Многослойная комбинированная плата гис и способ ее изготовления

Изобретение относится к электронной технике, в частности к конструкции и технологии изготовления многослойной комбинированной платы ГИС. Многослойная комбинированная плата ГИС состоит из тонкопленочной платы на основе LTCC керамики, на которую нанесены тонкопленочные проводящие слои, на обеих внешних поверхностях тонкопленочных LTCC платы расположены толстопленочные проводящие слои, на поверхность которых нанесен слой и напылена многослойная тонкопленочная коммутация, на поверхность диэлектрического слоя напылена многослойная тонкопленочная коммутация и резистивные слои, многослойная тонкопленочная коммутация выполнена из последовательно напыленных слоев ванадий-медь-ванадий, резистивные слои выполнены из напыленных слоев тантала. Также предложен способ изготовления многослойной комбинированной платы ГИС, включающий изготовление многослойной толстопленочной LTCC платы с напыленным на обе внешние поверхности проводящим топологическим рисунком, полученным методом химического травления, на обе внешние поверхности многослойной толстопленочной LTCC платы со встроенными элементами методом центрифугирования наносят выравнивающие слои из органического диэлектрика, на которые последовательно наносят тонкопленочные проводящие, резистивные и изолирующие диэлектрические слои напылением в вакууме. Изобретение обеспечивает повышение степени интеграции, уменьшение конечной стоимости устройства и повышение технологичности изготовления многослойной комбинированной платы ГИС. 2 н. и 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к электронной технике, в частности к конструкции и технологии изготовления многослойной комбинированной платы ГИС на основе тонких и толстых пленок, и может найти применение на предприятиях радио- и электронной промышленности.

Платы ГИС широко применяются в изделиях РЭА, где необходимо обеспечить высокую надежность, минимальные массогабаритные характеристики и высокие электрические параметры при увеличении ее функциональных возможностей.

Многослойная толстопленочная LTCC плата в этом случае используется в качестве основания и позволяет интегрировать не только проводники, но и пассивные элементы (конденсаторы, катушки индуктивности, резисторы) непосредственно в объем платы. Трехмерная интеграция позволяет уменьшить площадь, занимаемую компонентами под поверхностный монтаж, увеличить надежность электрических соединений, избежать корпусирования и повысить технологичность изготовления изделия в целом. Благодаря тому что в многослойной толстопленочной LTCC плате можно сформировать полости для установки активных и пассивных дискретных компонентов, а также сформировать контактные площадки под поверхностный монтаж платы, появляется возможность избежать процесса корпусирования и обеспечить значительную экономию места в изделии, что имеет важное значение в изделиях навигации, локации и связи.

Многослойные толстопленочные LTCC платы обычно представляют собой конструкцию, состоящую из диэлектрических (до 40) и проводящих слоев. При изготовлении таких плат отдельные «сырые» листы низкотемпературной керамики, на которых предварительно сформированы металлизированные межслойные отверстия, элементы полостей и окон, методом трафаретной печати нанесенные проводящие и резистивные элементы собираются в пакет, после чего пакет подвергается опрессовке при определенных значениях давления и температуры. Проводящие пасты выбираются из предложенного производителем комплекта исходя из требований, предъявляемых к плате, и могут содержать серебро, золото или их смесь с палладием. Для нанесения паяемых контактных площадок и наружных экранов после обжига применяются послевжигаемые пасты на основе смесей серебра или золота с палладием.

К числу недостатков вышеописанных плат относятся:

- разрешающая способность проводник/зазор не менее 100 мкм;

- низкая точность печатных резисторов (около 30%);

- толщина диэлектрического слоя не менее 96 мкм.

Известно техническое решение, позволяющее устранить эти недостатки, которое представляет собой гибридную интегральную схему, состоящую из многослойной толстопленочной LTCC диэлектрической подложки с установленными в углубления тонкопленочными платами, расположенной на теплоотводящем металлическом основании и закрытой диэлектрической крышкой [1].

