Устройство для калибровки дихрографов кругового дихроизма

Изобретение относится к оптическим устройствам, имитирующим вещество, обладающее круговым дихроизмом. Устройство для калибровки дихрографов кругового дихроизма, содержащее линейный поляризатор, представляющий собой изотропную прозрачную пластину диэлектрика с фиксированным углом наклона относительно направления распространения света и возможностью вращения относительно направления распространения света, и фазовую пластину, обеспечивающую разность хода между обыкновенным и необыкновенным лучами (2m+1)⋅λ/4. Техническим результатом изобретения является устройство, позволяющее имитировать вещество, обладающее круговым дихроизмом в широком диапазоне значений с линейной зависимостью величины сигнала кругового дихроизма в рабочей области значений. 4 ил.

 

Изобретение относится к оптическим устройствам, имитирующим вещество, обладающее круговым дихроизмом (КД), с линейной зависимостью величины выдаваемого КД в рабочей области значений, служащее для калибровки дихрографов кругового дихроизма.

Круговой дихроизм (циркулярный дихроизм) - один из эффектов оптической анизотропии, проявляющийся в различии коэффициентов поглощения света, поляризованного по правому и левому кругу. Спектры КД удобны для использования на практике, поскольку, как правило, содержат узкие, хорошо разрешимые полосы, индивидуальные для каждого вещества. В настоящее время метод измерения КД используется очень широко в различных областях науки, особенно химии, медицине, биофизике, так как является чувствительным методом исследования строения молекул. Важным аспектом измерения КД является точность калибровки величины сигнала, поскольку величина эффекта обычно не превосходит нескольких долей процента от значения коэффициента поглощения в неполяризованном свете. Установление зависимости между показаниями приборов и величинами эффектов, вызвавшими эти показания насущная необходимость экспериментаторов, измеряющих КД.

В настоящее время калибровка дихрографов кругового дихроизма, как правило, производится с применением оптически активного вещества - эталона, величина КД которого известна на определенной длине волны. Например, в заявке [РФ №2013123106, МПК G01N 21/00, опубл. 27.11.2014 г.] предлагается использовать полимерный оптически активный материал, представляющий собой гель, в котором распределены и иммобилизованы частицы двухцепочечных молекул нуклеиновых кислот, обладающие характерным для них аномальным круговым дихроизмом с заданной по величине характеристикой сигнала при облучении циркулярно-поляризованным излучением на дискретной длине волны в УФ-диапазоне спектра и сохраняющие эту характеристику при хранении в течение нескольких месяцев после его изготовления.

Использование эталонных веществ имеет ряд существенных недостатков. В первую очередь, это нестабильность заданной величины сигнала во времени и при воздействии различных факторов (температуры, давления, влажности и т.д.). Во-вторых, каждое эталонное вещество характеризуется ограниченным количеством пиков КД и не существует веществ с достаточным количеством пиков в широком спектральном интервале, что ведет к необходимости иметь в наличии набор эталонных веществ с характерными особенностями на разных длинах волн. Кроме того, необходимо, чтобы величина эффекта эталонного вещества была близка к величине эффекта измеряемого вещества, как правило, это диапазон величин 10-6-10-1. Принимая во внимание и нестабильность растворов химических веществ, становятся ясными сложности, с которыми сталкиваются исследователи и практические работники при калибровке приборов КД и поисках эталонных веществ.

В работе [Костюк Г.К. Устройство для калибровки дихрогрофа в широкой области спектра / Г.К. Костюк, Е.К. Галанов, М.В. Лейкин // Оптико-механическая промышленность. - 1976. - №5. - С. 28-31] описано устройство, задающее любое значение дихроизма в широком диапазоне длин волн и не требующее конкретного химического соединения. Устройство представляет собой комбинацию четвертьволновой пластинки и линейного поляризатора. Существенным недостатком упомянутого устройства является почти 100% линейная поляризация пучка на выходе из устройства (при задании малых величин КД свет становится эллиптически поляризованным с большим отношением осей), что вносит искажения в результаты измерений, поскольку в общей схеме спектрометров по измерению КД находятся элементы, чувствительные к линейной поляризации, что ограничивает возможности практического применения данного устройства.

