Деталь, содержащая охлаждающие каналы с поперечным сечением в форме песочных часов, и соответствующая деталь аэродинамического профиля турбины

Деталь содержит внутренний охлаждающий канал. Охлаждающий канал дополнительно содержит: первую и вторую внутренние поверхности соответствующих первой и второй наружных стенок детали; и первую и вторую боковые поверхности, проходящие между упомянутыми внутренними поверхностями. Поперечное сечение канала имеет профиль в форме песочных часов, в котором боковые поверхности сближаются друг с другом до горловины, ширина которой меньше, чем ширина каждой из первой и второй внутренних поверхностей. Общее направление потока охладителя в канале перпендикулярно упомянутому профилю в форме песочных часов. Деталь дополнительно содержит множество турбулизаторов на каждой из боковых поверхностей, которые поджимают охладитель к внутренним поверхностям. Вершина в центральном участке каждого турбулизатора образует горловину охлаждающего канала. Изобретение повышает эффективность и результативность охлаждающих каналов. 3 н. и 12 з.п. ф-лы, 10 ил.

 

Данная заявка является частичным продолжением заявки на патент США 12/985,553, поданной 6 января 2011 г. (регистрация поверенного 2010P12609US), которая включена в данный документ посредством ссылки.

Уведомление относительно развития, финансированного из федерального бюджета

Развитие данного изобретения было поддержано частично в соответствии с контрактом № DE-FC26-05NT42644, выданным Министерством энергетики США. Таким образом, правительство США может обладать некоторыми правами на данное изобретение.

Уровень техники

Детали на пути перемещения горячего газа газотурбинных двигателей часто содержат охлаждающие каналы. Эффективность охлаждения важна для минимизации термической нагрузки на эти детали и эффективность охлаждения важна для минимизации объема воздуха, отводимого из компрессора для охлаждения. Пленочное охлаждение создает пленку охлаждающего воздуха на внешних поверхностях детали посредством отверстий из внутренних охлаждающих каналов. Пленочное охлаждение может быть неэффективным, поскольку требуется большой объем охлаждающего воздуха. Поэтому пленочное охлаждение используют селективно в сочетании с другими методами. Инжекционное охлаждение представляет собой метод, в котором перфорированные перегородки размещают на расстоянии от поверхности, чтобы создавать ударные струи охлаждающего воздуха, падающие на поверхность. Извилистые охлаждающие каналы создают в деталях турбины, включающих аэродинамические профили, такие как лопатки и лопасти. Настоящее изобретение повышает эффективность и результативность охлаждающих каналов.

Краткое описание чертежей

Изобретение изложено в приведенном ниже описании со ссылкой на чертежи, которые показывают:

Фиг. 1 представляет собой вид сбоку в разрезе лопатки турбины с охлаждающими каналами.

Фиг. 2 представляет собой разрез задней кромки аэродинамического профиля, выполненный по линии 2-2, показанной на фиг. 1, с охлаждающими каналами, показывающий аспекты настоящего изобретения.

Фиг. 3 представляет собой поперечное сечение охлаждающего канала в соответствии с аспектами изобретения.

Фиг. 4 представляет собой разрез односторонних пристеночных охлаждающих каналов.

Фиг. 5 представляет собой разрез охлаждающих каналов в суженной детали.

Фиг. 6 представляет собой поперечный разрез аэродинамического профиля турбины с охлаждающими каналами в форме песочных часов.

Фиг. 7 показывает процесс формования керамических стержней для формы для образования охлаждающих каналов в форме песочных часов.

Фиг. 8 показывает поперечный разрез охлаждающего канала в форме песочных часов со сближающимися боковыми поверхностями, образованными посредством заостренных турбулизаторов.

Фиг. 9 показывает вариант осуществления, показанный на фиг. 8, в сочетании с ребрами на пристеночных внутренних поверхностях.

Фиг. 10 представляет собой вид в разрезе, выполненном по линии 10-10 в соответствии с фиг. 8, показывающий заостренные турбулизаторы с выпуклыми передними по потоку сторонами.

Подробное описание изобретения

Фиг. 1 представляет собой разрез лопатки 20 турбины, содержащей переднюю кромку 21 и заднюю кромку 23. Охлаждающий воздух 22 из турбинного компрессора поступает на вход 24 в корне 26 лопатки и перемещается по каналам 28, 29, 30, 31 в лопатке. Часть охладителя может выходить из отверстий 32 пленочного охлаждения. Участок ТЕ задней кромки лопатки может содержать выступы 34 турбулизаторов и выпускные каналы 36. Каждая стрелка 22 показывает общее направление потока охладителя у стрелки, то есть преобладающее или среднее направление потока в данной точке.

