Способ измерения физических величин с помощью датчиков на поверхностных акустических волнах



Способ измерения физических величин с помощью датчиков на поверхностных акустических волнах
Способ измерения физических величин с помощью датчиков на поверхностных акустических волнах
Способ измерения физических величин с помощью датчиков на поверхностных акустических волнах
Способ измерения физических величин с помощью датчиков на поверхностных акустических волнах
Способ измерения физических величин с помощью датчиков на поверхностных акустических волнах
Способ измерения физических величин с помощью датчиков на поверхностных акустических волнах
Способ измерения физических величин с помощью датчиков на поверхностных акустических волнах
Способ измерения физических величин с помощью датчиков на поверхностных акустических волнах
H01L31/00 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

Владельцы патента RU 2629892:

Федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" (RU)

Изобретение относится к измерительной технике и может быть использовано для дистанционного беспроводного измерения различных физических величин, в частности температуры, давления, перемещения, магнитной индукции, ультрафиолетового излучения, концентрации газов и др., с помощью датчиков на поверхностных акустических волнах (ПАВ) при их облучении радиоимпульсами. Вторично отраженные от ВШП ПАВ, которые возникают из-за отражений ПАВ от приемопередающего ВШП и вторично от них отражаются, затем вместе с первично отраженными ПАВ через приемопередающую антенну попадают на считыватель. Производят Фурье-преобразование частотной зависимости комплексного коэффициента отражения антенны считывателя и получают импульсный отклик датчика ПАВ, содержащий вторичные пики отражения от опорного отражательного ВШП, отражательного ВШП, нагруженного на импеданс, величина которого зависит от измеряемой физической величины, или этот ВШП не нагружен, но перед ним может быть расположена пленка, параметры которой зависят от измеряемой физической величины, далее определяют временное положение полученных пиков и отношение амплитуд этих пиков, которые пропорциональны квадрату коэффициента отражения ПАВ от ВШП, а также удвоенному затуханию ПАВ под пленкой, если она расположена перед отражательным ВШП, а расстояние между вторично отраженными ПАВ импульсами удваивается. Технический результат заключается в повышении точности измерения физических величин за счет учета вторичных отражений ПАВ. 1 з.п. ф-лы, 14 ил.

 

Изобретение относится к измерительной технике и может быть использовано для дистанционного беспроводного измерения различных физических величин, в частности температуры, давления, перемещения, магнитной индукции, ультрафиолетового излучения, концентрации газов и др., с помощью датчиков на поверхностных акустических волнах (ПАВ) при их облучения радиоимпульсами.

Из уровня техники следует, что измерение физических величин производится с помощью считывателя, который посылает опросный радиоимпульс на датчик на ПАВ (RU 2296950, 6МПК G01D 5/00, опубл. 27.02.2006 [1], RU 2387051, 6МПК H01L 41/107, G01D 5/12, опубл. 20.04.2010 [2], RU 2550697, МПК-2006.01 G01D 5/00, B82B 1/00, опубл. 10.05.2015 [3], RU 2581570, МПК-2006.01 Н03Н 9/25, опубл. 20.04.2016 [4], RU 2585487, МПК-2006.01 G01K 11/24, H01L 41/08, опубл. 27.05.2016 [5]).

Радиоимпульс принимается приемо-передающей антенной датчика на ПАВ и попадает приемо-передающий ВШП, расположенный на пьезоэлектрическом звукопроводе, где преобразуется в импульсы ПАВ, которые, распространяясь вдоль звукопровода, отражаются от расположенных на пути распространения ПАВ отражательных ВШП, первый из которых является опорным, а последний может быть соединен с импедансом, величина которого зависит от измеряемой физической величины. При изменении импеданса изменяется коэффициент отражения ПАВ от этого отражательного ВШП, что приводит к изменению амплитуды и фазы, отраженных от него ПАВ. Отраженные от него и от другого ВШП импульсы ПАВ приходят на приемопередающий ВШП, где они преобразуются в электромагнитный сигнал, представляющий последовательность радиоимпульсов, амплитуда и фаза которых пропорциональны амплитуде ПАВ падающих на приемо-передающий ВШП, и попадают на считыватель. Тогда, сравнивая амплитуды отраженных ПАВ от первого и последнего ВШП определяют значение измеряемой физической величины, если последний ВШП нагружен на импеданс или измеряют задержку ПАВ между первым и последним ВШП, если последний не нагружен. Амплитуда и фаза (задержка) отраженных ПАВ также может меняться, если ПАВ проходят под пленкой, расположенной между соседними отражательными ВШП. В этом случае под действием измеряемой физической величины, например, интенсивности электромагнитного излучения в видимой или ультрафиолетовой области (Wenbo Penga, Yongning Heat, Changbao Wenb, Ke Maa, Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer // Sensors and Actuators A: Physical Volume 184, September 2012, Pages 34-40 [6], US Patent 6914279, МПК7 H01L 29/82 от 05.06.2005 [7], US Patent 7989851, МПК-2006.01 H01L 29/82 от 02.08.2011 [8]). При наличии помех сигналы, отраженные от датчиков, могут быть на их уровне, и сигналы не могут быть обнаружены, так как усреднять принятые импульсы не предоставляется возможным из-за отсутствия синхронизации по частоте заполнения зондирующих импульсов, что является недостатком известных способов.

