементирования среди множества хаотически распределенных участков с различным состоянием цементирования и количественно оценивают их протяженность вдоль колонны и величину их раскрытости по периметру. Выполняют последовательный анализ данных по секторам на каждом кванте глубины. Выделяют сектора с дефектами цементирования по периметру и вдоль заколонного пространства. В случае совпадения секторов с дефектами цементирования последующего и предыдущего квантов глубины сектора последующего кванта приобщают к секторам предыдущего кванта. По длительности совпадения секторов с такими дефектами судят о протяженности сквозных каналов с дефектами цементирования в заданном интервале исследований, а по количеству секторов на каждом кванте оценивают их раскрытость по периметру в градусах. Также оценивают раскрытость в градусах изолированных секторов с дефектами цементирования по периметру на отдельных квантах глубины, не примыкающих к выделенным сквозным каналам. Определяют отдельный вклад сквозных каналов с дефектами цементирования и изолированных дефектов цементирования в суммарном дефекте цементирования. 1 ил.

Изобретение относится к области геофизических исследований скважин и предназначено для обеспечения контакта электровводов с обсадной колонной в многоэлектродном скважинном зонде электрического каротажа через металлическую колонну в условиях значительной коррозии стенки обсадной колонны и наличия на ней цемента, парафинов, смол. Согласно заявленному предложению на электроды индивидуально воздействуют ударом периодически накапливаниемой потенциальной энергии пружин, производимой вращением винтовых пар и скачкообразным (ударным) освобождением энергии при выходе из винтового взаимодействия гребней винтовых пар. Устройство для осуществления способа представляет собой конструкцию привода, имеющего выходной вал, который приводит в действие винтовые пары. Винтовые пары при прямом вращении раскрывают центраторы и прижимают упруго электровводы к стенке обсадной колонны, ударно производят периодическое воздействие на электроды, жестко связанные с электровводами. При этом происходит врезание электровводов в стенку обсадной колонны. Ударное воздействие происходит при выходе из винтового взаимодействия винта и гайки, поджатой силовой пружиной. При обратном вращении вала происходит восстановление винтового взаимодействия в винтовых парах, возвращение электродов и центраторов в исходное положение, а затем винтовые гребни вновь выходят из винтового взаимодействия, но с других концов. Этим достигается автоматическое позиционирование привода в крайних положениях. Технический результат - повышение скорости и качества проведения каротажа, упрощение конструкции. 2 н. и 8 з.п. ф-лы, 4 ил.

Изобретение относится к области добычи природного газа и, в частности, к устранению взаимопродавливания скважин, работающих на общий коллектор в реальном масштабе времени. Техническим результатом является повышение точности определения правильности выбора режима работ ГСШ с общим коллектором в реальном масштабе времени. Способ включает назначение режимов его эксплуатации в рамках технологических ограничений, которые определяются расчетным методом по результатам газогидродинамических исследований скважин. При этом в процессе эксплуатации месторождения, используя средства телеметрии и АСУ ТП установки комплексной подготовки газа (УКПГ), с заданным шагом квантования измеряют фактические давления газа на коллекторе каждого куста скважин и в конце газосборного шлейфа (ГСШ), а также расход газа каждого куста скважин, и, используя измеренные данные и паспортные характеристики ГСШ в реальном масштабе времени, вычисляют давление газа в точках подкачки и строят синхронизированные во времени графики пар давлений: измеренного на коллекторе куста и рассчитанного для точки подкачки, к которой он подключен, а также измеренного давления в конце ГСШ и рассчитанного для последней точки подкачки перед УКПГ, и, как только будет выявлено, что разность одной из пар давлений стала меньше заданного порога, значение которого назначают по результатам последних газогидродинамических испытаний скважин и заданному режиму работы УКПГ, оператору УКПГ выдается сообщение о выявлении проблем в работе ГСШ и (или) соответствующего куста газовых скважин, а также рекомендуемый перечень индивидуальной последовательности операций по парированию возникшей ситуации на проблемном участке, и, используя этот перечень, оператор установки принимает окончательное управляющее решение по устранению проблемы. 2 ил.