Фиг. 2 представляет собой разрез участка ТЕ задней кромки аэродинамического профиля турбины, выполненный по линии 2-2, показанной на фиг. 1. Упомянутый участок задней кромки содержит первую и вторую внешние поверхности 40, 42 на засасывающей и нагнетающей боковых стенках 41, 43 аэродинамического профиля. Охлаждающие каналы 36 могут содержать ребра 44 на внутренних поверхностях 48, 50 наружных стенок 41, 43 в соответствии с аспектами изобретения. В данной области техники такие внутренние поверхности 48, 50 называются «пристеночными внутренними поверхностями», что означает внутреннюю поверхность охлаждающего канала, которая является ближайшей к охлаждаемой внешней поверхности. Промежутки G между каналами порождают разрывы в эффективности и равномерности охлаждения. Авторы изобретения обнаружили, что эффективность, результативность и равномерность охлаждения можно улучшить посредством увеличения интенсивности охлаждения в углах С охлаждающих каналов, поскольку данные углы являются ближайшими к зазорам G. Одним способом осуществления такого предпочтительного охлаждения является создание профиля канала в форме песочных часов, в котором боковые поверхности 52, 54 канала образуют горловину, ширина которой меньше ширины каждой из первой и второй внутренних поверхностей 48, 50. Данная горловина увеличивает сопротивление потоку в центре канала, тем самым поджимая охладитель к углам канала. Поскольку поток охладителя в центре канала не контактирует с теплопередающей поверхностью, в то время как поток в углах отводит тепло, настоящее изобретение является эффективным для повышения эффективности охлаждения.

Фиг. 3 представляет собой поперечное сечение 46 охлаждающего канала, который приспособлен для эффективного охлаждения двух противоположных внешних поверхностей. Упомянутый канал может представлять собой канал 36 в задней кромке или любой другой охлаждающий канал, такой как каналы 29 и 30 на фиг. 1. Он содержит две противоположные пристеночные внутренние поверхности 48, 50, которые могут быть параллельны соответствующим внешним поверхностям 40, 42, показанным на фиг. 2. При этом определение «параллельные» относится к участкам пристеночной внутренней поверхности, ближайшим к внешней поверхности, без учета ребер 44. Упомянутый канал имеет ширины W1, W3 в пристеночных внутренних поверхностях 48, 50. Две внутренние боковые поверхности 52, 54 сходятся друг к другу от сторон внутренних поверхностей 48, 50, образуя минимальную ширину W2 канала или горловину в боковых поверхностях. Ширины W1 и W3 внутренних поверхностей больше, чем ширина W2 горловины, поэтому профиль 46 канала имеет форму песочных часов, образованную посредством выпуклости боковых поверхностей 52, 54. Такая форма увеличивает поток 25 охладителя к углам С канала. Общее направление потока охладителя перпендикулярно плоскости данного чертежа. Стрелки 25 показывают аспект увеличения потока профиля 46 по сравнению с каналом, не имеющим форму песочных часов и/или не содержащим ребра, описанные ниже.

На внутренних поверхностях 48, 50 могут быть предусмотрены ребра 44. Ребра могут быть ориентированы параллельно общему направлению 22 потока (фиг.1), которое перпендикулярно плоскости фиг. 3. Если предусмотрены ребра, то они могут иметь высоты, которые образуют выпуклый профиль, такой как 56А или 56В, в котором максимальная высота Н ребра соответствует середине ширины пристеночной внутренней поверхности 48 и/или 50. Такие ребра 44 увеличивают площадь пристеночных внутренних поверхностей 48, 50, а также увеличивают поток 25 в углах С. Более длинные центральные ребра уменьшают поток в центре, а более короткие крайние ребра поддерживают поток 25 в углах С. Сочетание выпуклых сторон 52, 54 и выпуклого профиля 56А, 56В высоты ребер обеспечивает синергетический эффект, который концентрирует охлаждение на углах С канала.

Размеры профиля 46 канала можно выбирать с использованием известных инженерных методов. Показанные пропорции приведены только в качестве примера. Приведенные ниже единицы длины являются безразмерными и могут быть выражены пропорционально в любой единице измерения, поскольку пропорция является важным аспектом, показанным в качестве примера в данном чертеже. В одном варианте осуществления предусмотрены следующие относительные размеры: В=1,00, D=0,05, Н=0,20, W1=1,00, W2=0,60. В данном примере угол конусности сторон А= -30°. При этом отрицательный угол А конусности сторон 52, 54 в профиле 46 означает, что стороны сближаются друг с другом к промежуточному положению между внутренними поверхностями 48, 50, образуя горловину W2, как показано. В некоторых вариантах осуществления угол А конусности может находиться в пределах от -1° до -30°. Ширину W2 горловины можно определить через угол конусности. В качестве альтернативы, она может составлять 80% или меньше от одной или обеих пристеночных ширин W1, W3, или в некоторых вариантах осуществления 65% или меньше. Одна или более пропорций и/или размеров могут изменяться вдоль длины охлаждающего канала. Например, размер В может изменяться с изменением толщины аэродинамического профиля. В некоторых вариантах осуществления ширины W1, W3 двух внутренних поверхностей 48 и 50 могут отличаться друг от друга. В этом случае ширина W2 горловины может быть меньше, чем каждая из ширин W1, W3.