Описанные выше сложности использования эталонных веществ делают необходимым создание новых типов оптических устройств, предназначенных для калибровки дихрографов КД и установления необходимого соответствия эффект - сигнал, в которых возможно задавать точно стабильную по времени необходимую величину КД в любой части спектра без использования реальных оптически активных веществ.

Наиболее близким по техническому решению к предлагаемому устройству является оптическое устройство для калибровки дихрографов кругового дихроизма по патенту [РФ №2590344, МПК G01N 21/19, G01M 11/02, опубл. 10.07.2016], имитирующее вещество, обладающее круговым дихроизмом, с возможностью регулирования величины задаваемого эффекта в широком диапазоне значений на выбранной длине волны. Данное устройство содержит линейный поляризатор и фазовую пластину, толщиной d=((2m+1)λ/4)/(no-nе) (nо, nе - показатели преломления обыкновенной и необыкновенной волны, m - порядок пластины, λ - длина волны), при этом изотропная прозрачная пластина диэлектрика имеет возможность поворота относительно оси, перпендикулярной направлению распространения света и составляющей угол 45° с главными направлениями фазовой пластины. Описываемое устройство позволяет имитировать вещество, обладающее КД в широком диапазоне значений величины без использования реальных оптически активных веществ, и с полным отсутствием линейной поляризации света на выходе из устройства. Величина получаемого сигнала КД на выходе из устройства описывается формулой

где α - угол падения световой волны, изменяемый вращением однородной пластины диэлектрика; n - показатель преломления. График зависимости рабочей области величин КД от угла наклона изотропной стеклянной пластины α из плавленого кварца, показатель преломления равен n=1.46, на длине волны λ=550 нм приведен на фиг. 1.

Недостатком прототипа является квадратичная зависимость получаемого сигнала КД от угла поворота изотропной пластины, что не всегда удобно с практической точки зрения (делает процесс калибровки затратным по времени и труду, требует построения градуировочных графиков и не линейных шкал с большим количеством точек). С целью устранения этого недостатка предлагается новое устройство.

Техническим результатом изобретения является создание устройства, позволяющего имитировать вещество, обладающее КД в широком диапазоне значений с линейной зависимостью величины сигнала КД в рабочей области значений.

Технический результат достигается тем, что в устройстве для калибровки дихрографов кругового дихроизма, содержащее линейный поляризатор, фазовую пластину, обеспечивающую разность хода между обыкновенным и необыкновенным лучами (2m+1)-λ/4), новым является то, что в качестве поляризатора используется изотропная прозрачная пластина диэлектрика с фиксированным углом наклона относительно направления распространения света и возможностью вращения относительно направления распространения света.

Отличия заявляемого устройства от прототипа заключаются в том, что в заявляемом изобретении используется сочетание фазовой пластины, обеспечивающей разность хода, равную ((2m+1)λ/4), и в качестве линейного поляризатора изотропной прозрачной пластины диэлектрика с фиксированным углом наклона относительно направления распространения света с возможностью вращения в этой наклонной плоскости.

Перечисленные выше признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».

При изучении других известных технических решений в данной области техники, признаки, отличающие заявляемое изобретение от прототипа, не выявлены и потому они обеспечивают заявляемому техническому решению соответствие критерию «изобретательский уровень».

На фиг. 1 приведена рабочая область углов наклона изотропной стеклянной пластины и величин КД прототипа. На фиг. 2 приведена схема устройства для задания кругового дихроизма, имеющего линейную зависимость величины КД от угла вращения изотропной пластины диэлектрика. На фиг. 3 представлен ход лучей при наклонном падении света из воздуха на изотропную прозрачную пластину диэлектрика. На фиг. 4 представлены изменения поляризации световой волны при прохождении четверть волновой пластиной линейно поляризованного света под произвольным углом и под углом 45° к главным осям пластины.