Недостатки аналога

Длительный технологический цикл изготовления устройства, включающей в себя установку тонкопленочной платы в углубления толстопленочного основания и закрепление диэлектрической крышки.

Одним из вариантов устранения вышеуказанных недостатков является использование в качестве подложки для тонкопленочных плат поверхности толстопленочного основания.

Наиболее близким к заявляемому изобретению прототипом является техническое решение [2].

Устройство представляет собой многослойную комбинированную плату ГИС, состоящую из многослойной толстопленочной платы из LTCC керамики с полированными внешними поверхностями. На полированные поверхности толстопленочной LTCC платы нанесены напылением пленок в вакууме тонкопленочные проводящие золотые слои по одному с каждой стороны.

Недостатки прототипа

Полирование поверхности многослойной толстопленочной LTCC платы исключает возможность формирования внешних толстопленочных проводящих слоев. Описанное устройство предполагает нанесение одного тонкопленочного проводящего слоя на поверхности многослойной толстопленочной LTCC платы.

Наиболее близким к заявляемому способу прототипом является техническое решение [2].

Способ (прототип) включает в себя изготовление многослойной толстопленочной LTCC платы с полированными внешними поверхностями и нанесение тонкопленочных проводящих золотых слоев напылением в вакууме и формирование проводящего рисунка методом химического травления или лазерной абляции.

Недостатки прототипа

Процесс полирования поверхности толстопленочных LTCC плат, особенно миниатюрных, достаточно трудоемкий, а также исключает возможность нанесения внешних толстопленочных проводящих и резистивных слоев. Описанный способ изготовления исключает возможность формирования многослойной тонкопленочной структуры на поверхности толстопленочной LTCC платы. Процесс формирования топологического рисунка на золотых тонких пленках (химическое травление, лазерная абляция) увеличивает время изготовления устройства.

Задача заявленного технического решения (устройства) - повышение степени интеграции и уменьшение конечной стоимости устройства.

Поставленная задача достигается тем, что в многослойной комбинированной плате ГИС, состоящей из толстопленочной платы на основе LTCC керамики и нанесенных на ее поверхность тонкопленочных проводящих слоев, согласно изобретению на обеих внешних поверхностях толстопленочной LTCC платы расположены толстопленочные проводящие или резистивные слои, на поверхность которых нанесен диэлектрический слой с напыленной многослойной тонкопленочной коммутацией или резистивными слоями. Проводящие тонкопленочные слои могут быть выполнены в виде трехслойной структуры, например ванадий-медь-ванадий, а резистивные - тантал или нитрид тантала.

Техническим результатом заявленного технического решения (способа) является увеличение степени интеграции, уменьшение трудоемкости и повышение технологичности изготовления многослойной комбинированной платы ГИС.

Технический результат достигается тем, что в способе изготовления многослойной комбинированной платы ГИС со встроенными элементами, включающем изготовление многослойной толстопленочной LTCC платы с напыленным проводящим топологическим рисунком, полученным методом селективного травления, на обе внешние поверхности многослойной толстопленочной LTCC платы методом центрифугирования нанесены выравнивающие слои из органического диэлектрика, на которые последовательно нанесены методом вакуумного испарения тонкопленочные проводящие, резистивные и изолирующие диэлектрические слои.

На Фиг. 1 изображена структура многослойной комбинированной платы ГИС.

Устройство и способ работают следующим образом.

