Способ получения катализатора

Изобретение относится к сорбционной технике, в частности к получению сорбентов-катализаторов путем пропитки активного угля (АУ) растворами каталитических добавок для использования их в индивидуальных и коллективных средствах защиты органов дыхания фильтрующего типа с целью удаления токсичных химикатов (ТХ) из воздуха, а также защиты окружающей среды от промышленных выбросов. Предложенный способ включает приготовление пропиточного раствора каталитических добавок, содержащего медь, цинк, молибден, серебро и ТЭДА, пропитку зерен активированного угля раствором, их вылеживание и термообработку, при этом в качестве активированного угля используют активированный уголь на основе косточек плодов персика и абрикоса с объемом микропор 0,61-0,75 см3/г и объемом мезопор 0,20-0,30 см3/г, вылеживание осуществляют в течение 2,1-2,5 ч с последующей сушкой продукта при температуре 60-70°С. Технический результат заключается в повышении времени защитного действия (ВЗД) по плохосорбирующимся ТХ арсину (H3As) и фосфину (РН3). 3 пр.

 

Изобретение относится к сорбционной технике, в частности к получению сорбентов-катализаторов путем пропитки активного угля (АУ) растворами каталитических добавок для использования их в индивидуальных и коллективных средствах защиты органов дыхания фильтрующего типа с целью удаления токсичных химикатов (ТХ) из воздуха, а также защиты окружающей среды от промышленных выбросов.

Известен способ получения катализатора, включающий нанесение на активный уголь с долей микропор 0,6-0,7 от общего суммарного объема пор методом пропитки каталитическими добавками с концентрацией меди 5-20 мас.%, молибдена 1-10 мас.%, серебра до 0,5 мас.%, в аммиачном растворе термообработку при 170-225°С в атмосфере воздуха или инертного газа, дополнительную пропитку водным раствором триэтилендиамина (ТЭДА) в количестве 1,0-7,5 мас.% и окончательную сушку (низкотемпературную термообработку) при 65-130°С (см. пат. США №4801311, кл. В01D 55/04, опубл. 31.01.89).

Недостатками известного способа являются высокие нормы расхода меди и молибдена и низкая стабильность такого катализатора при хранении.

Наиболее близким к предлагаемому изобретению по технической сущности и количеству совпадающих признаков является способ получения катализатора, включающий приготовление пропиточного раствора каталитических добавок, содержащего медь, молибден, серебро и ТЭДА, пропитку зерен АУ раствором и их термообработку, отличающейся тем, что пропиточный раствор дополнительно содержит цинк, АУ берут с долей микропор 0,40-0,55 от общего суммарного объема пор, а пропитанные зерна вылеживают в течение 1,0-2,0 ч, после чего термообрабатывают в одну стадию при температуре в слое 120-135°С, при этом пропиточный раствор готовят со следующей концентрацией каталитических добавок, мас.%: меди 4,6-7,6; молибдена 1,5-3,1; цинка 2,6-4,2; серебра 0,10-0,15; ТЭДА 2,5-5,0 (см. пат. РФ №2228902. Кл. С01В 31/08, В01J 20/20, 21/18, опубл. 20.05.04).

Недостатком прототипа является невысокое время защитного действия (ВЗД) катализатора по плохосорбирующимся ТХ арсину (H3As) и фосфину (РН3).

Техническим результатом (целью изобретения) является повышение ВЗД по плохосорбирующимся ТХ арсину (H3As) и фосфину (РН3). Данные ТХ являются тестовыми веществами в противогазовой технике.

Поставленная цель достигается предложенным способом, включающим приготовление пропиточного раствора каталитических добавок, содержащего медь, цинк, молибден, серебро и ТЭДА, пропитку зерен АУ раствором, их вылеживание и термообработку, отличающийся тем, что в качестве АУ используют АУ на основе косточек плодов персика и абрикоса с объемом микропор 0,61-0,75 см3/г и объемом мезопор 0,20-0,30 см3/г, вылеживание осуществляют в течение 2,1-2,5 часа с последующей сушкой продукта при температуре 60-70°С.