Устройство (фиг. 2) содержит наклонную изотропную прозрачную пластину диэлектрика (1) и фазовую пластину (2), вырезанную из одноосного кристалла параллельно его оптической оси, для которой выполняется условие (no-ne)d=(2m+1)λ/4, где m - любое целое число либо ноль, nо и nе - показатели преломления лучей, электрические колебания которых происходят вдоль оптической оси кристалла (обыкновенный луч) и перпендикулярно к оси (необыкновенный луч), d - толщина пластины. Оптические оси лежат в плоскости пластины. Прохождение фазовой пластины вносит разность фаз для двух линейных поляризаций. Фазовая пластина (2) расположена перпендикулярно к направлению распространения света, с нулевым азимутом. Изотропная прозрачная пластина диэлектрика расположена под фиксированным углом (угол α) относительно направления распространения света и имеет возможность вращения в этой наклонной плоскости (угол ϕ). Фиксированный угол наклона α изотропной пластины обеспечивает определенную частичную линейную поляризацию проходящего через нее луча. После прохождения светом изотропной прозрачной пластины частично линейно поляризованный свет попадает на фазовую пластину, при этом если угол поворота изотропной пластины ϕ=0°, то угол между плоскостью линейной поляризации света и главными направлениями фазовой пластины составляет 0° и 90°. Соответственно, линейно поляризованная компонента света пройдет через фазовую пластину без изменения и на выходе из фазовой пластины получится точно такой же частично линейно поляризованный свет. Если же угол ϕ будет отличен от нуля, то линейно поляризованная компонента света, попадающего на фазовую пластину, будет иметь проекцию на две оптические оси кристалла фазовой пластины (обыкновенный и необыкновенный луч), что обеспечит на выходе из нее дополнительную разность фаз линейных поляризаций и соответственно эллиптичность рассматриваемой компоненты. Таким образом, частичная линейная поляризация света, полученная прохождением света через изотропную пластину диэлектрика, будет преобразована в частичную круговую поляризацию на выходе из устройства. Полученный таким образом сигнал тождественен прохождению света через оптически активное вещество с КД.

Устройство работает следующим образом.

В естественном (неполяризованном) свете все направления колебаний электрического поля равновероятны, и его можно представить как сумму двух линейно поляризованных волн равной интенсивности, в которых колебания происходят, соответственно, параллельно (р-поляризация) и перпендикулярно плоскости падения (s-поляризация) света. Плоскость падения - это плоскость, содержащая пучок и нормаль к поверхности. При нормальном падении монохроматического света на пластину стекла или другого диэлектрика свет остается неполяризованным. При наклонном падении света на изотропную прозрачную пластину диэлектрика (фиг. 3) происходит изменение поляризации отраженного и преломленного лучей: в отраженном луче уменьшается интенсивность р-волны (преимущественные колебания перпендикулярны плоскости падения), а в проходящем s-волны (преимущественные колебания параллельны плоскости падения), что приводит к частичной линейной поляризации проходящей и отраженной волн.

Степень линейной поляризации ΔK проходящего луча зависит от угла падения света на изотропную пластину и ее показателя преломления, и определяется с помощью формул Френеля [Лансберг Г.С. Оптика / Г.С. Лансберг. - Москва: Из-во Наука, 1976. - 928 с.]

где rs - коэффициент отражения s-волны; rр - коэффициент отражения р-волны; α - угол падения световой волны, в данном случае - это угол наклона изотропной стеклянной пластины; n - показатель преломления; ΔK - степень поляризации проходящего луча.

При угле падения Брюстера, или так называемом угле полной поляризации: , коэффициент rр будет равен нулю и, соответственно, степень поляризации преломленного и отраженного лучей будет максимальна. Это условие выполняется при (α+β)=π/2.

Поскольку свет, проходя через наклонную изотропную прозрачную пластину, пересекает две грани, то степень линейной поляризации света, прошедшего через нее, следует рассчитывать по формуле

После прохождения света через наклонную изотропную прозрачную пластину частично линейно поляризованный свет попадает на фазовую пластину. Если на фазовую четверть волновую пластинку падает линейно поляризованный вдоль оси у свет (ϕ=0°), то на выходе из пластинки он также останется линейно поляризованным вдоль оси y. Аналогично для света линейно поляризованного вдоль оси x (при ϕ=90°). При угле ϕ≠0 фазовая пластина расщепляет поляризованный пучок света на две компоненты, электрические колебания которых происходят вдоль оптической оси кристалла (обыкновенный луч) и перпендикулярно к оси (необыкновенный луч), и создает разность хода между этими лучами, определяемую для четверть волновой пластины формулой (no-ne)d=(2m+1)λ/4, где m - любое целое число либо ноль, no и nе - показатели преломления обыкновенного и необыкновенного лучей.