Указанный недостаток устранен в способе, в котором на приемопередающий ВШП датчика периодически подают зондирующий электромагнитный импульс, в котором частота дискретно меняется по линейному закону, измеряют частотную зависимость комплексного коэффициента отражения S11 этого преобразователя ПАВ и последующее Фурье-преобразование полученной частотной зависимости, по которому определяют амплитуду и задержку отраженных импульсов ПАВ, причем длительность зондирующего электромагнитного импульса выбирается таким образом, что измерения на каждой частоте ведутся некоторое время, за которое ПАВ проходит расстояние большее, чем удвоенное расстояние между ВШП, частота заполнения электромагнитного импульса формируется с помощью цифрового синтезатора частоты (RU 2569039, 6МПК G01N 29/04, опубл. 20.11.2015 [9]), совпадающий с заявляемым изобретением по большинству существенных признаков и принимаемый за прототип.

Согласно способу-прототипу определение значения параметра S11 в каждой частотной точке производится некоторое время, за которое ПАВ проходит расстояние большее, чем удвоенное расстояние между ВШП, это приводит к повышению точности измерений потому, что амплитуды отраженного сигнала измеряются на определенной частоте более одного раза, а также потому, что фазы сигналов помех носят случайный характер и взаимно ослабляются за время измерения. Кроме того, из-за периодичности посылки частотно-модулированных импульсов измерение в каждой частотной точке производится несколько раз и эти измерения могут также суммироваться, что также приводит к уменьшению влияния помех на результаты измерений, а, следовательно, к повышению точности измерений.

Однако при малых относительных изменениях измеряемой физической величины (менее одного процента) коэффициент отражения ПАВ от отражательного ВШП, нагруженного на импеданс или задержка ПАВ будет изменяться незначительно, и изменение амплитуды ПАВ отраженных от отражательного ВШП или задержки ПАВ могут оказаться меньше уровня шумов, что снижает точность измерения при слабых изменениях физической величины.

Техническим результатом настоящего изобретения является повышение точности способа измерения физических величин за счет учета в импульсном отклике вторичных отражений ПАВ.

Указанный технический результат достигается тем, что способ измерения физических величин с помощью датчиков на поверхностных акустических волнах (ПАВ) характеризуется тем, что посылают от считывателя зондирующий электромагнитный радиоимпульс с линейно-частотной модуляцией через направленную антенну на антенну датчика на ПАВ, принимают отраженные от антенны датчика импульсы, измеряют частотную зависимость комплексного коэффициента отражения S11 антенны считывателя и производят Фурье-преобразование полученной частотной зависимости, представляющее импульсный отклик датчика, по которому измеряют амплитуду и временную задержку отраженных импульсов ПАВ от встречно-штыревого преобразователя (ВШП) датчика, при этом длительность зондирующего электромагнитного импульса выбирают таким образом, что измерения на каждой частоте проводят некоторое время, за которое ПАВ проходит расстояние большее, чем удвоенное расстояние между ВШП, частоту заполнения электромагнитного импульса формируют с помощью цифрового синтезатора частоты, входящего в считыватель, с заданной дискретностью перестройки.

Согласно изобретению в импульсном отклике датчика на ПАВ измеряют амплитуды импульсов от вторично отраженных ПАВ для датчиков, в которых один из отражательных ВШП является опорным, а другой нагружен на импеданс, значение которого зависит от физической величины, или между ВШП расположена пленка, затухание ПАВ в которой зависит от измеряемой физической величины, а отражательный опорный ВШП и отражательный ВШП не нагружены на импеданс, или временные задержки между импульсами от вторично отраженных ПАВ для датчиков, в которых отражательный опорный ВШП и отражательный ВШП не нагружены на импеданс, а временная задержка отраженных импульсов в пьезоэлектрическом звукопроводе зависит от измеряемой физической величины.