Предлагается комбинированная толстопленочная LTCC плата 1, которая состоит из слоев низкотемпературной керамики с нанесенными методом трафаретной печати толстопленочными проводниками 2, столбиковыми выводами 3 и резистивными элементами 8, выполняющими соединение межу проводниками структуры (внутренних слоев между собой и внутренних со внешними). На поверхность обожженной толстопленочной LTCC платы 1 в несколько слоев (2-3 слоя) нанесен органический диэлектрик 4 (негативный фоторезист, полиимид и т.д.), на органический диэлектрик 4 нанесена пленочная структура ванадий-медь-ванадий 5 или резистивные слои тантала или нитрида тантала, представляющая собой конфигурацию проводников, резисторов и контактных площадок. На металлизацию 5 сверху нанесен следующий слой органического диэлектрика 4. Таким образом, тонкопленочная структура может содержать до 40 диэлектрических, резистивных и проводящих слоев. В органическом диэлектрике открыты отверстия 6 или контактные площадки 7 на толстопленочной LTCC плате 1, на которые напыляются проводящие структуры ванадий-медь-ванадий 5, резистивные слои тантала или нитрида тантала и изолирующие диэлектрические слои. Такая же тонкопленочная структура может быть сформирована с другой стороны толстопленочной LTCC платы. Таким образом, конструкция многослойной комбинированной платы ГИС может иметь до 40 слоев толстопленочной LTCC платы и по 5-10 слоев тонкопленочных структур с каждой стороны.

Способ осуществляется следующим образом.

Для изготовления многослойной комбинированной платы ГИС в качестве основания используют многослойную толстопленочную LTCC плату со встроенными элементами 1, на поверхность которой нанесены выравнивающие слои из органического диэлектрика 4 с последующим нанесением проводящих, резистивных и изолирующих диэлектрических слоев. Многослойная толстопленочная LTCC плата изготавливается из слоев низкотемпературной керамики с нанесенными методом трафаретной печати толстопленочными проводниками 2, столбиковыми выводами 3 и резистивными элементами 8, выполняющими соединение межу проводниками структуры (внутренних слоев между собой и внутренних со внешними), спрессованных в стек и обожженных в едином технологическом цикле. Далее на обе внешние поверхности толстопленочной LTCC платы методом центрифугирования наносят выравнивающие слои из органического диэлектрика (2-3 слоя), после чего последовательно осаждают методом вакуумного испарения тонкопленочные резистивные, проводящие и изолирующие диэлектрические слои. Таким образом, операция осаждения тонких пленок может повторяться до 10 раз с каждой стороны.

Изготовление изделия данным способом не требует трудоемких операций шлифовки, полировки и отмывки поверхностей многослойной толстопленочной LTCC платы, что существенно уменьшает трудоемкость и повышает технологичность изготовления изделия в целом.

Таким образом, предложенные изобретения позволяют изготовить многослойную комбинированную плату ГИС с меньшей трудоемкостью и стоимостью, обладающую высокой точностью разрешения проводящего рисунка (10-20 мкм), резисторами с малыми допусками (до 1%). Наличие тонкопленочных защитных слоев позволяет устранить окисление проводников и избежать процесса корпусирования, что в свою очередь снижает массогабаритные характеристики готового изделия.

Источники информации

1. Патент RU 2450388, опубл. 10.05.2012, H01L 25/16.

2. Патент US 8742262 В2, опубл. 03.06.2014 г., Н05К 1/09.

1. Многослойная комбинированная плата ГИС, состоящая из толстопленочной платы на основе LTCC керамики, на которую нанесены тонкопленочные проводящие слои, отличающаяся тем, что на обеих внешних поверхностях толстопленочной LTCC платы расположены толстопленочные проводящие слои, на поверхность которых нанесен диэлектрический слой и напылена многослойная тонкопленочная коммутациия.

2. Многослойная комбинированная плата ГИС по п. 1, отличающаяся тем, что на поверхность диэлектрического слоя напылена многослойная тонкопленочная коммутация и резистивные слои.

3. Многослойная комбинированная плата ГИС по п. 1, отличающаяся тем, что многослойная тонкопленочная коммутация выполнена из последовательно напыленных слоев ванадий-медь-ванадий.

4. Многослойная комбинированная плата ГИС по п. 2, отличающаяся тем, что резистивные слои выполнены из напыленных слоев тантала.

5. Многослойная комбинированная плата ГИС по п. 2, отличающаяся тем, что резистивные слои выполнены из напыленных слоев нитрида тантала.