Фиг. 4 показывает охлаждающий канал 36В, приспособленный для охлаждения одной внешней поверхности 40 или 42. В нем использованы идеи ребер и угла конусности вышеописанного охлаждающего канала 36. Ширина W1 пристеночной внутренней поверхности больше, чем минимальная ширина W2 канала за счет конусообразных внутренних боковых поверхностей 52, 54. На пристеночной внутренней поверхности 48 могут быть предусмотрены ребра 44, которые могут иметь выпуклый профиль высот, центрированный по ширине W1 пристеночной внутренней поверхности. Такие охлаждающие каналы 36В могут быть использованы, например, в относительно более толстой части участка ТЕ задней кромки аэродинамического профиля по сравнению с относительно более тонкой частью участка ТЕ задней кромки, где может быть использован охлаждающий профиль 46, как на фиг. 3. Профиль поперечного сечения данного варианта осуществления может быть трапецеидальным, в котором пристеночная внутренняя поверхность 48 образует его самую длинную сторону.

Фиг. 5 показывает, что внешние поверхности 40 и 42 могут быть непараллельными в плоскости поперечного сечения канала 36. Пристеночные внутренние поверхности 48, 50 могут быть параллельны внешним поверхностям 40, 42.

Фиг. 6 показывает поперечное сечение аэродинамического профиля 60 турбины с расположенными по размаху охлаждающими каналами 63, 64, 65 и 66 в форме песочных часов. В данном документе «расположенный по размаху» означает, что канал ориентирован в направлении между радиально внутренним и внешним концами аэродинамического профиля. Определение «радиальный» используется относительно оси вращения турбины. Например, на фиг. 1 каналы 28, 29, 30 и 31 представляют собой расположенные по размаху каналы. Эти каналы дополнительно могут содержать ребра 44, которые описаны выше со ссылкой на фиг. 3.

Фиг. 7 показывает процесс формования керамических стержней 74, 75 для формы для аэродинамического профиля. Стержни могут быть химически удалены после отливки аэродинамического профиля 60. Гибкие пуансоны 84А, 84В, 85А, 85В или пуансоны с гибкими вкладышами могут быть использованы для формования стержней 74, 75 из сырой керамики, которая является достаточно жесткой для вытягивания 89 форм упруго за точки 91 задевания. Такая технология описана, например, в патентах США 7141812 и 7410616 и 7411204, выданных компании Mikro Systems Inc. Charlottesville, Virginia. Даже небольшие отрицательные углы конусности, например от -1° до -3°, являются существенными и используются для эффективности охлаждения по сравнению с положительными углами конусности, требующимися для удаления обычных жестких пуансонов.

Фиг. 8 показывает поперечный разрез охлаждающего канала 65 в форме песочных часов с сближающимися боковыми поверхностями 52, 54, образованными посредством турбулизаторов 92. Каждый турбулизатор содержит вершину 97 в его центральном участке, которая образует горловину охлаждающего канала. Боковые поверхности 52, 54 на турбулизаторах могут иметь вышеописанный диапазон конусности или, в частности, в пределах от -2° до -5° (показан угол конусности -5°). Турбулизаторы 92 могут чередоваться с поверхностями 95, 96, которые являются плоскими (показаны) или имеют положительную конусность (не показаны).

Фиг. 9 показывает вариант осуществления, как на фиг. 8, в сочетании с профильными ребрами 44 на пристеночных внутренних поверхностях 48, 50, которые описаны выше.

Фиг. 10 представляет собой вид в разрезе, выполненном по линии 10-10, показанной на фиг. 8, показывающий заостренные турбулизаторы 92 с выпуклыми передними по потоку сторонами 93 и прямолинейными задними по потоку сторонами 94. Выпуклые передние по потоку стороны 93 поджимают поток 22 к углам С. Прямолинейные задние по потоку стороны 94 облегчают вытягивание пуансонов 84А, 84В, 85А, 85В, показанных на фиг. 7, прямо перпендикулярно стержням 74, 75. В качестве альтернативы, задние по потоку стороны 94 турбулизаторов могут быть выпуклыми (не показаны), например параллельными передним по потоку сторонам 93.

Варианты осуществления, показанные на фиг. 8-10, могут быть выполнены с использованием эффективного по стоимости процесса, показанного на фиг. 7. Турбулизаторы 92 концентрируют поток охладителя на пристеночных внутренних поверхностях 48 и 50 и в углах С. Элементы комбинации, показанные на фиг. 9, особенно эффективны и результативны, поскольку турбулизаторы 92 замедляют поток 22 в центре, одновременно концентрируя его на внутренних поверхностях 48 и 50, где ребра 44 передают тепло от внешних поверхностей 40, 42 и увеличивают поток 22 к углам С.

Данные каналы в форме песочных часов используются в любом применении пристеночного охлаждения, например в лопастях, лопатках, ободьях и, возможно, в камерах сгорания и переходных трубах и газовых турбинах. Они увеличивают равномерность охлаждения, особенно в параллельных рядах каналов с либо параллельными потоками, либо чередующимися извивающимися потоками. Данные каналы могут быть образованы посредством известных технологий изготовления – например посредством отливки аэродинамического профиля над позитивным керамическим стержнем, который химически удаляют после литья.

Преимуществом настоящего изобретения является то, что пристеночные дистальные углы С каналов отводят больше тепла, чем известные охлаждающие каналы, при заданном объеме потока охладителя. Это повышает результативность, эффективность и равномерность охлаждения посредством преодоления тенденции более медленного перемещения охладителя в углах. Увеличение интенсивности охлаждения углов помогает компенсировать зазоры G между охлаждающими каналами. Изобретение также обеспечивает увеличенный отвод тепла от основных поверхностей 40, 42, которые должны охлаждаться посредством использования ребер 44.