Отличие предлагаемого способа от прототипа состоит в том, в качестве активного угля используют активный уголь на основе косточек плодов персика и абрикоса с объемом микропор 0,61-0,75 см3/г и объемом мезопор 0,20-0,30 см3/г, вылеживание осуществляют в течение 2,1-2,5 часа с последующей сушкой продукта при температуре 60-70°С.

Авторам из научно-технической и патентной литературы неизвестен способ получения катализатора, в котором в качестве активного угля используют активный уголь на основе косточек плодов персика и абрикоса с объемом микропор 0,61-0,75 см3/г и объемом мезопор 0,20-0,30 см3/г, вылеживание осуществляют в течение 2,1-2,5 часа, с последующей сушкой продукта при температуре 60-70°С.

Сущность предлагаемого способа состоит в следующем.

Поглощение плохосорбирующихся ТХ из воздуха катализаторами на основе АУ протекает по одновременному механизму каталитического разложения ТХ и физической адсорбции, при этом часть ТХ сорбируется в микропорах, а другая часть химически связывается каталитическим комплексом. Развитие в основе катализатора достаточного объема мезопор позволяет осадить в них основной объем каталитических добавок (сформировать на их поверхности каталитические комплексы), избегая блокировки основного объема сорбирующих микропор. Проведенный анализ исходного сырья для получения АУ показал, что пористая структура такого типа может быть сформирована на основе косточек абрикоса и персика, относящихся к уплотненному растительному сырью. Однако конкретные значения объемов микропор и мезопор могут быть установлены только экспериментально. Операции вылеживание, предварительная сушка и термообработка пропитанной основы позволяют обеспечивать равномерное распределение добавок в пористой структуре АУ, что, безусловно, сказывается на стабильности катализатора и повышении ВЗД. Окончательные режимы получения предлагаемого катализатора были найдены опытным путем.

Способ осуществляется следующим образом.

Берут АУ на основе косточек абрикоса и персика, имеющих одинаковый тип уплотнения растительной основы с объемом микропор 0,61-0,75 см3/г и объемом мезопор 0,20-0,30 см3/г при общем развитии суммарного объема пор 1,1 см3/г. В реакторе готовят пропиточный раствор с концентрацией каталитических добавок, мас.%: меди 6,0-7,0; молибдена 2,5-3,0; цинка 2,5-3,0; серебра не менее 0,10; ТЭДА не менее 1,3. В пропиточный аппарат загружают АУ, заливают его приготовленным раствором и включают вращение барабана. Время пропитывания 15 минут. После пропитывания влажный продукт выгружают на противни и вылеживают на воздухе в течение 2,1-2,5 часа. После вылеживания осуществляют сушку при температуре 60-70°С в течение 10-20 мин. Затем проводят термическую обработку продукта в атмосфере воздуха (печи КС, вращающейся печи или аппарате другого типа) при температуре в слое 120-135°С в течение 1,5-2,0 часа.

Готовый катализатор выгружают из печи и направляют на испытания. Сорбционную активность катализатора по арсину и фосфину определяют на приборе ДП-2 BP 4910500 при следующих условиях:

Концентрация паров фосфина/арсина - 5 мг/л

Высота слоя катализатора - 2 см

Удельный объемный расход паровоздушной смеси 0,5 л/мин.⋅см2

Относительная влажность воздуха 90%

Полученный по предложенному способу катализатор имел ВЗД по арсину 28-34 мин, а по фосфину 25-28 мин.

Следующие примеры поясняют сущность изобретения.

Пример 1

В реактор емкостью 10 л заливают 1,2 л дистиллированной воды и 1,1 л аммиачной воды. Раствор подогревают до температуры 40°С, затем в емкость вводят окись цинка в количестве 210 г (в пересчете на концентрацию цинка в пропиточном растворе 2,5 мас.%), тщательно перемешивают и добавляют 660 г углекислого аммония. Раствор снова перемешивают и вводят 580 г углекислой основной меди (в пересчете на медь 6 мас.%). После полного растворения соли меди в реактор загружают молибденовокислый аммоний в количестве 210 г (в пересчете на молибден 2,5 мас.%), затем добавляют азотнокислое серебро в количестве 10 г (в пересчете на серебро 0,10 мас.%) и ТЭДА в количестве 150 г (1,3 мас.%)

Общий объем раствора 5,2 л.

