Электролизер и каскад электролизеров



Электролизер и каскад электролизеров
Электролизер и каскад электролизеров
Электролизер и каскад электролизеров
C25B1/10 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2629561:

Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)

Изобретение относится к электролизеру, содержащему корпус с электролитом с размещенными в нем электролизной ячейкой с анодом, катодом и мембраной, разделяющей объем электролизной ячейки на анодное и катодное пространства, анодный контур циркуляции электролита, включающий емкость с электролитом и теплообменник, сепараторы водорода и кислорода, магистрали подвода воды и отвода кислорода и водорода, отличающемуся тем, что электролизер содержит катодный контур циркуляции, совмещенный с анодным контуром циркуляции таким образом, что катодная емкость с электролитом соединена через анодный теплообменник с анодным пространством, а анодная емкость с электролитом соединена с катодным пространством через катодный теплообменник, и байпасную линию, соединяющую катодную емкость с электролитом через кран-регулятор и катодный теплообменник с катодным пространством. Также изобретение относится к каскаду электролизеров. Использование предлагаемого изобретения позволяет снизить удельный расход электроэнергии на производство водорода, увеличить ресурс работы электролизера и возможность эффективного использования предлагаемого технического решения в установках разделения изотопов водорода. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к устройствам для получения водорода и кислорода электролизом воды и может быть использовано, в том числе, в электролизных каскадах разделения изотопов водорода.

Уровень техники

Известны электролизеры для разложения воды на водород и кислород (например, патент РФ №2034933). Недостатком таких энергоустановок является то, что вода подается в зону реакции через торец электрода, что приводит к повышению поляризации и, следовательно, к повышенным энергозатратам.

В патенте РФ №2501890 (опубл. 20.12.2013, бюллетень «Изобретения. Полезные модели» №35), принятом за прототип, электролизер содержит корпус с размещенными в нем электролизными ячейками с анодом, катодом и мембраной, разделяющей объем электролизной ячейки на анодное и катодное пространства, анодный контур циркуляции электролита, включающий емкость с электролитом, теплообменник и насос, сепараторы водорода и кислорода, при этом водный раствор электролита подается только к аноду, а катодный процесс осуществляется в условиях дефицита воды за счет ее переноса через анод и мембрану, отвод образующегося водорода происходит через поры катода, что в совокупности приводит к увеличению внутреннего сопротивления ячейки и росту напряжения, т.е. к повышенному расходу электроэнергии, а сухая катодная полость снижает ресурс катода.

Также известны каскады электролизеров для получения тяжелой воды (например, Прикладная электрохимия, под ред. А.П. Томилина. М.: Химия, 1984, с. 139). Однако конкретных технических решений по соединению электролизеров в каскады не приводится.

Раскрытие изобретения

Техническим результатом заявленного изобретения являются снижение удельного расхода электроэнергии на производство водорода, увеличение ресурса работы электролизера и возможность эффективного использования предлагаемого технического решения в установках разделения изотопов водорода за счет полного погружения катода и анода в электролит, взаимного перемешивания анодного и катодного электролитов, что обеспечивает постоянный состав электролита, отделение обогащенной тяжелым изотопом водорода воды от выделяющихся водорода и кислорода при их охлаждении и отвод этой воды в следующий электролизер каскада обогащения, что исключает потери электролита из электролизера, а также возврат обедненной воды после окисления водорода в дожигателе на вход предыдущих ступеней каскада, что увеличивает эффективность извлечения тяжелого изотопа.

Технический результат достигается тем, что предложен электролизер, содержащий корпус с электролитом с размещенными в нем электролизной ячейкой с анодом, катодом и мембраной, разделяющей объем электролизной ячейки на анодное и катодное пространства, анодный контур циркуляции электролита, включающий емкость с электролитом и теплообменник, сепараторы водорода и кислорода, магистрали подвода воды и отвода кислорода и водорода, при этом электролизер содержит катодный контур циркуляции, совмещенный с анодным контуром циркуляции таким образом, что катодная емкость с электролитом соединена через анодный теплообменник с анодным пространством, а анодная емкость с электролитом соединена с катодным пространством через катодный теплообменник, и байпасную линию, соединяющую катодную емкость с электролитом через кран-регулятор и катодный теплообменник с катодным пространством.