Хотя в данном документе показаны и описаны различные варианты осуществления настоящего изобретения, будет очевидно, что такие варианты осуществления предусмотрены только в качестве примера. Множество модификаций, изменений и замен могут быть выполнены без отхода от изобретения, описанного в данном документе. Таким образом, предполагается, что изобретение ограничено только сущностью и объемом прилагаемой формулы изобретения.

1. Деталь, содержащая внутренний охлаждающий канал, причем упомянутый охлаждающий канал дополнительно содержит:

первую и вторую внутренние поверхности соответствующих первой и второй наружных стенок детали; и

первую и вторую боковые поверхности, проходящие между упомянутыми внутренними поверхностями,

причем поперечное сечение канала имеет профиль в форме песочных часов, в котором боковые поверхности сближаются друг с другом до горловины, ширина которой меньше, чем ширина каждой из первой и второй внутренних поверхностей;

причем общее направление потока охладителя в канале перпендикулярно упомянутому профилю в форме песочных часов,

причем деталь дополнительно содержит множество турбулизаторов на каждой из боковых поверхностей, которые поджимают охладитель к внутренним поверхностям, причем вершина в центральном участке каждого турбулизатора образует горловину охлаждающего канала.

2. Деталь по п. 1, в которой первая и вторая внутренние поверхности параллельны соответствующим первому и второму участку внешних поверхностей соответствующих наружных стенок.

3. Деталь по п. 1, в которой первая и вторая наружные стенки представляют собой стороны нагнетания и всасывания аэродинамического профиля турбины.

4. Деталь по п. 1, в которой упомянутая горловина имеет ширину, составляющую 80% или меньше от ширины по меньшей мере одной из упомянутых внутренних поверхностей.

5. Деталь по п. 1, в которой каждая из боковых поверхностей имеет угол сужения в профиле, равный по меньшей мере -1°, по направлению к горловине относительно прямой линии между соответствующими концами двух боковых поверхностей.

6. Деталь по п. 1, дополнительно содержащая множество параллельных ребер с поперечным профилем высот, который является выпуклым по ширине по меньшей мере одной из внутренних поверхностей, причем упомянутые ребра ориентированы в соответствии с направлением потока охладителя.

7. Деталь по п. 1, в которой каждый турбулизатор содержит выпуклую переднюю по потоку сторону.

8. Деталь по п. 1, в которой каждый турбулизатор содержит выпуклую переднюю по потоку сторону и прямолинейную заднюю по потоку сторону.

9. Деталь по п. 1, дополнительно содержащая:

множество параллельных ребер, ориентированных в соответствии с направлением потока охладителя, на каждой из внутренних поверхностей, причем профиль высот, который поперечно соединяет соседние вершины ребер, является выпуклым по ширине каждой из внутренних поверхностей,

причем каждый турбулизатор содержит выпуклую переднюю по потоку сторону.

10. Деталь аэродинамического профиля турбины, содержащая выпускной канал для охладителя в участке задней кромки, причем упомянутый выпускной канал для охладителя дополнительно содержит: первую и вторую пристеночные внутренние поверхности, параллельные соответствующим первой и второй внешним поверхностям упомянутого участка задней кромки;

две внутренние боковые поверхности между пристеночными внутренними поверхностями, которые сближаются к горловине в промежуточном положении между первой и второй пристеночными внутренними поверхностями, образующими поперечный профиль канала, имеющий форму песочных часов;

множество ребер на каждой из пристеночных внутренних поверхностей, причем упомянутые ребра ориентированы параллельно общему направлению потока выпускного канала для охладителя, и упомянутое множество ребер имеет выпуклый профиль высот по ширине каждой пристеночной внутренней поверхности,

причем деталь содержит множество турбулизаторов на каждой из боковых поверхностей, которые поджимают поток охладителя к пристеночным внутренним поверхностям, причем вершина в центральном участке каждого турбулизатора образует горловину охлаждающего канала.

11. Деталь по п. 10, в которой каждый турбулизатор содержит выпуклую переднюю по потоку сторону.

12. Деталь по п. 10, в которой каждый турбулизатор содержит выпуклую переднюю по потоку сторону и прямолинейную заднюю по потоку сторону.

13. Деталь, содержащая охлаждающий канал, причем упомянутый охлаждающий канал дополнительно содержит:

первую внутреннюю поверхность, параллельную первой внешней поверхности упомянутой детали, и конусообразный профиль поперечного сечения, который является более широким в первой внутренней поверхности и сужающимся от первой внутренней поверхности;

и множество параллельных ребер с поперечным профилем высот, который является выпуклым по ширине внутренней поверхности, причем упомянутые ребра ориентированы в соответствии с направлением потока охладителя в канале;

причем упомянутый охлаждающий канал является эффективным для поджатия потока охладителя в нем к углам охлаждающего канала, причем деталь дополнительно содержит:

вторую внутреннюю поверхность, параллельную второй внешней поверхности упомянутой детали;

первую и вторую внутренние боковые поверхности, проходящие между первой и второй внутренними поверхностями; и

множество турбулизаторов на каждой из внутренних боковых поверхностей канала, которые поджимают поток охладителя к внутренним поверхностям, причем вершина в центральном участке каждого турбулизаторов образует горловину охлаждающего канала, ширина которой является меньше, чем ширина любой из первой и второй внутренних поверхностей.