В пропиточный аппарат загружают 5 кг АУ марки МеКС ТУ 2568-028-04838763-97 с размером зерен 0,5-1,5 мм, объемом микропор 0,61 см3/г и объемом мезопор 0,26 см3/г. Общий суммарный объем пор составляет 1,1 см3/г.

Заливают АУ приготовленным пропиточным раствором и включают вращение барабана. Время пропитывания 15 минут. После пропитывания зерна вылеживают в течение 2,1-2,5 часа с последующей сушкой продукта при температуре 60-70°С в течение 15 минут.

Термическую обработку производят в печи КС в атмосфере воздуха, подаваемого вентилятором и подогреваемого в электрокалорифере, в одну стадию при температуре в слое 120°С в течение 1,5 часа.

Продукт выгружают в специальную металлическую емкость и направляют на испытания.

Полученный катализатор имел ВЗД по арсину 28 мин, по фосфину 25 мин.

Пример 2

Осуществление процесса, как в примере 1, за исключением того, что используют АУ на основе косточек абрикоса с объемом микропор 0,75 см3/г и объемом мезопор 0,30 см3/г. После пропитки вылеживание продукта осуществляли в течение 2,5 ч, а сушку проводили при температуре 70°С.

Полученный катализатор имел ВЗД по арсину 30 мин, по фосфину 27 мин.

Пример 3

Осуществление процесса, как в примере 1, за исключением того, что используют АУ на основе косточек персика с объемом микропор 0,70 см3/г и объемом мезопор 0,5 см3/г, а сушку вели при температуре 65°С.

Полученный катализатор имел ВЗД по арсину 34 мин, по фосфину 28 мин.

Катализатор, полученный по способу, изложенному в прототипе (см. пат. РФ №2228902), имел ВЗД по арсину 22 мин, а по фосфину 20 мин.

Как показали проведенные исследования, если объем микропор АУ составляет меньше 0,61 см3/г снижается доля сорбированных ТХ, а при развитии объема микропор до 0,75 см3/г падает доля мезопор в суммарном объеме пор, что ухудшает каталитическое связывание ТХ. Относительно объема мезопор было показано, что при их развитии менее 0,20 см3/г уменьшается поверхность для формирования каталитических комплексов и снижается объем каталитически связанного ТХ, а при развитии их выше 0,30 см3/г начинает снижаться доля микропор, что в обоих случаях приводит к снижению ВЗД по исследуемым ТХ.

Исследования показали, что при снижении времени вылеживания менее 2,1 ч не достигается равномерность распределения добавок в объеме пор угля, что снижает ВЗД, а при времени вылеживания выше 2,5 ч неоправданно увеличивается продолжительность технологического процесса.

Исследования предварительной сушки продукта показали, что при температуре ниже 60°С не достигается равномерность распределения каталитических добавок, что приводит к снижению ВЗД, а при температуре выше 70°С возрастают энергозатраты.

Из вышеизложенного следует, что каждый из признаков заявленной совокупности в большей или меньшей степени влияет на достижение поставленной цели, а именно повышение ВЗД катализатора по арсину и фосфину в малых слоях, а вся совокупность является достаточной для характеристики заявленного технического решения.

Способ получения катализатора, включающий приготовление пропиточного раствора каталитических добавок, содержащего медь, цинк, молибден, серебро и триэтилендиамин, пропитку зерен активного угля раствором, их вылеживание и термообработку, отличающийся тем, что в качестве активного угля используют активный уголь на основе косточек плодов персика и абрикоса с объемом микропор 0,61-0,75 см/г и объемом мезопор 0,20-0,30 см3/г, вылеживание осуществляют в течение 2,1-2,5 ч, с последующей сушкой продукта при температуре 60-70°C.