В частном случае выполнения в качестве считывателя использован измеритель комплексных коэффициентов передачи, соединенный с персональным компьютером.

Вторично отраженные от ВШП ПАВ, которые возникают из-за отражений ПАВ от приемо-передающего ВШП, которые вновь попадают на отражательные ВШП и вторично от них отражаются, попадая снова на приемо-передающий ВШП, а далее вместе с первично отраженными ПАВ через приемо-передающую антенну попадают на считыватель, где после Фурье преобразования параметра S11 получают импульсный отклик датчика ПАВ, содержащий вторичные пики отражения от опорного отражательного ВШП, отражательного ВШП, нагруженного на импеданс, величина которого зависит от измеряемой физической величины или этот ВШП не нагружен, но перед ним может быть расположена пленка, параметры которой зависят от измеряемой физической величины, далее определяют временное положение полученных пиков и отношение амплитуд этих пиков, которые пропорциональны квадрату коэффициента отражения ПАВ от ВШП, а также удвоенному затуханию ПАВ под пленкой, если она расположена перед отражательным ВШП, а расстояние между вторично отраженными ПАВ импульсами удваивается.

Измерение вторичных отражений ПАВ для повышения точности измерения физических величин не известно из уровня техники.

Заявляемый способ измерения физических величин с помощью датчиков на поверхностных акустических волнах поясняется чертежами.

Фиг. 1 - схема осуществления способа с помощью датчика на ПАВ, в котором один из отражательных ВШП нагружен на импеданс.

Фиг. 2 - схема осуществления способа с помощью датчика на ПАВ, в котором между ВШП расположена пленка, параметры которой зависят от измеряемой физической величины, а ВШП не нагружен на импеданс.

Фиг. 3 - схема осуществления способа с помощью датчика опроса датчика на ПАВ, в котором между ВШП нет пленки, ВШП не нагружен на импеданс, а задержка ПАВ в пьезоэлектрическом звукопроводе зависит от измеряемой физической величины.

Фиг. 4 - последовательность действий заявляемого способа.

Фиг. 5 - частотная зависимость модуля коэффициента отражения S11.

Фиг. 6 - Фурье-преобразование измеренной частотной зависимости, представляющее импульсный отклик датчика измерения диэлектрической проницаемости жидкости.

Фиг. 7 - Фурье-преобразование измеренной частотной зависимости в увеличенном масштабе по оси Y, представляющее импульсный отклик датчика измерения диэлектрической проницаемости жидкости.

Фиг. 10 - Фурье-преобразование измеренной частотной зависимости, представляющее импульсный отклик датчика измерения интенсивности ультрафиолетового излучения.

Фиг. 11 - Фурье-преобразование измеренной частотной зависимости в увеличенном масштабе по оси Y, представляющей импульсный отклик датчика измерения интенсивности ультрафиолетового излучения.

Фиг. 12 - Фурье-преобразование измеренной частотной зависимости, представляющее импульсный отклик датчика на ПАВ при отсутствии излучения и при интенсивности излучения без ослабления.

Фиг. 13 - Фурье-преобразование измеренной частотной зависимости, представляющее импульсный отклик датчика на ПАВ датчика температуры на ПАВ.

Фиг. 14 - Фурье-преобразование измеренной частотной зависимости, представляющее импульсный отклик датчика на ПАВ датчика температуры на ПАВ в увеличенном масштабе по оси Y.

Каждая схема для реализации заявляемого способа содержит считыватель 1, антенну 2, антенну датчика 3, пьезоэлектрический звукопровод 4 и расположенные на нем приемо-предающий ВШП 5, отражательные ВШП 6 и ВШП 7 в одном акустическом канале. На краях пьезоэлектрического звукопровода 5 расположены акустические поглотители 8, пьезоэлектрический звукопровод 5 вместе с ВШП 6 и ВШП 7 помещены в герметичный корпус 9. Отражательный ВШП 6 не подсоединен к импедансу и является опорным, а отражательный ВШП 7, подсоединен к импедансу 10 (Z), величина которого зависит от измеряемой физической величины (фиг. 1) или перед ним находится пленка 11, параметры которой зависят от измеряемой физической величины (фиг. 2), а ВШП 7 остается ненагруженным. ВШП 7 также остается ненагруженным, если задержка ПАВ в пьезоэлектрическом звукопроводе 4 зависит от изменяемой физической величины (фиг. 3) и между ВШП нет пленки. К считывателю 1 подсоединен компьютер 12. (фиг. 1, 2, 3).