При прохождении частично линейно поляризованного луча через такую фазовую пластину неполяризованная компонента луча не изменяется, а линейно поляризованная компонента преобразуется в эллиптическую. Причем, изменяя угол ϕ от нуля до ϕ=45°, имеется возможность задавать величину эллиптичности (или КД) от нуля (при ϕ=0°) до некоторого максимума (при ϕ=45°), который зависит от показателя преломления и угла наклона пластины диэлектрика (при α=αБ будет максимум). На фиг. 4 представлены изменения поляризации световой волны при прохождении четверть волновой пластиной линейно поляризованного света под произвольным углом и под углом 45° к главным осям пластины.

В результате получится сигнал, тождественный сигналу после прохождения света через оптически активное вещество с КД, при этом зависимость величины КД от угла вращения изотропной пластины диэлектрика в рабочей области значений будет иметь линейный характер. Изменение угла вращения изотропной пластины при ее фиксированном наклоне позволяет на выходе из устройства задавать величину КД в широком диапазоне значений на выбранной длине волны, а линейная зависимость величины КД значительно упрощает процесс калибровки.

После прохождения световой волны через предлагаемое устройство определяется значение сигнала, соответствующее заданной величине КД, и калибровка дихрографов КД осуществляется путем выявления соответствия «сигнал → величина эффекта». Линейная зависимость выдаваемого сигнала позволяет установленный таким образом коэффициент связи просто вводить как калибровочную постоянную.

Для подтверждения идентичности круговой поляризации света, создаваемой предлагаемым устройством, и круговой поляризацией, возникающей в реальной оптически активной среде, проведем описание поведения света с помощью матриц Мюллера [Шерклифф, У. Поляризованный свет / У. Шерклифф // - Москва: Изд-во Мир пер. с англ., 1965. - 264 с.].

Световому потоку любой поляризации в матричном представлении Мюллера можно сопоставить единственный столбец-вектор Стокса:

,

четыре параметра которого соответствуют усредненной по времени интенсивности. Первый параметр I называется интенсивностью. Параметры М, С и S называются, соответственно, параметрами преимущественной горизонтальной поляризации, преимущественной поляризации под углом 45° и преимущественной правоциркулярной поляризации. Отрицательная величина параметра соответствует преимущественной ортогональной форме поляризации.

Выражения, описывающие любое оптическое устройство (поляризатор, фазовую пластинку и т.д.), является матрицей Мюллера размерностью 4×4. Конкретные матрицы характеризуют не только само устройство, но и его ориентацию (азимут). Для получения вектора Стокса, характеризующего световой поток, прошедший совокупность устройств, необходимо перемножить соответствующие матрицы по обычным правилам матричной алгебры с соблюдением следующих условий: вектор, представляющий падающий свет, записывается справа, а матрицы, соответствующие различным устройствам, располагаются последовательно справа налево.

Запишем матрицы Мюллера, описывающие прохождение естественного света через вещество с КД и прохождение света через предлагаемое устройство, состоящее из наклонной изотропной прозрачной пластины диэлектрика с произвольным азимутом и фазовой четвертью волновой пластины с нулевым азимутом.

Случай 1. Естественный свет проходит через вещество с КД

где S=K++K-, Δ=K+-K-, , K+, K- - коэффициенты пропускания +, и - круговых волн.

I - Вектор Стокса падающего неполяризованного света единичной интенсивности

II - Вещество с круговым дихроизмом (понятие азимута не имеет смысла)

III - Результат прохождения света через вещество с КД

Случай 2. Естественный свет проходит через наклонную изотропную пластинку с произвольным азимутом вращения (матрицы VI, V, IV) и далее через фазовую четверть волновую пластину с нулевым азимутом

где а=K++K-, b=K+-K-, , K+, K- - коэффициенты пропускания +, и - круговых волн, n=cos2ϕ, m=sin2ϕ, ϕ - угол вращения однородной пластины диэлектрика.

IV - Матрица прямого поворота с произвольным азимутом

V - Наклонная изотропная пластина с азимутом 0° относительно горизонта (устройство с линейным дихроизмом)

VI - Матрица обратного поворота с произвольным азимутом

VII - Фазовая пластинка, создающая разность хода между обыкновенным и необыкновенным лучами в четверть длины волны (азимут = 0°)

VIII - Результат прохождения света через описываемое устройство.