Также предложен каскад вышеуказанных электролизеров, содержащий водородный и кислородный холодильники, вход которых соединен соответственно с выходом водородного и кислородного сепараторов, выходы водорода и кислорода из холодильников соединены с входом дожигателя, совмещенного с конденсатором пара, а выходы конденсата из холодильников соединены через насос обогащенной воды с входом крана-регулятора, один выход которого соединен с магистралью подачи обогащенной воды в следующий электролизер, а второй выход соединен с входом анодного пространства, выход конденсатора пара соединен с магистралью подачи обедненной воды на предыдущий электролизер.

Краткое описание графических материалов

Признаки и сущность заявленного изобретения поясняются в последующем детальном описании, иллюстрируемом чертежами, где показано следующее.

На фиг. 1÷3 приведены схемы заявленного электролизера и каскада электролизеров, где:

1 - электролизная ячейка;

2 - корпус;

3 - катод;

4 - катодное пространство;

5 - мембрана;

6 - анод;

7 - анодное пространство;

8 - катодная емкость с электролитом;

9 - анодная емкость с электролитом;

10 - водородный сепаратор;

11 - кислородный сепаратор;

12 - катодный кран-регулятор;

13 - катодный теплообменник;

14 - анодный теплообменник;

15 - магистраль подвода воды;

16 - водородный холодильник;

17 - кислородный холодильник;

18 - дожигатель;

19 - конденсатор пара;

20 - насос обедненной воды;

21 - насос обогащенной воды;

22 - кран-регулятор обогащенной воды;

23 - магистраль отвода обогащенной воды;

24 - магистраль отвода обедненной воды.

Осуществление изобретения

Электролизер содержит корпус 2 с электролитом с размещенными в нем электролизной ячейкой 1 с анодом 6, катодом 3 и мембраной 5, разделяющей объем электролизной ячейки 1 на анодное 7 и катодное 4 пространства, анодный контур циркуляции электролита, включающий емкость с электролитом 9 и теплообменник 14, сепараторы водорода 10 и кислорода 11, магистрали подвода воды 15 и отвода кислорода и водорода из сепараторов 10 и 11, причем электролизер дополнительно содержит катодный контур циркуляции, совмещенный с анодным контуром циркуляции таким образом, что катодная емкость 8 с электролитом соединена через анодный теплообменник 14 с анодным пространством 7, а анодная емкость 9 с электролитом соединена с катодным пространством 4 через катодный теплообменник 13, и байпасную линию, соединяющую катодную емкость 8 с электролитом через кран-регулятор 12 и катодный теплообменник 13 с катодным пространством 4.

Каскад электролизеров состоит из электролизеров, выполненных как показано на фиг. 1, при этом каскад дополнительно содержит водородный 16 и кислородный 17 холодильники, вход которых соединен соответственно с выходом водородного 10 и кислородного 11 сепараторов, выходы водорода и кислорода из холодильников 16 и 17 соединены с входом дожигателя 18, совмещенного с конденсатором пара 19, а выходы конденсата из холодильников 16 и 17 соединены через насос обогащенной воды 21 со входом крана-регулятора 22, один выход которого соединен с магистралью 23 подачи обогащенной воды в следующий электролизер, а второй выход соединен с входом анодного пространства 7, выход конденсатора пара 19 соединен с магистралью 24 подачи обедненной воды на предыдущий электролизер.

Заявленный электролизер и каскад электролизеров работают следующим образом. В электролизер по магистрали 15 подается вода, которая в электролизной ячейке 1 разлагается на водород, выделяющийся на катоде 3, и кислород, выделяющийся на аноде 6. Для разделения выделяющихся газов электролизная ячейка 1 имеет мембрану 5, образующую внутри электролизной ячейки 1 катодное 4 и анодное 7 пространства. Выделяющиеся газы за счет эффекта эрлифта поднимаются вместе с электролитом в емкости 8 и 9 с электролитом, где происходит отделение газов от электролита, который за счет избыточного веса поступает из катодной емкости 8 через теплообменник 14 в анодное пространство 7, а из анодной емкости 9 через теплообменник 13 в катодное пространство 4. Так как объем выделяющегося водорода превышает объем кислорода в два раза, для поддержания одинакового уровня электролита в емкостях 8 и 9 необходимо часть электролита из катодной емкости 8 по байпасной линии через кран-регулятор 12 и теплообменник 13 направлять в катодное пространство 4. Водород и кислород из емкостей 8 и 9 поступают в сепараторы 10 и 11, где отделяются от капель и паров электролита и направляются потребителям.