14. Деталь по п. 13, в которой каждый турбулизатор содержит выпуклую переднюю по потоку сторону.

15. Деталь по п. 13, в которой каждый турбулизатор содержит выпуклую переднюю по потоку сторону и прямолинейную заднюю по потоку сторону.



 

Похожие патенты:

Охлаждаемая турбинная лопатка содержит хвостовик, предназначенный для прикрепления охлаждаемой лопатки к турбинному ротору, аэродинамический профиль, концевой бандаж и один или несколько центральных охлаждающих каналов, ограниченных аэродинамическим профилем.

Устройство секционного охлаждения для подачи охлаждающего потока в турбине с потоком газообразных продуктов сгорания содержит турбинную сопловую лопатку, дефлектор для охлаждающей среды и инжекционную пластину.

Слоистый лист для детали газовой турбины содержит первый и второй покрывающие слои и первый промежуточный слой. Первый покрывающий слой, второй покрывающий слой и первый промежуточный слой сложены вместе один на другой.

Данное изобретение относится к турбинному узлу (10, 10а), содержащему в основном полую лопатку (12) и по меньшей мере одно дефлекторное устройство (14, 14а, 14d), при этом полая лопатка (12) имеет по меньшей мере первую боковую стенку (16, 18), проходящую от входной кромки (20) к выходной кромке (22) полой лопатки (12), и по меньшей мере одну полость (24), в которой в собранном состоянии упомянутого по меньшей мере одного дефлекторного устройства (14, 14а, 14d) в полой лопатке (12) упомянутое по меньшей мере одно дефлекторное устройство (14, 14а, 14d) расположено на заданном расстоянии относительно внутренней поверхности (26) полости (24) для струйно-дефлекторного охлаждения этой по меньшей мере одной внутренней поверхности (26) и с образованием проточного канала (28) для охлаждающей среды (30), проходящего от входной кромки (20) к выходной кромке (22), и при этом упомянутое по меньшей мере одно дефлекторное устройство (14, 14а, 14d) содержит первую деталь (42) и вторую деталь (44), расположенные бок о бок в осевом направлении (78), причем вторая деталь (44) расположена за первой деталью (42) при рассматривании в осевом направлении (78), и с осевым расстоянием друг от друга с образованием первого проточного прохода (46), обеспечивающего прохождение с одной стороны лопатки (12) к противоположной стороне лопатки (12).

Двухконтурный турбореактивный двигатель содержит компрессор с думисной полостью, камеру сгорания, турбину, аппарат закрутки турбины, сообщенный и с транзитными полостями лопаток соплового аппарата турбины, и с каналами подвода воздуха высокого давления, вращающийся направляющий аппарат и каналы подвода воздуха низкого давления, сообщенные с внутренними полостями охлаждаемых рабочих лопаток турбины.

Сопловой аппарат турбины высокого давления содержит перо лопатки, ограниченное входной и выходной кромками, наружную и внутреннюю полки, внутреннее кольцо и наружное кольцо, установленные на внутренней полке с образованием между ними кольцевой щели нижней воздушной завесы.

В настоящей заявке описан держатель уплотнения, используемый вокруг ряда отверстий в платформе сопловой лопатки турбины, предназначенных для прохождения воздуха. Держатель уплотнения может иметь внутреннюю поверхность, обращенную к платформе и имеющую выполненные на ней пазы, совмещенные с проточными отверстиями платформы, и противоположную внешнюю поверхность, вокруг которой расположено уплотнение.

Полая лопатка имеет аэродинамический профиль, простирающийся в продольном направлении, и содержит основание, конец, внутренний канал охлаждения внутри аэродинамического профиля, полость, расположенную в конце, открытую к свободному окончанию лопатки и ограниченную торцевой стенкой и ободом.

Газотурбинный двигатель содержит камеру сгорания и узел направляющих лопаток. Узел направляющих лопаток содержит первый и второй узлы направляющих лопаток, расположенные вдоль окружного направления турбины, а также дополнительный первый узел направляющих лопаток.

Элемент турбины газотурбинного двигателя содержит подложку, имеющую наружную поверхность, внутреннюю поверхность и торец. Внутренняя поверхность ограничивает по меньшей мере одно полое внутреннее пространство.

Газогенератор газотурбинного двигателя включает в себя осевой компрессор, камеру сгорания, турбину высокого давления с охлаждаемыми рабочими и диском основным с выполненными на его фланце отверстиями и несущим на себе диск покрывной с образованием между ними кольцевой полости. Кольцевая полость сообщена на выходе с внутренними полостями охлаждаемых рабочих лопаток, а на входе через отверстия во фланце диска основного сообщена с подходящей по уровню давления проточной частью промежуточной ступени компрессора через внутреннюю полость вала, соединяющего роторы компрессора и турбины. Между диском покрывным и фланцем диска основного выполнен радиальный кольцевой зазор, в полости которого размещен аппарат спутной закрутки, сообщенный с зоной вторичного воздуха камеры сгорания на входе и полостью радиального кольцевого зазора на выходе, переходящей в междисковую кольцевую полость. Изобретение направлено на повышение напорности системы охлаждения рабочих лопаток турбины высокого давления при отборе от промежуточной ступени компрессора путем использования смеси воздуха, отбираемого от промежуточной ступени компрессора, с воздухом, отбираемым из зоны вторичного воздуха камеры сгорания, а также повышения ресурса диска покрывного с одновременным снижением его массы за счет исключения ребер. 2 ил.