Ниже приведено последовательное перемножение матриц, описывающих предлагаемое устройство.

Сравнив результаты, полученные после прохождения света через вещество с КД и после прохождения света через предлагаемое устройство, можно утверждать, что элементы, отвечающие за интенсивность и круговую поляризацию волны, в обоих случаях идентичны. Сопоставление элементов матрицы, отвечающих за круговую поляризацию, показывает что Δ=mb, а так как m=sin2ϕ, а b=K+-K-, то элемент Δ зависит от синуса угла вращения пластины диэлектрика.

А так как по определению круговой дихроизм - это , то и зависимость величины КД, выдаваемой предлагаемым устройством, будет описываться формулой синуса. Как известно, при малых углах sinα≈α. Соответственно, вблизи малых значений углов поворота, а это и есть рабочая область получаемых значений КД, получаем линейную зависимость значений КД от угла поворота изотропной пластины диэлектрика.

В качестве наклонной изотропной прозрачной пластины берем пластину из плавленого кварца, у которой для длины волны λ=550 нм показатель преломления равен n=1.46. При нормальном падении на пластину светового луча степень поляризации проходящего света равна нулю, а при увеличении угла наклона будет расти и при угле наклона, равном углу Брюстера (для плавленого кварца αБ=55.6°), степень линейной поляризации проходящего луча, рассчитанная по формуле (2), достигнет максимума и будет равна ≈7%, а после прохождения двух граней пластины (формула (5)) ≈13%. Зафиксируем угол наклона изотропной пластины диэлектрика на углу Брюстера α=55.6°.

Тогда после прохождения волной фазовой пластины, меняя угол вращения пластины (ϕ), имеем возможность задавать величину "псевдодихроизма" в пределах от 0 до 0.13.

Для длины волны λ=550 нм минимальная толщина фазовой пластины, выполненной из кристаллического кварца, будет равна 15.3 мкм (так как nо=1.545 nе=1.554 и (nо-ne)d=((2m+1)λ/4).

Определим рабочую область углов вращения ϕ, при которых сигнал на выходе будет иметь линейную зависимость, воспользовавшись формулой (6). Реальные рабочие значения КД большинства веществ находятся в диапазоне Δ≤10-3. Учитывая, что значение угла зафиксировано на углу Брюстера, значение будет b=0.13. Соответственно

0.13*sin2ϕ≤10-3

sin2ϕ≤0.0077

2ϕ≤arcsin0.0077

2ϕ≤0.007708

ϕ≤0.0038538 рад. (0.22°).

В таком диапазоне углов, значение синуса равно самому углу sinα≈α, (sin 0.0038538=0.00385581), что и означает линейную зависимость величины КД, удобную для проведения калибровки.

Устройство для калибровки дихрографов кругового дихроизма, содержащее линейный поляризатор, фазовую пластину, обеспечивающую разность хода между обыкновенным и необыкновенным лучами (2m+1)·λ/4, отличающееся тем, что в качестве поляризатора используется изотропная прозрачная пластина диэлектрика с фиксированным углом наклона относительно направления распространения света и возможностью вращения относительно направления распространения света.



 

Похожие патенты:

Группа изобретений относится к сортировке сперматозоидов в микрожидкостном чипе. Система сортировки спермы включает источник образца, субстрат, по меньшей мере один канал потока, образованный в субстрате, по меньшей мере один отклоняющий механизм, сообщающийся с каждым из по меньшей мере одного канала потока для выборочного отклонения спермы по меньшей мере в одном канале потока от первого выпускного канала, источник электромагнитного излучения для освещения спермы в области проверки, детектор, выровненный таким образом, чтобы измерять характеристики спермы в области проверки по меньшей мере одного канала потока, анализатор, сообщающийся с детектором для определения характеристик спермы, контроллер, сообщающийся с анализатором для избирательного приведения в действие отклоняющего механизма на основании измеренных характеристик спермы, и резервуар для сбора, сообщающийся со вторым выпускным каналом.