В случае использования заявляемого электролизера в каскаде для обогащения воды тяжелым изотопом водорода водород и кислород из сепараторов 10 и 11 направляются в холодильники 16 и 17, где от них при охлаждении отделяется обогащенная тяжелым изотопом водорода вода, которая насосом 21 направляется к крану-регулятору, с помощью которого часть обогащенной воды, соответствующая заданному режиму работы данной ступени каскада, направляется по магистрали 23 к следующей ступени каскада, а излишки обогащенной воды возвращаются в анодную пространство. Водород и кислород из холодильников 16 и 17 направляются в дожигатель 18, где взаимодействуют с образованием воды, обедненной по тяжелому изотопу, пары образовавшейся воды охлаждаются в конденсаторе 19 и насосом 20 по магистрали 24 направляются на вход предыдущих ступеней каскада.

Таким образом, в предлагаемом техническом решении достигается заявленный технический результат по снижению удельного расхода электроэнергии на производство водорода, увеличению ресурса работы электролизера и возможности эффективного использования предлагаемого технического решения в установках разделения изотопов водорода за счет полного погружения катода и анода в электролит, взаимного перемешивания анодного и катодного электролита, что обеспечивает постоянный состав электролита, отделения обогащенной тяжелым изотопом водорода воды от выделяющихся водорода и кислорода при их охлаждении и отвода этой воды в следующий электролизер каскада обогащения, что исключает потери электролита из электролизера, а также возврат обедненной воды после окисления водорода в дожигателе на вход предыдущих ступеней каскада, что увеличивает эффективность извлечения тяжелого изотопа.

1. Электролизер, содержащий корпус с электролитом с размещенными в нем электролизной ячейкой с анодом, катодом и мембраной, разделяющей объем электролизной ячейки на анодное и катодное пространства, анодный контур циркуляции электролита, включающий емкость с электролитом и теплообменник, сепараторы водорода и кислорода, магистрали подвода воды и отвода кислорода и водорода, отличающийся тем, что электролизер содержит катодный контур циркуляции, совмещенный с анодным контуром циркуляции таким образом, что катодная емкость с электролитом соединена через анодный теплообменник с анодным пространством, а анодная емкость с электролитом соединена с катодным пространством через катодный теплообменник, и байпасную линию, соединяющую катодную емкость с электролитом через кран-регулятор и катодный теплообменник с катодным пространством.

2. Каскад электролизеров по п. 1, отличающийся тем, что в него включены водородный и кислородный холодильники, вход которых соединен соответственно с выходом водородного и кислородного сепараторов, выходы водорода и кислорода из холодильников соединены с входом дожигателя, совмещенного с конденсатором пара, а выходы конденсата из холодильников соединены через насос обогащенной воды со входом крана-регулятора, один выход которого соединен с магистралью подачи обогащенной воды в следующий электролизер, а второй выход соединен с входом анодного пространства, выход конденсатора пара соединен с магистралью подачи обедненной воды на предыдущий электролизер.



 

Похожие патенты:
Изобретение относится к электрохимическому способу получения порошка силицида вольфрама, включающий электролиз расплава при температуре 850-950°С, содержащего хлорид натрия, вольфрамат натрия и диоксид кремния.
Изобретение относится к электрохимическому синтезу борида молибдена, включающему электролиз расплава, содержащего хлорид калия, молибдат натрия и оксид бора, хлорид натрия.

Изобретение относится к электролитическому способу получения наноразмерных порошков силицидов лантана, включающему синтез силицидов редкоземельного элемента из расплавленных сред в атмосфере очищенного и осушенного аргона.
Изобретение относится к углеродистой композиции, пригодной для изготовления электрода суперконденсатора в контакте с водным ионным электролитом, причем композиция основана на угольном порошке, способном сохранять и высвобождать электроэнергию, и включает гидрофильную связующую систему.

Изобретение относится к способу отслеживания отказных ситуаций, связанных с потоком сырьевого газа и/или очистительным потоком в электролитических элементах, батареях или системах, причем указанный процесс отслеживания сочетают с предупредительными мерами, которые должны быть приняты в случае таких отказных ситуаций.