Охлаждаемая боковая стенка пера, горелки или камеры сгорания для отделения тракта потока горячего газа газовой турбины от охлаждающего потока, протекающего в основном направлении, которое параллельно поверхности боковой стенки, содержит по меньшей мере одно турбулизирующее ребро, продолжающееся от боковой стенки в охлаждающий поток. Турбулизирующее ребро содержит галтель у основания турбулизирующего ребра. Галтель по меньшей мере с одной стороны турбулизирующего ребра продолжается в боковую стенку с образованием выемки в боковой стенке, которая приводит к локальному уменьшению толщины боковой стенки, расположенной смежно турбулизирующему ребру. Изобретение направлено на повышение эффективности охлаждения. 14 з.п. ф-лы, 7 ил.

Рабочая лопатка турбины для использования с газотурбинным двигателем содержит платформу, аэродинамическую часть, проходящую от платформы, и охлаждающие контуры, проходящие через платформу и аэродинамическую часть лопатки. Один из охлаждающих контуров содержит змеевидный охлаждающий канал, расположенный в платформе и содержащий один или более прямых участков и один или более изгибов, и несколько внутренних соединительных проходов в змеевидном охлаждающем канале для обеспечения возможности осмотра и доступа для выполнения ремонта. Внутренние соединительные проходы запаяны. Изобретение направлено на охлаждение платформы и других компонентов без излишних производственных и операционных затрат и без чрезмерных потерь охлаждающей среды, для эффективной работы и увеличенного срока службы компонентов. 3 н. и 15 з.п. ф-лы, 5 ил.

Охлаждающий бандажный узел турбины для газотурбинной установки содержит внешний и внутренний бандажные элементы. Внешний бандажный элемент расположен внутри турбинной секции газотурбинной установки вблизи корпуса турбинной секции и имеет, по меньшей мере, один воздуховод для введения в этот элемент охлаждающей текучей среды. Внутренний бандажный элемент расположен во внутреннем радиальном направлении относительно внешнего бандажного элемента и жестко с ним соединен. Внутренний бандажный элемент имеет микроканалы, проходящие в окружном направлении, или осевом направлении, или в обоих этих направлениях, для охлаждения внутреннего бандажного элемента охлаждающей текучей средой из, по меньшей мере, одного воздуховода. Во внешнем бандажном элементе, или во внутреннем бандажном элементе, или в обоих этих элементах выполнены входные отверстия микроканалов для направления охлаждающей текучей среды из внешнего бандажного элемента в микроканалы и покрытие. Покрытие расположено вблизи внутренней поверхности внутреннего бандажного элемента и предназначено для герметичного закрытия микроканалов для защиты их от тракта горячего газа газотурбинной установки. Изобретение направлено на повышение эффективности охлаждения и увеличение срока службы. 3 н. и 17 з.п. ф-лы, 7 ил.

Изобретение относится к энергетике. Система содержит турбинную лопатку, имеющую по меньшей мере один охлаждающий паз, предназначенный для транспортировки хладагента в направлении потока от внутренней части турбинной лопатки наружу. Охлаждающий паз имеет входное отверстие, соединенное с внутренней поверхностью, и сходящуюся секцию, расположенную ниже по потоку от входного отверстия. Сходящаяся секция имеет первую площадь поперечного сечения, которая уменьшается в направлении потока. Охлаждающий паз также имеет выходное отверстие, расположенное вдоль задней кромки турбинной лопатки. Также представлены вращающаяся лопатка турбины и способ изготовления лопатки. Изобретение позволяет обеспечить лучшую передачу тепла к задней кромке лопатки. 3 н. и 17 з.п. ф-лы, 6 ил.

Охлаждаемая турбина двухконтурного газотурбинного двигателя содержит сопловой аппарат турбины с сопловыми лопатками, диск с рабочими лопатками, установленными в проточной части турбины, многоканальный воздуховод. Многоканальный воздуховод проходит через внутренние полости сопловых лопаток, его входная полость сообщена с источником охлаждающего воздуха. Выходная полость многоканального воздуховода соединена, с одной стороны, через дополнительный аппарат закрутки статора, дополнительный безлопаточный диффузор и дополнительные воздушные каналы с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки, а с другой стороны, через аппарат закрутки статора, безлопаточный диффузор и воздушные каналы с остальной полостью каждой рабочей лопатки. Безлопаточный диффузор и дополнительный безлопаточный диффузор размещены на сопловом аппарате турбины и выполнены в виде каналов, входные полости которых соединены с аппаратом закрутки статора и дополнительным аппаратом закрутки статора соответственно. Выходная полость канала дополнительного безлопаточного диффузора соединена через дополнительные воздушные каналы с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки. Выходная полость канала безлопаточного диффузора соединена через воздушные каналы с остальной полостью каждой рабочей лопатки. Выходные полости каналов образуют между собой кольцевой зазор, оснащенный подвижным уплотнением, и отделены дополнительными подвижными уплотнениями от проточной части турбины и от полости, образованной аппаратом закрутки статора и диском с рабочими лопатками. Изобретение позволяет снизить затраты на изготовление и сборку элементов конструкции узла турбины за счет снижения массы деталей и металлоемкости конструкции. 1 ил.