Предложенное изобретение относится к устройствам для определения концентрации соединений в твердой фазе. Устройство для определения концентрации манганитов редкоземельных элементов (МРЭ) состоит из источника света - ртутной лампы, блока питания источника света, фотоприемника излучения видимой области спектра, блока питания фотоприемника, микровольтметра для измерения тока фотоприемника.

Изобретение относится к области медицины, а именно производственной и клинической трансфузиологии, и раскрывает способ морфофункционального анализа тромбоцитов, пригодных для криоконсервирования.

Изобретение относится к визуальной оценке качества поверхностей плоских подложек для оптико-электронных компонентов и может быть использовано при техническом контроле состояния поверхности крупных партий деталей в электротехнической промышленности.

Изобретение относится к области геологии, а именно к средствам определения угла наклона и направления падения трещин в керновом материале, в частности к способу для определения элементов залегания трещин и границ пластов в керне.

Изобретение относится к области оптического приборостроения и касается фотометра с шаровым осветителем. Фотометр включает в себя осветитель, систему линз, кюветное отделение, фотоприемное устройство и вычислительную систему.

Изобретение относится к области спектроскопических исследований и касается конфокального спектроанализатора изображений. Спектроанализатор включает в себя осветительное устройство в виде нескольких лазеров, сопряженных с оптическим волокном, систему суммирования излучений оптоволоконных выходов лазеров в одно волокно, систему сканирования, линзовую систему формирования линии освещения объекта, фильтр выделения спектрального интервала, объектив, конфокальную щелевую диафрагму, коллимирующую линзу, фильтр подавления возбуждающего излучения, дифракционную решетку, видеокамеру, систему управления и компьютер, осуществляющий синтез изображений объекта в выбранных спектральных интервалах.

Изобретение относится к подложке для исследований усиленного поверхностью комбинационного рассеяния. Подложка содержит полупроводниковую поверхность с формированными на ней нитевидными кристаллами, покрытыми пленкой металла, выбранного из группы, состоящей из серебра, золота, платины, меди и/или их сплавов.

Изобретение относится к области микробиологии, пищевой и промышленной биотехнологии, а именно к способам и устройствам оптического определения и идентификации в жидкостях микрообъектов, содержащих ДНК.

Группа изобретений относится к области медицины и может быть использована для лабораторной диагностики. Датчик для обнаружения целевой мишени содержит: контейнер, расположенный в контейнере и конфигурированный для связывания с целевой мишенью зонд, циркуляционное устройство для циркуляции веществ в контейнере, источник света, приемник света, блок выбора света и детектор, конфигурированный для генерирования электрического сигнала, величина которого отражает количество света, которое принимается приемником света.

Изобретение относится к области оптического приборостроения. .

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для неинвазивного оптического мониторинга патологии биологических тканей, связанных с развитием сахарного диабета. Биосенсор содержит: источник и приемник излучения; аппликатор, изготовленный в виде сосуда с биосовместимым иммерсионным агентом; излучающий световод, подключенный одним концом к источнику излучения, и принимающий световод, подключенный одним концом к приемнику излучения. Дистальные концы световодов расположены внутри аппликатора. Способ обеспечивает увеличение глубины зондирования тканей при снижении вредного влияния излучения на ткани организма за счет оптического просветления биологических тканей, а расположение световодов внутри аппликатора с биосовместимым иммерсионным агентом позволяет согласовать показатели преломления торца световода с иммерсионной жидкостью и устраняет оптическое отражение на границе биоткань-торец световода. 14 з.п. ф-лы, 1 табл., 3 ил.
Изобретение относится к области медицины, а именно к лучевой диагностике, и может быть использовано для дифференциальной диагностики образований молочной железы. Осуществляют пульсомоторографию с оптометрией объемных образований молочной железы с оценкой показателей кровотока. Определяют амплитуду пульсовых осцилляций и оптическую плотность. При значении амплитуды пульсовых осцилляций от 3,6 до 8,0 мм и оптической плотности меньше 0,05 судят о кисте. При значении амплитуды пульсовых осцилляций больше 17,33 мм и оптической плотности больше 0,5 – о фиброаденоме. При значении оптической плотности от 0,18 до 0,45 судят о злокачественном новообразовании. Способ обеспечивает повышение точности дифференциальной диагностики объемных образований молочной железы за счет объективизации показателей оптической плотности и пульсовых осцилляций. 3 пр.
Наверх