Операции способа измерения физических величин в соответствии с фиг. 4 состоят в следующем.

Считыватель 1 через антенну 2 посылает на антенну датчика длинный радиоимпульс с линейно-изменяющейся частотой I, который попадает на приемо-предающий ВШП 5, возбуждающий ПАВ (фиг. 2-4). Причем длительность зондирующего электромагнитного импульса выбирается таким образом, что измерения на каждой частоте проводят некоторое время, за которое ПАВ проходит расстояние большее, чем удвоенное расстояние между преобразователем и дефектом, частота заполнения электромагнитного импульса формируется с помощью цифрового синтезатора частоты с дискретностью перестройки в 1 Гц для повышения точности измерения [5]. ВШП5 и отражательные ВШП 6 и 7 расположены на одном пьезоэлектрическом звукопроводе 4 в одном акустическом канале. На краях звукопровода 4 расположены акустические поглотители 8, и пьезоподложка вместе с ВШП помещена в герметичный корпус 11. Отражательный ВШП 6 не подсоединен к импедансу и является опорным, а отражательный ВШП 7, подсоединен к импедансу 10 (Z) (фиг. 1), величина которого зависит от измеряемой физической величины или перед ним находится пленка 11, параметры которой зависят от измеряемой физической величины, а ВШП 7 остается ненагруженным (фиг. 2). ВШП 7 также остается ненагруженным, если задержка ПАВ в звукопроводе зависит от изменяемой физической величины (фиг. 3). ПАВ отражаются от отражательных ВШП 6 и 7 попадают на приемо-передающий ВШП 5, где частично преобразуются в электромагнитный импульс и через антенну 3 датчика попадают на антенну считывателя 2, а далее в считыватель 1, соединенный с компьютером 12. Другая часть ПАВ вновь отражается от ВШП 5 попадают вновь на отражательные ВШП 6 и 7 и далее вторично отраженные ПАВ снова попадают на приемо-передающий ВШП 5 и через антенну 3 на антенну считывателя 2 посылается отраженный от датчика импульс II, который через антенну 2 попадает на считыватель 1, где производится измерение частотной зависимости параметра S11. Электромагнитный сигнал от датчика начинает интерферировать с электромагнитным сигналом, который отражается непосредственно от электрического входа (выхода) антенны 2 считывателя, что приводит к изрезанности (появлению множества максимумов и минимумов) зависимости параметра S11 от частоты (см. фиг. 5), Далее данные попадают на компьютер 12, где производится Фурье-преобразование полученной частотной зависимости параметра S11. Поскольку длительность радиоимпульса значительно больше задержки ПАВ между преобразователями, то полученная частотная зависимость параметра S11 содержит информацию не только о первично отраженных от отражательных ВШП ПАВ, но и об вторично отраженных от них ПАВ. Далее по отношению амплитуд отраженных импульсов от опорного отражательного ВШП 7 и отражательного ВШП 8, нагруженного на импеданс, величина которого зависит от измеряемой физической величины, в компьютере определяется значение физической величины, поскольку коэффициент отражения от этого ВШП зависит от величины импеданса. Также можно определить и временную задержку принятых импульсов относительно опорного импульса. Так как амплитуда импульса, отраженного от ВШП пропорциональна коэффициенту отражения ПАВ от ВШП, то амплитуда вторично отраженного импульса будет пропорциональна квадрату коэффициента отражения от ВШП, отношение амплитуд вторично отраженных импульсов ПАВ будет пропорционально отношению коэффициентов отражения ПАВ от ВШП в квадрате. Поскольку вторично отраженные ПАВ проходят вдвое большее расстояние, чем первично отраженные, задержка между опорным импульсом и вторично отраженным импульсом от ВШП 7 увеличится в два раза, вне зависимости от того, подсоединен импеданс в ВШП 7 или нет, что увеличит точность измерения физической величины, если от нее зависит задержка ПАВ в пьезоэлектрическом звукопроводе. Кроме того, в датчиках, в которых имеется между ВШП 5 и 7 пленка, скорость и затухание ПАВ в которой зависит, например, от интенсивности электромагнитного излучения в видимой или в ультрафиолетовой области [8-10], чувствительность к изменению амплитуды и задержки отраженных сигналов от интенсивности излучения существенно возрастает из-за того, что ПАВ проходит под пленкой не два, а четыре раза. Это эквивалентно увеличению длины взаимодействия ПАВ с пленкой в два раза, что позволяет увеличить чувствительность измерения затухания и задержки ПАВ в зависимости от интенсивности излучения. В датчике коэффициент отражения от ненагруженного ВШП выбирается максимальным, поэтому отношение амплитуд отраженных импульсов всегда меньше 1, а относительная амплитуда импульса, отраженного от опорного ВШП 6, принимается равной 1. Если это отношение возвести в квадрат, то оно еще больше уменьшится. Это и позволяет увеличить точность определения измеряемой физической величины за счет того, что при слабом ее изменении коэффициент отражения будет также слабо меняться, и отношение амплитуд от опорного ВШП 6 и ВШП 7 будут мало отличаться для различных значений импеданса. Но будучи возведенные в квадрат эти отношения будут отличаться сильнее. Предположим, что отношение амплитуд при одном значении физической величины равно А<1, а при другом значении - А(1-α), где α<<1. Тогда для вторично отраженных импульсов, считая относительную амплитуду вторично отраженной ПАВ от опорного ВШП единичной эти отношения соответственно равны А2 и [А2⋅(1-2α+α2)]≈(1-2α)⋅А2. Нетрудно видеть из этого, что разница отношений, поделенная на величину отношения, увеличивается вдвое ,