6. Способ изготовления многослойной комбинированной платы ГИС, включающий изготовление многослойной толстопленочной LTCC платы с напыленным на обе внешние поверхности проводящим топологическим рисунком, полученным методом химического травления, отличающийся тем, что на обе внешние поверхности многослойной толстопленочной LTCC платы со встроенными элементами методом центрифугирования наносят выравнивающие слои из органического диэлектрика, на которые последовательно наносят тонкопленочные проводящие, резистивные и изолирующие диэлектрические слои напылением в вакууме.



 

Похожие патенты:

Изобретение относится к устройству для подачи электроэнергии потребителю. Устройство содержит несущий элемент (11) из электроизоляционного материала, в частности из несущей пленки, несущей по меньшей мере одну, предпочтительно две токоведущие дорожки, образованные из электропроводного слоя.

Изобретение относится к печатным кабелям, а именно к гибким печатным кабелям и может быть использовано при разработке устройств, содержащих подвижные элементы. Технический результат - создание гибкого печатного кабеля с лаковой изоляцией для подвижных электрических цепей с равномерной электрической прочностью изоляции со стороны формообразования печатных проводников при динамических изгибах и высоких напряжениях.

Изобретение относится к печатной плате и к устройству, содержащему такую печатную плату. Технический результат - обеспечение повышения эффективности производства устройства, содержащего светодиодную цепь для обеспечения окружающего света для дисплея, улучшение конструктивных характеристик.

Изобретение относится к области электротехники, а именно к пассивным электроэлементам - плоским кабелям, в частности к печатным кабелям. На печатном проводнике (2) выполнена краевая контактная площадка (6), которая электрически соединена с дополнительной опорой (5) с возможностью электрической связи с печатным проводником кабеля.

Изобретение относится к светотехническим устройствам и может быть использовано при конструировании светодиодных осветительных приборов, применяемых в различных областях науки и техники.

Изобретение относится к способу нанесения состава для покрытия, содержащего углерод в форме углеродных нанотрубок, графенов, фуллеренов или их смеси, и металлические частицы, на субстрат с последующей обработкой под давлением и тепловой обработкой покрытия после нанесения на субстрат.

Изобретение относится к монтажной плате с повышенной устойчивостью к коррозии, способу изготовления такой монтажной платы, дисплейной панели и дисплейного устройства.

Изобретение относится к областям электротехники и радиотехники, а именно к изделиям радиоэлектронной аппаратуры. Технический результат - обеспечение равномерного отвода тепла от контактных площадок печатной платы при сохранении возможности их электрического соединения.

Изобретение относится к областям электротехники и радиотехники, а именно к изделиям радиоэлектронной аппаратуры. Технический результат - повышение жесткости и прочности механического соединения печатных плат между собой при обеспечении надежного электрического соединения между ними.

Изобретение относится к электротехнике и может быть использовано при создании блоков различной радиоэлектронной аппаратуры. Матричный электронный модуль содержит коммутационные платы с размещенными на них электронными компонентами и электрическими соединителями. Платы соединены между собой в пакет посредством размещенных по углам модуля токопроводящих постоянных магнитов с осевой намагниченностью, выполненных с гранями на боковой поверхности для взаимодействия с гранями магнитов присоединяемых модулей. Согласно одному варианту магниты обоими концами соединены с коммутационными платами. Согласно второму варианту магниты соединены одним концом с одной из коммутационных плат и взаимодействуют свободным концом с деталью из магнитного материала, закрепленной на второй коммутационной плате. Технический результат - обеспечение возможности создания объемных пространственных сборок, не зависящих от несущих конструкций, с высокой плотностью упаковки радиоэлектронных компонентов, простоты и высокой производительности монтажных работ, возможности выполнения замены модулей «по горячему», упрощения электропитания модулей. 2 н. и 17 з.п. ф-лы, 16 ил.
Наверх