Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ измерения уровня вещества в емкости, при котором зондируют его поверхность частотно-модулированными электромагнитными волнами в фиксированном диапазоне частот, принимают отраженные волны, при этом при частотной модуляции разбивают фиксированный диапазон частот не менее, чем на два поддиапазона, а частотную модуляцию осуществляют во всех поддиапазонах одновременно, и определяют число возбуждаемых типов электромагнитных колебаний, отличающийся тем, что зондирование поверхности вещества электромагнитными волнами осуществляют по нормали к ней, в каждом из поддиапазонов образуют из зондирующих и отраженных электромагнитных волн после их многократного последовательного зондирования и отражения от поверхности вещества стоячие электромагнитные волны и по числу соответствующих им при девиации частоты типов возбуждаемых электромагнитных колебаний в образуемом резонаторе судят об уровне вещества. 3 ил.

 

Изобретение относится к измерительной технике и может быть использовано для измерения уровня различных веществ, в частности уровня жидкого металла в технологических емкостях металлургического производства.

Известен бесконтактный способ измерения уровня вещества, содержащегося в какой-либо емкости, в котором зондируют поверхность вещества частотно-модулированными волнами в фиксированном диапазоне частот и определяют частотный сдвиг, по которому судят об уровне вещества (Викторов В.А. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 150-154). Такой способ позволяет определить уровень вещества в какой-либо емкости. Однако при изменении уровня контролируемого вещества за время измерения этот способ неприменим, так как имеет место большая погрешность измерения.

Известно также техническое решение (SU 1659730 A1, 30.06.1991), которое содержит описание способа, по технической сущности наиболее близкого к предлагаемому устройству и принятого в качестве прототипа. Этот способ-прототип включает зондирование вещества частотно-модулированными волнами в фиксированном диапазоне частот, прием отраженных волн после их многократного последовательного зондирования и отражения от вещества, образование стоячей волны из отраженных и зондирующих волн и определение числа возбуждаемых собственных типов колебаний, по которому судят об уровне вещества. Недостатком этого способа-прототипа является невысокое быстродействие и сложность его реализации. Ограниченное быстродействие зависит от периода девиации частоты генератора (порядка 100 мс), что в реальных условиях, характеризуемых динамикой вещества в емкости, не является приемлемым и приводит к появлению значительной погрешности измерения уровня.

Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения.

Технический результат в способе измерения уровня вещества в емкости, включающем его зондирование частотно-модулированными волнами в фиксированном диапазоне частот, прием отраженных волн после их многократного последовательного зондирования и отражения от вещества, образование стоячей волны из отраженных и зондирующих волн и определение числа возбуждаемых собственных типов колебаний, по которому судят об уровне, достигается тем, что при частотной модуляции разбивают фиксированный диапазон частот не менее, чем на два поддиапазона, а частотную модуляцию осуществляют во всех поддиапазонах одновременно.

Предлагаемый способ поясняется чертежами на фиг. 1, фиг. 2 и фиг. 3.

На фиг. 1 приведены: 1 - график временной зависимости частоты генератора при ее девиации в пределах для способа-прототипа.

На фиг. 2 (а, б, в) - графики временной зависимости частоты в поддиапазонах частот для предлагаемого способа.

На фиг. 3 показан вариант схемы устройства для реализации способа.

На фигурах показаны генераторы частотно-модулированных колебаний 11, 12, …, 1k, элемент возбуждения колебаний 2, измерительный волновод 3, сумматор мощности 4, трехплечие циркуляторы 5а, 5б, …, 5k, приемо-передающие антенны 6а, 6б, …, 6k, вещество 7, элемент съема колебаний 8, детектор 9, регистратор 10.

Способ осуществляется следующим образом.

Данный способ основан, как и способ-прототип, на интерференции зондирующих и многократно провзаимодействовавших с контролируемым веществом электромагнитных волн и обеспечении выполнения условия резонанса в образуемом при этом резонаторе за счет девиации частоты зондирующих волн в фиксированных пределах за время регистрации числа N таких импульсов (фиг. 1 соответствует способу прототипу, t - время). При девиации частоты последовательно в рассматриваемом резонаторе колебания различных типов, число N которых регистрируют. Это число служит дискретной мерой уровня вещества в емкости. Отраженные волны не сразу интерферируют с зондирующими волнами, а только после того, как их вновь, по меньшей мере, один раз используют в качестве зондирующих волн. Операцию использования отраженных волн в качестве зондирующих волн повторяют такое число раз, которое требуется для достижения заданной точности дискретного отсчета измеряемого уровня вещества в емкости.