что и повышает точность измерений.

Примеры выполнения.

В качестве считывателя использовался измеритель комплексных коэффициентов передачи (ИККП) «Обзор-103», который обеспечивает передачу и прием радиоимпульсов с линейно-частотной модуляцией длительностью 0,3-10 секунд с точностью установки частоты 1 Гц. импульсы периодически поступают на датчик на ПАВ, конструкция которого описана в патентах [1], [2] для определения диэлектрической проницаемости, в котором в качестве импеданса, нагруженного на отражательный ВШП 8 (фиг. 1) использовались последовательно соединенные индуктивность и емкость, представляющая собой две параллельные пластины размером 10×15 мм из гетинакса, фольгированные с внутренних сторон, с зазором между ними 1 мм. Жидкость заполняла зазор и изменяла емкость конденсатора, что приводило к изменению импеданса, а, следовательно, и к изменению коэффициента отражения ПАВ.

На фиг. 5 показана частотная зависимость параметра S11 антенны считывателя. Видно, что частотная зависимость представляет изрезанную кривую, что обусловлено отражениями считывающего импульса от датчика. На фиг. 6, 7 показано Фурье-преобразование этой зависимости, представляющей импульсный отклик датчика. На фиг. 6 на импульсном отклике хорошо видно, что расстояние между импульсами первичного отражения 13 и 14 вдвое меньше, чем расстояние между импульсами 15 и 15 от вторично отраженных ПАВ. Относительные амплитуды импульсов 13 и 14 равны 1,0 и 0,98 соответственно и слабо отличаются друг от друга. В то же время, как видно из фиг. 7, отношение амплитуды вторично отраженных импульсов 15 и 16 равно 0,12 и 0,115. При другом соотношении в смеси бензина со спиртом меняется диэлектрическая проницаемость и, следовательно, емкость конденсатора, представляющего импеданс Z, что и приводит к изменению коэффициента отражения ПАВ от отражательного ВШП 8, нагруженного на импеданс. На фиг. 8 показан импульсный отклик, соответствующий этому случаю. Видно, что амплитуда импульса 18, отраженного от отражательного ВШП 8, уменьшилась по сравнению с амплитудой импульса 17, отраженного от опорного ВШП 7, и стала равна 0,96. В то же время, как видно из фиг. 9, амплитуда вторично отраженного импульса 20 также уменьшилась и равна 0,111. Тогда отношение первично отраженных импульсов 18 и 14 при различных соотношениях бензина и спирта равно 0.98, а отношение вторично отраженных импульсов 20 и 16 равно 0,965. Тогда разница отношений для первично отраженных ПАВ при различных отношениях в смеси бензина и спирта равна 0,02 и 0,035, т.е. разница отношений увеличилась почти в 2 раза.