Аэродинамический профиль содержит внешнюю и внутреннюю стенки и расположенный между ними охлаждающий канал, служащий для прохождения по нему охлаждающей текучей среды во время работы аэродинамического профиля. На внутренней стенке имеется выступ, отходящий от поверхности внутренней стенки внутрь охлаждающего канала. Выступ на внутренней стенке устроен и спрофилирован таким образом, что он направляет, по меньшей мере, часть охлаждающей текучей среды, при ее прохождении по охлаждающему каналу и обтекании выступа на внутренней стенке, чтобы поток охлаждающей текучей среды ударялся в первую область внешней стенки. На внешней стенке также выполнен выступ, отходящий от поверхности внешней стенки внутрь охлаждающего канала. Выступ на внешней стенке устроен и спрофилирован таким образом, что он направляет, по меньшей мере, часть потока охлаждающей текучей среды, при его прохождении по охлаждающему каналу и обтекании выступа на внешней стенке, на внутреннюю стенку, чтобы он ударялся во вторую область на внутренней стенке. Изобретение направлено на повышение эффективности охлаждения. 2 н. и 10 з.п. ф-лы, 3 ил.

Изобретение относится к области теплоэнергетики, в частности к способу и устройству для охлаждения высокотемпературных шпилек корпуса и фланцевых соединений паровых турбин тепловых электрических станций (ТЭС, ТЭЦ), в частности высокотемпературных шпилек фланцевых разъемов уплотнения цилиндра высокого давления (ЦВД), и может быть использовано в системах охлаждения шпилек турбин типа ПТ. Поставленная техническая задача в способе охлаждения высокотемпературных шпилек паровых турбин, включающем подвод охлаждающего пара по охлаждающей линии из проточного канала с одной стороны и отвод охлаждающего пара по отводящей линии с другой стороны, достигается за счет того, что отбор пара происходит из ступени среднего или низкого давления паровой турбины с последующим направлением отобранного пара для охлаждения высокотемпературных шпилек паровых турбин, при этом регулирование скорости потока отобранного пара осуществляется за счет регулировки запорной арматуры на линиях отбора пара из ступени низкого или среднего давления паровой турбины, а регулировка температуры отобранного пара осуществляется за счет его отбора со ступеней низкого или среднего давления паровой турбины, далее отобранный пар направляется через цилиндрический патрубок в цилиндрическую металлическую трубку меньшего диаметра и далее, распределяясь в объеме, попадает в охлаждающий цилиндрический канал, где отобранный пар через перфорацию в цилиндрической металлической трубке меньшего диаметра подается в охлаждающий цилиндрический канал, где снимает часть теплоты с внутренней поверхности внешней цилиндрической трубки большего диаметра и, вследствие теплоотдачи, сам нагревается, при этом охлаждает стенки внешней цилиндрической металлической трубки большего диаметра, далее пар вытесняется в отводящий цилиндрический патрубок и далее либо возвращается в цикл паротурбинной установки, либо направляется в атмосферу. Поставленная техническая задача в устройстве для осуществления способа охлаждения высокотемпературных шпилек паровых турбин, содержащем охлаждающие цилиндрические каналы, перфорацию, достигается за счет того, что охлаждающий цилиндрический канал образован двумя цилиндрическими металлическими трубками с основаниями, имеющими общую вертикальную ось, причем цилиндрическая металлическая трубка меньшего диаметра имеет перфорацию и соединена с цилиндрическим патрубком, а внешняя цилиндрическая металлическая трубка большего диаметра соединена с отводящим цилиндрическим патрубком. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области транспорта газа и теплоэнергетики, в частности к системе охлаждения высокотемпературных шпилек, корпуса и фланцевых соединений газовых турбин, и может быть использовано в энергетических газотурбинных установках (ГТУ) в составе комбинированных парогазовых установок (ПГУ) или в ГТУ в составе привода газоперекачивающих агрегатов компрессорных станций. Технической задачей заявленного технического решения по способу охлаждения высокотемпературных шпилек газовых турбин и устройству для его осуществления является повышение долговечности и надежности уплотнения фланцевых соединений корпуса газотурбинной установки и устранение утечек через разъемы фланцевых соединений корпуса газотурбинной установки вследствие уменьшения термического напряжения на соединительных шпильках фланцевых соединений без изменения основных конструктивных элементов газовой турбины, шпилек, корпуса и фланцевых соединений газовых турбин. Поставленная техническая задача в способе охлаждения высокотемпературных шпилек газовых турбин, включающем подвод охлаждающего воздуха во внутренние полости через воздушные каналы с перфорированными отверстиями в стенке и подачу охлаждающего воздуха из воздушной полости, достигается тем, что отбор воздуха происходит из ступени компрессора с последующим направлением отобранного воздуха для охлаждения высокотемпературных шпилек газовых турбин, при этом регулирование скорости потока отобранного воздуха осуществляется за счет регулировки запорной арматуры на линиях отбора воздуха из ступени компрессора, а регулировка температуры отобранного воздуха осуществляется