Если частота зондирующих волн изменяется в пределах от до то число Nk возбуждаемых типов колебаний, являющееся информативным параметром, есть (SU 1659730 A1, 30.06.1991)

где z - расстояние между поверхностью контролируемого вещества и точками, в которых происходит изменение направления отраженных волн (то есть их использование в качестве зондирующих волн), - общая длина тракта распространения волн вне области зондирования вещества, c - скорость света, k=1, 2, … - число зондирований, то есть число раз, которое направляют зондирующие волны в сторону вещества в процессе измерения.

При этом точность Δzk дискретного отсчета уровня, соответствующая изменению ΔN счетного числа возбуждаемых колебаний в рассматриваемом резонаторе, то есть ΔN=1, есть, как это следует из (2),

При k=1 отсюда следует, что

Пусть зондирование осуществляется электромагнитными волнами СВЧ-диапазона частот при девиации их частоты в пределах 9÷11 ГГц. Тогда Δz1=7,5 см при однократном зондировании, Δz2=3,75 см при двукратном зондировании, Δzk=7,5/k см при k-кратном, k=2, 3, …, зондировании контролируемого вещества. Задавая требуемую точность измерения уровня, можно определить необходимое число k зондирований, то есть необходимое число чувствительных элементов.

Как видно из соотношения (2), точность дискретного отсчета уровня вещества может быть увеличена не только за счет числа зондирований, то есть числа чувствительных элементов, что нежелательно, но и за счет увеличения, также нежелательного увеличения диапазона девиации частоты.

В предлагаемом способе исходный диапазон девиации частоты поделен на подддиапазоны Для возбуждения электромагнитных колебаний в этих поддиапазонах существуют на практике малогабаритные, компактные и недорогие генераторы частотно-модулированных колебаний.

Если в способе-прототипе частота колебаний изменяется со временем монотонно (фиг. 1), то при этом по мере девиации частоты последовательно возбуждаются электромагнитные колебания разных типов. Число N колебаний (резонансных импульсов) различных типов, возбуждаемых в диапазоне частот несет информацию об уровне вещества в емкости.

Осуществляемое в предлагаемом способе возбуждение в резонаторе электромагнитных колебаний в поддиапазонах имеет место одновременно. Этим достигается существенное повышение быстродействия (в два и более раз). В отличие от способа-прототипа регистрация детектируемых колебаний (резонансных импульсов) происходит не монотонно по мере возрастания частоты, а в соответствии с графиками временной зависимости частоты в поддиапазонах (фиг. 2а, фиг. 2б, фиг. 2в соответствуют предлагаемому способу, t - время). При этом частотную модуляцию в поддиапазонах можно осуществлять как в одном направлении - увеличении (фиг. 2,а) или уменьшении частоты, так и в различных направлениях (фиг. 2б и фиг. 2в). Последовательность возбуждаемых колебаний (резонансных импульсов) различных типов определяется на стадии синтеза измерительного устройства, реализующего данный способ, в том числе и при проведении предварительных экспериментов. Регистрация числа N детектируемых колебаний (резонансных импульсов) осуществляется за время Tm, меньшее, чем время регистрации этого же числа N таких импульсов в способе-прототипе (см. фиг. 1). При этом возможна регистрация сначала резонансного импульса на более высокой частоте, затем на более низкой и т.д., то есть закономерность последовательности регистрации типов колебаний совсем иная, чем в способе-прототипе, но число регистрируемых типов колебаний остается тем же.

На фиг. 3 приведен вариант схемы устройства. В этом устройстве электромагнитные колебания в поддиапазонах частот от генераторов частотно-модулированных колебаний 11, 12, …, 1k поступают одновременно через элемент возбуждения колебаний 2 к измерительному волноводу 3, закороченному на одном (верхнем) конце, с помощью только одной линии связи. Для этого в схему устройства вводится сумматор мощности 4, ко входам которого подсоединены данные генераторы, а выход которого подсоединен к измерительному волноводу 3. Возбуждаемые в измерительном волноводе 3 волны поступают через трехплечий циркулятор 5а на чувствительный элемент в виде приемопередающей антенны 6а и излучаются ею в сторону контролируемого вещества 7. Такая операция последовательного зондирования вещества повторяется k раз с применением k трехплечих циркуляторов 5а, 5б, …, 5k и соединенных с каждым из них соответственно приемо-передающих антенн 6а, 6б, …, 6k. Последние, принятые антенной 6k, отраженные от поверхности вещества волны поступают на короткозамкнутое плечо трехплечевого циркулятора 5k, отражаются от него и затем проходят в обратном направлении по цепочке трехплечих циркуляторов 5k, …5б, 5а. После этого волны через трехплечий циркулятор 5а поступают в измерительный волновод 3, где имеет место завершение процесса образования стоячей волны. Снимаемые с помощью элемента съема колебаний 8 колебания поступают на детектор 9 и затем, после детектирования, на регистратор 10, где определяют число возбуждаемых в рассматриваемом резонаторе типов колебаний, соответствующее уровню вещества в емкости.