Для датчика интенсивности ультрафиолетового излучения, где между ВШП 5 и 8 (фиг. 2) расположена пленка двуокиси цинка, затухание ПАВ зависит от интенсивности ультрафиолетового излучения из-за увеличения акустоэлектронного взаимодействия между ПАВ и электронами проводимости, концентрация которых зависит от интенсивности излучения [6-8]. Вторично отраженные ПАВ проходят под пленкой расстояние в 2 раза больше, чем первично отраженные, и испытываю значительно большее затухание. Это особенно хорошо видно, когда сравниваются первично и вторично отраженные импульсы при отсутствии ультрафиолетового излучения (фиг. 12). На этом рисунке хорошо видно, что, если амплитуды первично отраженных ПАВ 23 при отсутствии излучения и при его присутствии 24 отличаются более чем в 2 раза, амплитуды вторично отраженных ПАВ уже отличаются значительно. Из фиг. 10 и 11 видно, что при ослаблении излучения в 100 раз отношение амплитуд первично отраженных ПАВ, прошедших под пленкой 22 и 23, равно 0,431/0,447=0,964, то отношение вторично отраженных ПАВ равно 0,084/0,109=0,84, что значительно легче обнаружить.

Для датчика температуры при 20°С (фиг. 3) задержка импульсов от опорного ВШП 6 имеет определенное известное значение, но при другой температуре задержка меняется. На фиг. 13 показана часть импульсного отклика для первично отраженных ПАВ датчика температуры ПАВ [10, 11] при температуре 20 и 60°С. Видно, что из-за изменения температуры задержка немного увеличилась. На фиг. 14 показаны вторично отраженные импульсы. Из-за того, что для них задержка в 2 раза больше, импульсы разошлись также на удвоенное расстояние по сравнению с расстоянием между импульсами для первично отраженных ПАВ, что позволяет более точно измерить температуру.

Источники информации

1. RU 2296950, МПК-2006.01 D5/00, дата публ. 27.02.2006.

2. RU 2387051, МПК-2006.01 H01L 41/107, G01D 5/12, дата публ. 20.04.2010.

3. RU 2550697, МПК-2006.01 G01D 5/00, В82В 1/00, дата публ. 10.05.2015.

4. RU 2581570, МПК-2006.01 Н03Н 9/25, дата публ. 20.04.2016.

5. RU 2585487, МПК-2006.01 G01K 11/24, H01L 41/08, от 27.05.2016 – прототип.

6. Wenbo Penga, Yongning Неа, Changbao Wenb, Ke Maa, Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer // Sensors and Actuators A: Physical Volume 184, September 2012, Pages 34-40.

7. US 6914279, МПК7 H01L 29/82, дата публ. 05.06.2005.

8. US 7989851, МПК-2006.01 H01L 29/82, публ. 02.08.2011.

9. RU 2569039, МПК-2006.01 G01N 29/04, публ. 20.11.2015.

10. RU 2585911, МПК-2006.01 G01D 5/48, дата публ. 10.06.2016.

11. CN 102313614, МПК-2006.01, G01K 11/22, дата публ. 2012.01.11.

1. Способ измерения физических величин с помощью датчиков на поверхностных акустических волнах (ПАВ), характеризующийся тем, что посылают от считывателя зондирующий электромагнитный радиоимпульс с линейно-частотной модуляцией через направленную антенну на антенну датчика на ПАВ, принимают отраженные от антенны датчика импульсы, измеряют частотную зависимость комплексного коэффициента отражения S11 антенны считывателя и производят Фурье-преобразование полученной частотной зависимости, представляющее импульсный отклик датчика, по которому измеряют амплитуду и временную задержку отраженных импульсов ПАВ от встречно-штыревых преобразователей (ВШП) датчика, при этом длительность зондирующего электромагнитного импульса выбирают таким образом, что измерения на каждой частоте проводят некоторое время, за которое ПАВ проходит расстояние большее, чем удвоенное расстояние между ВШП, частоту заполнения электромагнитного импульса формируют с помощью цифрового синтезатора частоты, входящего в считыватель, с заданной дискретностью перестройки, отличающийся тем, что в импульсном отклике датчика на ПАВ измеряют амплитуды импульсов от вторично отраженных ПАВ для датчиков, в которых один из отражательных ВШП является опорным, а другой нагружен на импеданс, значение которого зависит от физической величины, или между ВШП расположена пленка, затухание ПАВ в которой зависит от измеряемой физической величины, а отражательный опорный ВШП и отражательный ВШП не нагружены на импеданс, или временные задержки между импульсами от вторично отраженных ПАВ для датчиков, в которых отражательный опорный ВШП и отражательный ВШП не нагружены на импеданс, а временная задержка отраженных импульсов в пьезоэлектрическом звукопроводе зависит от измеряемой физической величины.

2. Способ по п. 1. отличающийся тем, что в качестве считывателя используется измеритель комплексных коэффициентов передачи, соединенный с персональным компьютером.