за счет его отбора со ступеней компрессора, далее отобранный воздух направляется через цилиндрический патрубок в цилиндрическую металлическую трубку меньшего диаметра и далее, распределяясь в объеме, попадает в охлаждающий цилиндрический канал, где отобранный воздух через перфорацию в цилиндрической металлической трубке меньшего диаметра подается в охлаждающий цилиндрический канал, где снимает часть теплоты с внутренней поверхности внешней цилиндрической трубки большего диаметра и вследствие теплоотдачи сам нагревается, при этом охлаждает стенки внешней цилиндрической металлической трубки большего диаметра, и далее воздух вытесняется в отводящий цилиндрический патрубок и далее либо возвращается в цикл газовой турбины, либо направляется в атмосферу. Поставленная техническая задача в устройстве для охлаждения высокотемпературных шпилек газовых турбин, содержащем охлаждающие цилиндрические каналы, перфорацию, достигается тем, что охлаждающий цилиндрический канал образован двумя цилиндрическими металлическими трубками с основаниями, имеющими общую вертикальную ось, причем цилиндрическая металлическая трубка меньшего диаметра имеет перфорацию и соединена с цилиндрическим патрубком, а внешняя цилиндрическая металлическая трубка большего диаметра соединена с отводящим цилиндрическим патрубком. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области транспорта газа и теплоэнергетики, в частности к системе охлаждения высокотемпературных шпилек, корпуса и фланцевых соединений газовых турбин, и может быть использовано в энергетических газотурбинных установках (ГТУ) в составе комбинированных парогазовых установок (ПГУ) или в ГТУ в составе привода газоперекачивающих агрегатов компрессорных станций. Технической задачей заявленного технического решения по способу охлаждения высокотемпературных шпилек газовых турбин и устройству для его осуществления является повышение долговечности и надежности уплотнения фланцевых соединений корпуса газотурбинной установки и устранение утечек через разъемы фланцевых соединений корпуса газотурбинной установки вследствие уменьшения термического напряжения на соединительных шпильках фланцевых соединений без изменения основных конструктивных элементов газовой турбины, шпилек, корпуса и фланцевых соединений газовых турбин. Поставленная техническая задача в способе охлаждения высокотемпературных шпилек газовых турбин, включающем подвод охлаждающего воздуха во внутренние полости через воздушные каналы с перфорированными отверстиями в стенке и подачу охлаждающего воздуха из воздушной полости, достигается тем, что отбор воздуха происходит из ступени компрессора с последующим направлением отобранного воздуха для охлаждения высокотемпературных шпилек газовых турбин, при этом регулирование скорости потока отобранного воздуха осуществляется за счет регулировки запорной арматуры на линиях отбора воздуха из ступени компрессора, а регулировка температуры отобранного воздуха осуществляется за счет его отбора со ступеней компрессора, далее отобранный воздух направляется через цилиндрический патрубок в цилиндрическую металлическую трубку меньшего диаметра и далее, распределяясь в объеме, попадает в охлаждающий цилиндрический канал, где отобранный воздух через перфорацию в цилиндрической металлической трубке меньшего диаметра подается в охлаждающий цилиндрический канал, где снимает часть теплоты с внутренней поверхности внешней цилиндрической трубки большего диаметра и вследствие теплоотдачи сам нагревается, при этом охлаждает стенки внешней цилиндрической металлической трубки большего диаметра, и далее воздух вытесняется в отводящий цилиндрический патрубок и далее либо возвращается в цикл газовой турбины, либо направляется в атмосферу. Поставленная техническая задача в устройстве для охлаждения высокотемпературных шпилек газовых турбин, содержащем охлаждающие цилиндрические каналы, перфорацию, достигается тем, что охлаждающий цилиндрический канал образован двумя цилиндрическими металлическими трубками с основаниями, имеющими общую вертикальную ось, причем цилиндрическая металлическая трубка меньшего диаметра имеет перфорацию и соединена с цилиндрическим патрубком, а внешняя цилиндрическая металлическая трубка большего диаметра соединена с отводящим цилиндрическим патрубком. 2 н. и 2 з.п. ф-лы, 3 ил.

Деталь содержит внутренний охлаждающий канал. Охлаждающий канал дополнительно содержит: первую и вторую внутренние поверхности соответствующих первой и второй наружных стенок детали; и первую и вторую боковые поверхности, проходящие между упомянутыми внутренними поверхностями. Поперечное сечение канала имеет профиль в форме песочных часов, в котором боковые поверхности сближаются друг с другом до горловины, ширина которой меньше, чем ширина каждой из первой и второй внутренних поверхностей. Общее направление потока охладителя в канале перпендикулярно упомянутому профилю в форме песочных часов. Деталь дополнительно содержит множество турбулизаторов на каждой из боковых поверхностей, которые поджимают охладитель к внутренним поверхностям. Вершина в центральном участке каждого турбулизатора образует горловину охлаждающего канала. Изобретение повышает эффективность и результативность охлаждающих каналов. 3 н. и 12 з.п. ф-лы, 10 ил.

Наверх