Изобретение относится к электролизеру для получения водорода и кислорода из воды, состоящему из корпуса с размещенными в нем катодом в виде полого цилиндра из пористого гидрофобизированного материала и анодом в виде трубы из металла, находящегося между ними сепаратора в виде газозапорной мембраны, с образованием катодной газовой полости между внешней стенкой катода и внутренней стенкой корпуса, анодной полости внутри анода, с нанесенными на поверхность анода и поверхность катода катализатором.

Изобретение относится к катоду для электролиза, содержащему покрытие из никеля толщиной 300-1000 нм, нанесенное методом магнетронного распыления на матрицу пористого оксида алюминия с размерами пор 40-120 нм и расстоянием между стенками пор 10-20 нм.

Изобретение относится к способу получения никотината цинка гидрата путем электролиза водно-органического раствора никотиновой кислоты с цинковыми электродами при постоянном токе, включающему отделение полученного осадка, промывку осадка и его сушку.

Изобретения относятся к области осветления и обесцвечивания природных вод и могут быть использованы в процессах водоподготовки для питьевых и технических целей. Осветление и обесцвечивание природных вод осуществляют при помощи водозаборно-очистного устройства.

Изобретение относится к способам очистки сырой нефти, содержащей меркаптаны и серосодержащие примеси, включающим контактирование сырой нефти с очищающим раствором, содержащим раствор гипохлорита, в течение 30 с – 2 мин, при которых меркаптановая сера окисляется и превращается по меньшей мере в одну оксокислоту серы или ее соль, образуя на выходе очищенную сырую нефть, содержащую менее 50 ч/млн меркаптановой серы и остаточные хлориды.

Изобретение относится к способу получения воды с пониженным содержанием дейтерия путем ее изотопного разделения на обедненную и обогащенную дейтерием фракции. Способ получения обедненной дейтерием воды включает электролиз дистиллята в электролизере с получением электролизных газов, преобразование электролизных газов в воду, ее минерализацию в процессе сбора обедненной дейтерием воды, при этом электролиз дистиллята проводят одновременно в двух электролизерах, катодные пространства которых посредством насоса и обратного клапана замкнуты в контур циркуляции электролита, причем исходная вода с природным содержанием дейтерия подается в анодные пространства обоих электролизеров, при этом водород, обедненный дейтерием, из катодного пространства первого электролизера поступает в анодное пространство второго, где ионизируется с образованием воды, обедненной дейтерием, а водород, обогащенный дейтерием, из катодного пространства второго электролизера поступает в анодное пространство первого, где он ионизируется с образованием воды, обогащенной дейтерием, которую разбавляют и сливают.

Изобретение относится к способу получения биологически активной питьевой воды с пониженным содержанием в ней дейтерия путем ее изотопного разделения на обедненную и обогащенную дейтерием фракции.

Изобретение относится к способу получения биологически активной питьевой воды с пониженным содержанием в ней дейтерия. .

Изобретение относится к способу получения биологически активной питьевой воды с пониженным содержанием в ней дейтерия. .

Изобретение относится к области электрохимии, в частности к электролизерам для разделения ионов. .

Изобретение относится к способу получения альфа-оксида алюминия высокой чистоты. Способ включает анодное растворение алюминия высокой чистоты в водном растворе нитрата аммония, рафинирование электролита путем удаления 50-100% первой партии гидроксида алюминия с предварительным отстаиванием в электролите в течение 12-24 ч, разделение последующих партий гидроксида алюминия и электролита, промывку последующих партий гидроксида алюминия дистиллированной водой и их термическую обработку, которая осуществляется посредством предварительной сушки в течение 12-24 ч при температуре 200-250°С и окончательного прокаливания в течение 15-18 ч при температуре не менее 1100°С, при этом при прокаливании каждые 3 ч производится перемешивание продукта. Изобретение позволяет получать альфа-оксид алюминия с содержанием основного компонента 99,995-99,998 мас.% и со средней дисперсностью 40-45 мкм. 4 з.п. ф-лы, 1 пр., 3 табл.