 

Похожие патенты:

Многопереходный солнечный элемент для космической радиационной среды, причем многопереходный солнечный элемент имеет множество солнечных субэлементов, расположенных в порядке убывания запрещенной зоны, включающее в себя: первый солнечный субэлемент, состоящий из InGaP и имеющий первую запрещенную зону, причем первый солнечный субэлемент имеет первый ток короткого замыкания, связанный с ним; второй солнечный субэлемент, состоящий из GaAs и имеющий вторую запрещенную зону, которая имеет ширину, меньшую, чем первая запрещенная зона, причем второй солнечный субэлемент имеет второй ток короткого замыкания, связанный с ним; при этом в начале срока службы первый ток короткого замыкания меньше, чем второй ток короткого замыкания, так что эффективность AM0 преобразования является субоптимальной.

Согласно изобретению предложена эффективная солнечная батарея, выполненная многопереходной с защитным диодом, причем у многопереходной солнечной батареи и структуры защитного диода имеется общая тыльная поверхность и разделенные меза-канавкой фронтальные стороны, общая тыльная поверхность включает в себя электропроводящий слой, многопереходная солнечная батарея включает в себя стопу из нескольких солнечных батарей и имеет расположенную ближе всего к фронтальной стороне верхнюю солнечную батарею и расположенную ближе всего к тыльной стороне нижнюю солнечную батарею, каждая солнечная батарея включает в себя np-переход, между соседними солнечными батареями размещены туннельные диоды, количество слоев полупроводника у структуры защитного диода меньше, чем количество слоев полупроводника у многопереходной солнечной батареи, последовательность слоев полупроводника у структуры защитного диода идентична последовательности слоев полупроводника многопереходной солнечной батареи, причем в структуре защитного диода выполнен по меньшей мере один верхний защитный диод и один расположенный ближе всего к тыльной стороне нижний защитный диод, а между соседними защитными диодами размещен туннельный диод, количество np-переходов в структуре защитного диода по меньшей мере на один меньше, чем количество np-переходов многопереходной солнечной батареи, на передней стороне многопереходной солнечной батареи и структуры защитного диода выполнена структура соединительного контакта, содержащая один или несколько слоев металла, а под структурой соединительного контакта выполнен состоящий из нескольких слоев полупроводника электропроводящий контактный слой, и эти несколько слоев полупроводника включают в себя туннельный диод.

Заявленное изобретение относится к технике преобразования световой энергии в электрическую и предназначено для преобразования световой энергии в электрическую. Заявленная оптопара содержит излучатель, фотоприемный элемент, закрепленные на корпусе, причем в качестве излучателя света использована шаровая лампа, в качестве фотоприемного элемента использована батарея солнечных элементов, корпус выполнен в виде трубы из диэлектрического материала, на внешней боковой поверхности которого имеются распределители потенциала.

Штабелевидная интегрированная многопереходная солнечная батарея с первым элементом батареи, причем первый элемент батареи включает в себя слой из соединения InGaP с первой константой решетки и первой энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и вторым элементом батареи, причем второй элемент батареи включает в себя слой из соединения InmРn со второй константой решетки и второй энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и третьим элементом батареи, причем третий элемент батареи включает в себя слой из соединения InxGa1-xAs1-yPy с третьей константой решетки и третьей энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и четвертым элементом батареи, причем четвертый элемент батареи включает в себя слой из соединения InGaAs с четвертой константой решетки и четвертой энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, причем для значений энергии запрещенной зоны справедливо соотношение Eg1>Eg2>Eg3>Eg4, и между двумя элементами батареи сформирована область сращения плат.

Солнечный концентраторный модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами (4) Френеля на внутренней стороне фронтальной панели (3), тыльную панель (9) с фоконами (6) и солнечные элементы (7), снабженные теплоотводящими основаниями (8).

Изобретение относится к полупроводниковой электронике и может быть использовано для создания солнечных элементов. Метаморфный фотопреобразователь включает подложку (1) из GaAs, метаморфный буферный слой (2) и по меньшей мере один фотоактивный p-n-переход (3), выполненный из InGaAs и включающий базовый слой (4) и эмиттерный слой (5), слой (6) широкозонного окна из In(AlxGa1-x)As, где x=0,2-0,5, и контактный субслой (7) из InGaAs.