Что касается сумматора мощности 6 на фиг. 3, то им может являться стандартный узел, выход которого подключен к волноводу, по которому электромагнитные колебания от всех генераторов 11, 12, …, 1k поступают в измерительный волновод 3. Вопросы суммирования мощности нашли отражение в литературе (см., например, монографию: Устройства сложения и распределения мощностей высокочастотных колебаний / В.В. Заенцев и др. Под ред. З.И. Моделя. М.: Советское радио. 1980. 296 с.). При этом в данном резонаторе одновременно возбуждают колебания в поддиапазонах, определяемых указанными генераторами.

Таким образом, данный способ позволяет с большим быстродействием измерять уровень вещества в емкости. Для его реализации необходимы достаточно простые (с малым диапазоном девиации частоты) генераторы, что практически является важным. Повышение быстродействия приводит и к повышению точности измерения, когда имеют место изменения уровня контролируемого вещества в процессе измерения.

Способ измерения уровня вещества в емкости, при котором зондируют его поверхность частотно-модулированными электромагнитными волнами в фиксированном диапазоне частот, принимают отраженные волны, при этом при частотной модуляции разбивают фиксированный диапазон частот не менее, чем на два поддиапазона, а частотную модуляцию осуществляют во всех поддиапазонах одновременно, и определяют число возбуждаемых типов электромагнитных колебаний, отличающийся тем, что зондирование поверхности вещества электромагнитными волнами осуществляют по нормали к ней, в каждом из поддиапазонов образуют из зондирующих и отраженных электромагнитных волн после их многократного последовательного зондирования и отражения от поверхности вещества стоячие электромагнитные волны и по числу соответствующих им при девиации частоты типов возбуждаемых электромагнитных колебаний в образуемом резонаторе судят об уровне вещества.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости и сыпучих сред, находящихся в какой-либо емкости.

Изобретение может быть использовано для высокоточного определения положения границ раздела сред, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью.

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых емкостях, например, оно может быть применено для определения уровня жидкого металла.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат заключается в повышении точности измерений.

Заявленная группа изобретений относится к средствам для измерения уровня заполнения на основе времени распространения сигнала. Предложенное устройство измерения уровня заполнения содержит передающий блок для отправки передаваемого сигнала, который отражается на поверхности загруженного продукта заполняющей среды и по меньшей мере одном втором отражателе; приемный блок для регистрации отраженного переданного сигнала, который является эхо-кривой, которая имеет множество эхо-сигналов; блок оценки для выполнения способа отслеживания для группировки соответственно вызванных идентичными отражателями эхо-сигналов эхо-кривых, зарегистрированных в различные моменты времени, причем блок оценки выполнен с возможностью выполнения следующих этапов: (а) определение первого трека первой группы эхо-сигналов, которые вызваны первым отражателем, и второго трека второй группы эхо-сигналов, которые вызваны вторым отражателем, причем каждый трек описывает время распространения соответствующего переданного сигнала от передающего блока до ассоциированного с треком отражателя и обратно в приемный блок в различные моменты времени; (b) определение линейного отношения между первым треком и вторым треком, задаваемое линейным уравнением; (c) определение одной или нескольких неизвестных из линейного отношения между первым треком и вторым треком.

Предложенная группа изобретений относится к средствам для мониторинга и эксплуатации радиолокационной системы измерения уровня для определения уровня наполнения резервуара.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости, в частности оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др.

Изобретение относится к технической области измерения уровня заполнения. В частности, настоящее изобретение относится к устройству измерения уровня заполнения, к способу определения и читаемому компьютером носителю.

Изобретение относится к области беспроводного измерения количества жидкости. Заявлены способ измерения количества жидкости и система для измерения количества жидкости.

Устройство относится к измерителям уровня наполнителя в резервуарах, емкостях и т.д., вВ частности, к радарному детектированию параметров процесса, связанных с расстоянием до поверхности содержимого в резервуаре с помощью электромагнитных волн.