Изобретение относится к телеметрической системе передачи данных из скважины. Техническим результатом является обеспечение высокой скорости передачи данных и бесперебойной работы канала связи. В частности, предложена скважинная система передачи сигналов для передачи данных по колонне скважинных компонентов, содержащей множество взаимосоединенных скважинных компонентов, содержащая: одну или более линию связи, которая переносит радиочастотные сигналы по колонне скважинных компонентов; по меньшей мере одно ведущее средство связи, выбранное из группы: поверхностный интерфейс, скважинный интерфейс и узел; и множество отказобезопасных повторителей сигналов, размещенных внутри звеньев бурильных труб, разнесенных по упомянутой колонне скважинных компонентов, причем отказобезопасные повторители сигналов восприимчивы к радиочастотным сигналам, полученным по одной или более линии связи, причем повторители имеют рабочий режим и режим отказа. Причем упомянутое по меньшей мере одно ведущее средство связи осуществляет связь через одну или более линию связи путем модулирования данных в импульсы радиочастотной энергии, причем радиочастотная энергия имеет диапазон частот от 10 МГц до 3 ГГц. Импульсы радиочастотной энергии передают по одной или более линии связи, доступных для отказобезопасных повторителей сигналов, так чтобы обходить или проходить через отказобезопасный повторитель сигналов по меньшей мере по одной или более линии связи. Электронные средства в отказобезопасном повторителе сигналов соединены с одной или более линией связи параллельно с одним или более радиочастотным ключом для обеспечения отказобезопасной операции на линиях связи. При этом, когда отказобезопасный повторитель сигналов находится в режиме отказа, то электронные средства в повторителе отсоединены от линий связи посредством радиочастотного ключа, который в закрытом положении обеспечивает непрерывный пассивный путь сигнала по этим линиям связи, и когда отказобезопасный повторитель сигналов находится в рабочем режиме, то электронные средства в повторителе соединены с линиями связи посредством радиочастотного ключа, находящегося в открытом положении. Импульсы радиочастотной энергии, которые обошли или прошли через отказобезопасный повторитель сигналов, повторно генерируются другим отказобезопасным повторителем сигналов по линиям связи независимо от линии связи, на которой обнаружены импульсы. 2 н. и 30 з.п. ф-лы, 26 ил.

Изобретение относится к газодобывающей промышленности. Техническим результатом является повышение эффективности контроля изменения положения газоводяного контакта по площади всего месторождения. Способ включает газодинамические исследования всех скважин месторождения. На основании результатов первичных исследований, полученных за 3-4 года, формируют базу данных. Разновременные текущие результаты газодинамических исследований скважин сопоставляют с результатами в базе данных посредством анализа и сравнения значений комплексного параметра проводимости (k⋅h), который определяют в ходе проведения газодинамических исследований для каждой скважины по всему месторождению, после чего делают вывод о наличии перемещения газоводяного контакта или его отсутствии. 3 ил.

Изобретение относится к области геофизических исследований и может быть использовано для диагностики технического состояния обсадных колонн скважин нефтегазовых месторождений. Технический результат заключается в повышении достоверности выявления различных видов повреждений стенок колонн и точности оценки их количественных характеристик. Способ оценки повреждений обсадных колонн нефтегазовых скважин включает обследование стенок обсадной колонны с применением акустического сканера на отраженных волнах высокого разрешения. В результате построения цифровой трехмерной модели внутренней стенки колонн, координатами которой служат текущая глубина, круговая развертка поверхности 360° и глубина повреждений стенок, определяемая по измерению времени прихода отраженной волны от стенки колонн с учетом скорости ультразвука в скважинной жидкости, выполняют идентификацию, количественную оценку площадных и объемных характеристик многообразных видов повреждений. 5 ил.

Изобретение относится к области насосной техники, преимущественно к скважинным насосным установкам для селективного испытания нефтегазовых и метаноугольных пластов. Установка содержит колонну насосно-компрессорных труб (НКТ), на которой установлены последовательно снизу вверх опора, в корпусе которой имеется ступенчатый проходной канал с посадочным местом для установки в нем геофизического эжектирующего устройства. На перепускном канале установлен обратный клапан. Геофизическое эжектирующее устройство включает цилиндрический корпус, на наружной поверхности которого выполнен кольцевой уступ для установки геофизического эжектирующего устройства. В корпусе геофизического устройства установлен струйный насос. Проходной канал насоса подключен ниже герметизирующего узла к каналу подвода откачиваемой из скважины среды. В герметизирующем узле выполнен осевой канал для пропуска через него каротажного кабеля для установки каротажного прибора с возможностью перемещения его вдоль ствола скважины. Канал подвода активной среды в сопло струйного насоса сообщен с перепускным каналом опоры и через последний - с окружающим колонну НКТ пространством. Камера смешения с диффузором установлены соосно соплу струйного насоса. Диффузор сообщен с внутренней полостью колонны НКТ. Выше последнего установка снабжена внешней колонной насосно-компрессорных труб (ВНКТ), установленной в скважине в пространстве между НКТ и эксплуатационной колонной с образованием межтрубного кольцевого канала. На ВНКТ установлены последовательно снизу вверх хвостовик - накопитель твердых частиц - примесей откачиваемой из скважины среды, расположенный ниже исследуемого пласта нижний пакер с опорой на эксплуатационную колонну или нижний пакер нажимного действия, щелевой фильтр, высота которого не менее чем на два метра больше толщины исследуемого пласта и верхний пакер нажимного действия, расположенный над кровлей исследуемого пласта. В ВНКТ выше верхнего пакера нажимного действия установлено опорное кольцо для установленной на НКТ опоры. Расширяются функциональные возможности установки, а именно проведение выборочного селективного испытания нефтегазовых или метаноугольных пластов. 1 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для непосредственного высокоточного определения коэффициента текущей нефтенасыщенности продуктивных пластов с высоким разрешением по толщине пластов как в обсаженных, так и в необсаженных скважинах, заполненных жидкостью, и может применяться при решении широкого спектра задач, связанных с разработкой, разведкой и добычей полезных ископаемых. Способ включает использование для определения коэффициента текущей нефтенасыщенности пласта данных термометрического исследования в стационарной скважине, по результатам которого определяется геотермический градиент в пласте, по полученным данным глубинного теплового потока и геотермического градиента вычисляется текущая теплопроводность пласта. Затем по проведенному исследованию и статистическим исследованиям корреляционной зависимости между теплопроводностью и нефтенасыщенностью коэффициент текущей нефтенасыщенности пласта (Кн) по формулам где Н1 - глубина кровли пласта;Н2 - глубина подошвы пласта;Т1 - температура на кровле пласта на глубине H1;Т2 - температура на подошве пласта на глубине Н2;ΔТ- разница температур между точками измерения, например между кровлей и подошвой пласта;ΔН - расстояние между точками замера. где Q - глубинный тепловой поток, Вт/м2;Г - геотермический градиент в пласте, °С/м. где λ - теплопроводность породы, Вт/м⋅К.Техническим результатом предлагаемого изобретения является то, что на основе данной информации у отдела разработки и технологического отдела появляется возможность моделировать динамику выработки запасов углеводородов, осуществлять мониторинг и прогнозирование геолого-технических мероприятий по повышению добычи нефти, производить расчеты различных вариантов разработки продуктивных пластов и выбирать из них наиболее эффективные, что повысит рентабельность добычи нефти и увеличит нефтеотдачу пластов. 2 табл., 6 ил.