 

Похожие патенты:

Изобретение относится к нанотехнологии алмазных частиц, необходимых для финишной шлифовки и полировки различных изделий и для создания биометок. Способ получения кристаллических алмазных частиц включает добавление к порошку наноалмазов, полученных детонационным синтезом, циклоалкана (циклического насыщенного углеводорода) или многоосновного спирта в количестве 5-85 мас.

Изобретение относится к области материаловедения и может быть использовано при изготовлении конструкционных, электротехнических, электронных материалов, а также восстановителей металлов.

Изобретение относится к способу получения продукта метанола, продукта H2 и продукта CO из синтез-газа, содержащего H2 и CO, в частности из отходящего газа производства ацетилена.

Изобретение относится к химической промышленности и нанотехнологии. Кристаллический фуллерен С60 термообрабатывают при 160-170°C в потоке инертного газа для перевода оксидной примеси С60O в диоксидную примесь C120O.

Изобретение относится к нанотехнологии и может быть использовано при получении нанокомпозитов. В реактор подают подложку, на которую нанесено соединение никеля, и/или кобальта, и/или железа, полученное смешиванием и реакцией формиатов указанных металлов с азотсодержащим соединением, таким как монодентантный лиганд из ряда, включающего аммиак, и/или метиламин, и/или моноэтаноламин в количестве 18-42 г⋅экв на 1 г⋅экв формиата металла или бидентантный лиганд из ряда, включающего гидразин, и/или этилендиамин, и/или диэтаноламин в количестве 9-21 г⋅экв на 1 г⋅экв формиата металла.

Изобретение относится к установкам для получения синтез-газа из углеводородного сырья и может быть использовано в различных отраслях промышленности. Установка получения синтез-газа регулируемого состава включает каталитический конвертор конвекционного типа с горелкой, оснащена линиями подачи очищенного от серы углеводородного сырья и топлива, линиями вывода синтез-газа и дымового газа, блоком водоподготовки, соединенным линией подачи деионизата с линией подачи сырья.

Изобретение относится к установкам для получения водорода паровой конверсией углеводородов и может быть использовано в промышленности. Установка включает блок сероочистки, конвертор углеводородного сырья, оборудованный горелкой с линией подачи отходящего газа из блока выделения водорода, соединенный линией подачи синтез-газа с конвертором окиси углерода, оснащенным линиями подачи подготовленной воды и вывода водородсодержащего газа.

Изобретение относится к области физической химии, вакуумной технике, управляемого термоядерного синтеза и предназначено для поддержания требуемого вакуума в вакуумном объеме термоядерных установок и удаления из них остатков топлива: изотопов водорода дейтерия и трития, а также для откачки вакуумных систем, в которых изотопы водорода служат рабочим газом.

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных металлов, содержащем 0,1 - 20 мас.% углеродсодержащей добавки из ряда, включающего карбиды металлов или неметаллов либо твердые органические вещества, такие как углеводороды, углеводы, карбоновые кислоты, в течение 1-5 ч при температуре 700-750°C.

Изобретение относится к группе изобретений, включающей катализатор и способ получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов.

Изобретение относится к способу получения модифицированной подложки катализатора, причем способ предусматривает получение титансодержащего материала подложки катализатора посредством (i) контакта материала подложки катализатора с органическим соединением титана, при этом материал подложки катализатора выбирают из группы, состоящей из (а) предшественника подложки катализатора, содержащего соединение алюминия, который превращается в подложку катализатора в форме одного или нескольких оксидов алюминия при прокаливании, и (b) подложки катализатора, представляющей оксид алюминия в форме одного или нескольких оксидов алюминия, и при этом органическое соединение титана представляет собой соединение титана, в котором титан связан с по меньшей мере одним атомом кислорода по меньшей мере одной органической группы посредством связи, или (ii) совместного гидролиза гидролизуемого органического соединения титана и Al(OR'')3, причем титансодержащий материал подложки катализатора после этого содержит Al, и при этом гидролизуемое органическое соединение титана представляет собой соединение титана, в котором титан связан с по меньшей мере одним атомом кислорода по меньшей мере одной органической группы посредством связи, причем все R'' являются одинаковыми или различными и каждый представляет собой органическую группу.