Изобретение относится к измерительной технике и предназначено для контроля уровня материалов в резервуарах путем измерения ослабления микроволнового зондирующего сигнала. Сигнализатор уровня состоит из передающего и приемного модулей. Передающий модуль содержит СВЧ-генератор с антенной, генератор модулирующих импульсов и формирователь меандра. Приемный модуль содержит СВЧ-детектор с антенной, узкополосный усилитель, настроенный на частоту меандра, и соединенные последовательно детектор радиочастоты, усилитель импульсного сигнала, пиковый детектор, компаратор, элемент задержки и устройство формирования выходного сигнала. Устройство ввода микроволнового сигнала сигнализатора уровня в резервуар содержит две металлические трубы, установленные вертикально в отверстиях на крыше резервуара. На внешних торцах труб крепятся антенны приемного и передающего модулей сигнализатора. Нижний торец одной из труб расположен на контролируемом уровне, а нижний торец второй трубы расположен на том же уровне или выше его. Технический результат заключается в обеспечении удобства монтажа сигнализатора уровня. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера зависимости резонансной частоты электромагнитных колебаний металлической полости резонатора от объема заполняющего полость вещества с различными электрофизическими параметрами. Техническим результатом настоящего изобретения является расширение функциональных возможностей способа измерения, характеризуемое увеличением чувствительности и, как следствие, точности измерений за счет увеличения диапазона и характера изменения резонансной частоты резонатора в зависимости от измеряемого количества вещества в емкости. В предлагаемом способе измерения количества вещества в металлической емкости, при котором возбуждают электромагнитные колебания в полости емкости и измеряют резонансную частоту электромагнитных колебаний полости емкости, по которой судят об измеряемом количестве вещества, стенки емкости на, по меньшей мере, части ее длины выполняют сжимаемыми или растягиваемыми за счет силы тяжести, при этом изменяют объем емкости как функцию количества вещества в емкости. 5 ил.

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В способе определения количества диэлектрической жидкости в металлической емкости, при котором в первом цикле измерений возбуждают электромагнитные колебания последовательно в фиксированном диапазоне частот [ƒ1, ƒ2] в полости емкости и подсчитывают число N возбуждаемых типов колебаний, дополнительно, во втором цикле измерений производят излучение электромагнитных волн фиксированной частоты ƒ, для которой длина волны λ в свободном пространстве меньше характерного размера полости, в пространство, ограниченное металлической оболочкой емкости, измеряют среднее за цикл значение выводимой из полости мощности Р электромагнитного поля на длине волны λ, осуществляют совместное функциональное преобразование N и Р. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором, в первом такте измерений, возбуждают электромагнитные колебания в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии, измеряют резонансную частоту ƒ его электромагнитных колебаний, дополнительно, во втором такте измерений, возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и Δϕ, электромагнитные колебания возбуждают в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии длиной с оконечным горизонтальным участком фиксированной длины z0, скачкообразно заполняемым жидкостью и опорожняемым при, соответственно, поступлении жидкости в емкость и ее удалении из емкости, и определяют значение z уровня жидкости в результате совместного функционального преобразования ƒ и Δϕ согласно соотношению. 1 ил.

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально два отрезка коаксиальной длинной линии, с оконечными горизонтальными участками фиксированной длины, скачкообразно заполняемыми средами и опорожняемыми при, соответственно, поступлении сред в емкость и их удалении из нее. Возбуждают в отрезках длинной линии электромагнитные колебания на разных резонансных частотах и , которым соответствуют разные распределения энергии электромагнитного поля стоячей волны, и измеряют эти резонансные частоты в зависимости от координаты положения границы раздела двух сред. Между параллельными наружными проводниками отрезков длинной линии возбуждают электромагнитные колебания как в отрезке двухпроводной длинной линии, имеющем на конце его горизонтального участка нагрузочное реактивное сопротивление, отличное от нагрузочных реактивных сопротивлений отрезков коаксиальной длинной линии, измеряют резонансную частоту отрезка двухпроводной длинной линии и производят совместную функциональную обработку. 3 ил.

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают вертикально отрезок длинной линии, возбуждают электромагнитные колебания на его резонансной частоте ƒ, осуществляют ее измерение, возбуждают электромагнитные волны на фиксированной частоте, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых волн и осуществляют совместное функциональное преобразование ƒ и Δϕ. Измерение Δϕ производят в том же или другом, идентичном ему, отрезке длинной линии с равномерным вдоль него распределением энергии электрического поля при измерении ƒ и положение нижерасположенной и вышерасположенной границы раздела определяют по разности величин, одна из которых пропорциональна, соответственно, разности между отношением величины, пропорциональной значению Δϕ при наличии среды в емкости к его значению в отсутствие этой среды, и единицей, а другая величина - разности между величиной, пропорциональной квадрату отношения значения ƒ в отсутствие среды к его значению при наличии этой среды в емкости, и единицей. 2 ил.
Наверх