Изобретение относится к области промысловой геофизики и предназначено для измерения геофизических и технологических параметров в процессе бурения. Предлагаемое изобретение решает задачу повышения надежности конструкции и повышения качества передаваемого сигнала за счет изменения конструкции НДМ. В заявляемом устройстве, содержащем корпус с центральным промывочным отверстием, а также размещенные в выемках корпуса, в его герметичной части, отделенной уплотнительными элементами, электронные платы и источник питания. Провод, соединяющий электронные платы с ниппельной частью корпуса, зафиксирован контактным винтом на ниппельной части корпуса. Корпус образован из ниппельной и муфтовой частей, соединенных между собой конической винтовой поверхностью, в зазоре которого между резьбовыми поверхностями сопрягаемых частей размещен электроизоляционный материал. На части наружной цилиндрической поверхности по длине корпуса и во внутреннем канале ниппельной части корпуса размещены изоляторы. На наружной поверхности муфтовой части корпуса, в зоне расположения электронных плат и источника питания, установлена защитная гильза, один торец которой зафиксирован посредством выступов и пазов, а другой торец - винтами. Муфтовая и ниппельная части снабжены замковыми резьбами для соединения с долотом и валом забойного двигателя соответственно. 2 н. и 6 з.п. ф-лы, 4 ил.

Изобретение относится к разведке нефтяных месторождений, в частности к дальномерной системе позиционирования и методике с применением магнитных монополей. Техническим результатом является точное определение местоположения приемника относительно передатчиков и определение расстояния между передатчиком и приемником за счет использования передатчика и/или приемника, содержащего магнитный монополь. Способ включает позиционирование по меньшей мере одного из: передатчика и приемника внутри первой скважины. При этом по меньшей мере один из передатчика и приемника содержит магнитный монополь, генерирование передатчиком первого магнитного поля, измерение приемником сигнала, соответствующего первому магнитному полю, и определение по меньшей мере одной скважинной характеристики посредством сигнала, полученного блоком управления, коммуникативно соединенным с приемником. Причем указанная по меньшей мере одна скважинная характеристика включает в себя определение по меньшей мере одного из: расстояние между передатчиком и приемником, и местоположение приемника относительно передатчика. 2 н. и 27 з.п. ф-лы, 15 ил.

Изобретение относится к нефтегазодобывающей и геологоразведочной отраслям промышленности и предназначено для обследования внутренних стенок фонтанных арматур нефтяных и газовых скважин и иных сосудов под давлением. Устройство включает видеокамеру, соединенную с кабелем, размещенным во внутреннем канале, шлюз, выполненный с возможностью установки его фланцевой частью на фланцевую часть задвижки фонтанной арматуры, резьбовые штанги, установленные на корпусе шлюза, ходовые гайки с возможностью перемещения вдоль резьбовых штанг посредством вращения штурвалов, внешний шток, внутренний шток с размещенным в нем кабелем, опорную плиту со стальным стаканом, выполненным с возможностью передачи движения основному штоку, закрепленному на опорной плите, штурвал вращения видеокамеры, выполненный с возможностью установки на внутренний шток, трехходовой кран для стравливания избыточного давления, ноутбук, соединенный с камерой через USB-порт. Видеокамера крепится к кронштейну, закрепленному к торцу внутреннего штока. Герметизация между штоками обеспечивается резиновыми уплотнительными кольцами и прокладками. Герметизация кабеля обеспечивается резиновой уплотнительной шайбой. Расширяются возможности и информативность визуального обследования внутренних стенок фонтанных арматур и иных сосудов, находящихся под давлением на предмет различного рода нарушений. 7 ил.

Наверх