Изобретение касается способа получения катализатора, исходя из предшественника катализатора, содержащего носитель на основе оксида алюминия, и/или диоксида кремния-оксида алюминия, и/или цеолита и содержащего по меньшей мере один элемент VIB группы и, возможно, по меньшей мере один элемент VIII группы.

Изобретение относится к способу гидрокрекинга углеводородного сырья с получением низкосернистых средних дистиллятов. Изобретение касается способа гидрокрекинга, в котором осуществляют превращение высококипящего углеводородного сырья при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород сырье 800-2000 нм3/м3 в присутствии катализатора, включающего никель и вольфрам в форме биметаллических комплексных соединений Ni(NH4)x[HyW2O5(C6H5O7)2], где: С6Н5O7 - частично депротонированная форма лимонной кислоты; х=0, 1 или 2; y=2-х; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Аl2О3.

Изобретение относится к способу получения нанодисперсной фазы со структурой χ-Al2O3. Изобретение может быть использовано в производстве адсорбентов, носителей и катализаторов на основе оксида алюминия, а также в производстве керамики.

Изобретение относится к области каталитического синтеза и наноматериалов. Описан кобальтовый нанокатализатор синтеза Фишера-Тропша, локализованный в пористом материале.
Изобретение относится к новым способам синтеза катализаторов, которые могут использоваться, в частности, для глубокого окисления оксида углерода, органических и галогенорганических соединений, окисления сероводорода и диоксида серы, восстановления оксидов азота и для многих других каталитических реакций.

Изобретение относится к способам получения носителей катализаторов различной геометрической формы на основе оксида алюминия со структурой корунда и может быть использовано в производстве катализаторов.

Изобретение относится к катализатору гидроконверсии, содержащему цеолит, к способу его получения и к способу гидроконверсии углеводородных смесей, при котором применяют этот катализатор.

Изобретение относится к катализатору гидрооблагораживания вакуумного газойля и способу его приготовления. Катализатор содержит, мас.%: оксид кобальта 5,0-9,0, оксид вольфрама 7,0-14,0, оксид молибдена 7,0-14,0, оксид алюминия в виде смеси, состоящей из 30-50 мас.% оксида алюминия в виде бемита и 50-70 мас.% оксида алюминия, полученного предварительной обработкой гидроксида алюминия 4-7%-ным раствором азотной кислоты при температуре раствора 5-10°C и просушенного распылением в токе горячего воздуха при температуре 150-210°C - остальное.

Изобретение относится к каталитической химии, в частности к приготовлению катализаторов гидроочистки нефтяного сырья. Катализатор включает носитель из композиции оксидов алюминия и молибдена и содержит мас.

Изобретение относится к катализатору очистки обогащенных водородом газовых смесей от оксида углерода путем селективного метанирования оксида углерода, при этом катализатор содержит кобальтцериевую оксидную систему, содержащую в своем составе хлор.

Изобретение относится к сорбционной технике, в частности к получению сорбентов-катализаторов путем пропитки активного угля растворами каталитических добавок для использования их в индивидуальных и коллективных средствах защиты органов дыхания фильтрующего типа с целью удаления токсичных химикатов из воздуха, а также защиты окружающей среды от промышленных выбросов. Предложенный способ включает приготовление пропиточного раствора каталитических добавок, содержащего медь, цинк, молибден, серебро и ТЭДА, пропитку зерен активированного угля раствором, их вылеживание и термообработку, при этом в качестве активированного угля используют активированный уголь на основе косточек плодов персика и абрикоса с объемом микропор 0,61-0,75 см3г и объемом мезопор 0,20-0,30 см3г, вылеживание осуществляют в течение 2,1-2,5 ч с последующей сушкой продукта при температуре 60-70°С. Технический результат заключается в повышении времени защитного действия по плохосорбирующимся ТХ арсину и фосфину. 3 пр.

Наверх