Изобретение относится к области химической технологии, в частности к способам электрохимического окисления железа для получения реагента-окислителя феррата (VI) FeO42-. В способе используют устройство для электрохимического синтеза ферратов щелочных металлов с по меньшей мере двумя электрохимическими реакторами, каждый из которых состоит из вертикально расположенного внутреннего анода - цилиндрического стержня на основе железа, внешнего цилиндрического титанового катода и размещенной между ними цилиндрической керамической ионопроницаемой диафрагмой, которые образуют замкнутые объемы анодной и катодной камер электрохимического реактора за счет наличия у него верхних и нижних втулок, имеющих в нижней и верхней частях входы и выходы. При этом нижние входы анодных камер всех электрохимических реакторов соединены с нижним анодным коллектором, в который насосом-дозатором подают раствор гидроксида щелочного металла. Верхние выходы анодных камер всех электрохимических реакторов соединены с верхним анодным коллектором, из которого продукты электрохимического разложения водного раствора гидроксида щелочных металлов проходят через сепаратор, отделяющий газообразную и жидкую фазы продуктов электрохимического разложения. При этом газообразную фазу в виде кислорода отводят в атмосферу, а жидкую фазу, содержащую феррат щелочного металла, отводят для дальнейшего использования. Технический результат заключается в сокращении энергопотребления на единицу продукции и обеспечении получения феррата щелочных металлов в одну стадию путем разложения гидроксидов щелочных металлов в электрохимическом реакторе. 2 ил.

Изобретение относится к способу получения водорода на основе химической реакции электролиза алюминиевого сплава и щелочного раствора воды в заполненном электролитом электролизере, в котором расположены анод и катод. Способ характеризуется тем, что в качестве катода используют пористый алюминий с содержанием окиси кальция 1,5%, помещают его в раствор с содержанием щелочи от 0,2% до 1% и ведут реакцию при температуре от 15°C до 70°C, с использованием воды с pН от 7 до 12. Использование предложенного способа позволяет увеличить производство водорода более чем в 1,5 раза по сравнению с известным способом. 5 пр., 5 табл.

Изобретение относится к электроду для устройства для разложения воды, содержащего: газопроницаемый материал; второй материал; разделительный слой, расположенный между газопроницаемым материалом и вторым материалом, где разделительный слой расположен рядом с внутренней стороной газопроницаемого материала, причем данный разделительный слой предоставляет газосборный слой, способен к перемещению газа внутри в электроде по меньшей мере к одной зоне выпуска газа, где перемещаемый газ является продуктом реакции разложения воды, и где газ мигрирует через газопроницаемый материал; и проводящий слой расположен рядом с внешней стороной газопроницаемого материала, на ней или частично внутри внешней стороны. Использование предлагаемого изобретения позволяет повысить энергетический КПД. 21 з.п. ф-лы, 6 пр., 19 ил.

Изобретение относится к электролитической ячейке для выработки неразделенных анодных и катодных продуктов, состоящая из литографически структурируемой подложки, имеющей поверхность, множество анодных и катодных микроэлектродов, сформированных на упомянутой поверхности, причем упомянутые анодные и катодные микроэлектроды взаимно вставлены один в другой с межэлектродным промежутком менее 100 микрометров и имеют среднюю шероховатость Ra поверхности менее 0,05 мкм. Также изобретение относится к способу изготовления ячейки, способу изготовления растворов смешанных окислителей переменного состава и устройству для дозирования стерилизующих, дезинфицирующих или моющих веществ. Предлагаемая ячейка обладает повышенной скоростью выработки продукта при его меньших потерях. 4 н. и 11 з.п. ф-лы, 2 ил., 3 пр.

Изобретение относится к электролизеру, содержащему корпус с электролитом с размещенными в нем электролизной ячейкой с анодом, катодом и мембраной, разделяющей объем электролизной ячейки на анодное и катодное пространства, анодный контур циркуляции электролита, включающий емкость с электролитом и теплообменник, сепараторы водорода и кислорода, магистрали подвода воды и отвода кислорода и водорода, отличающемуся тем, что электролизер содержит катодный контур циркуляции, совмещенный с анодным контуром циркуляции таким образом, что катодная емкость с электролитом соединена через анодный теплообменник с анодным пространством, а анодная емкость с электролитом соединена с катодным пространством через катодный теплообменник, и байпасную линию, соединяющую катодную емкость с электролитом через кран-регулятор и катодный теплообменник с катодным пространством. Также изобретение относится к каскаду электролизеров. Использование предлагаемого изобретения позволяет снизить удельный расход электроэнергии на производство водорода, увеличить ресурс работы электролизера и возможность эффективного использования предлагаемого технического решения в установках разделения изотопов водорода. 2 н.п. ф-лы, 3 ил.

Наверх