Изобретение относится к области электротехники, а именно к устройству каскадной солнечной батареи. Каскадная солнечная батарея выполнена с первой полупроводниковой солнечной батареей, причем в первой полупроводниковой солнечной батарее имеется р-n переход из первого материала с первой константой решетки, и со второй полупроводниковой солнечной батареей, причем во второй полупроводниковой солнечной батарее имеется р-n переход из второго материала со второй константой решетки, и причем первая константа решетки меньше, чем вторая константа решетки, и у каскадной солнечной батареи имеется метаморфный буфер, причем метаморфный буфер включает в себя последовательность из первого, нижнего слоя AlInGaAs или AlInGaP, и второго, среднего слоя AlInGaAs или AlInGaP, и третьего, верхнего слоя AlInGaAs или AlInGaP, и метаморфный буфер сформирован между первой полупроводниковой солнечной батареей и второй полупроводниковой солнечной батареей, и константа решетки метаморфного буфера изменяется по толщине (по координате толщины) метаморфного буфера, и причем между по меньшей мере двумя слоями метаморфного буфера константа решетки и содержание индия увеличивается, а содержание алюминия уменьшается.

Способ формирования туннельного перехода (112) в структуре (100) солнечных элементов, предусматривающий попеременное осаждение вещества Группы III и вещества Группы V на структуре (100) солнечных элементов и управление отношением при осаждении указанного вещества Группы III и указанного вещества Группы V.

Изобретение относится к области электроники и может быть использовано при конструировании солнечных элементов, которые используются в энергетике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности и др.

Изобретение может быть использовано для преобразования солнечной энергии в электроэнергию. Согласно изобретению предложено фотоэлектрическое устройство (1), содержащее солнечный концентратор (2), имеющий кольцеобразную форму, в свою очередь содержащий внешний проводник (3), расположенный вдоль внешней части кольца; внешнюю люминесцентную пластину (22), имеющую трапециевидный профиль и имеющую внешнюю периферийную приемную поверхность, выполненную с возможностью приема светового излучения, падающего и приходящего от проводника (3); внутреннюю люминесцентную пластину (21), расположенную вдоль внутренней части кольца и имеющую трапециевидный профиль; наноструктурный полупроводниковый слой (23), лежащий между двумя пластинами (21, 22) таким образом, что большие основания соответствующих трапециевидных профилей обращены к нему, причем упомянутый полупроводниковый слой (23) выполнен с возможностью приема излучения, переданного внешней и внутренней пластинами (21, 22), и реализации фотоэлектрического эффекта; средство (3, 5) передачи, выполненное с возможностью сбора и концентрации падающего светового излучения на упомянутой периферийной приемной поверхности.

Изобретение относится к области преобразования солнечной энергии в электрическую в тонкопленочных полупроводниковых солнечных элементах. Способ контроля структурного качества тонких пленок для светопоглощающих слоев солнечных элементов заключается в том, что регистрируют излучение пленок при импульсном лазерном возбуждении, при этом уровень возбуждения устанавливают в диапазоне 10-200 кВт/см2 для возникновения стимулированного излучения с полушириной спектра Δλ~10 нм, и сравнивают интенсивности и полуширины спектров стимулированного излучения для определения относительного структурного качества пленок. Технический результат заключается в упрощении контроля структурного качества тонких пленок для светопоглощающих слоев солнечных элементов. 4 ил.

Изобретение относится к области полупроводниковых приборов, а именно к изготовлению активных слоев солнечных модулей на основе монокристаллического или поликристаллического кремния. Солнечный модуль на основе кристаллического кремния включает пластину поликристаллического или монокристаллического кремния; пассивирующий слой в виде аморфного гидрогенизированного кремния, нанесенный на каждую сторону пластины кремния; р-слой в виде аморфного гидрогенизированного кремния, нанесенный на верхнюю сторону пассивирующего слоя; n-слой, нанесенный на нижнюю сторону пассивирующего слоя; токосъемные слои, нанесенные на р-слой и n-слой. В качестве n-слоя применяют металлические оксиды n-типа, полученного методом магнетронного распыления или методом атомного наслаивания, или методом газофазного осаждения при пониженном давлении. В качестве металлического оксида n-типа используют оксид цинка (ZnO) или SnО2, Fе2О3, TiΟ2, V2O7, МnO2, CdO и другие металлические оксиды n-типа. Изобретение позволяет повысить производительность процесса производства фотопреобразователей. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области полупроводниковых приборов, а именно к структуре фотопреобразователей на основе монокристаллического или поликристаллического кремния и к линии по производству фотопреобразователей. Структура фотопреобразователя на основе кристаллического кремния включает: текстурированную поликристаллическую или монокристаллическую пластину кремния; пассивирующий слой в виде аморфного гидрогенизированного кремния, нанесенный на каждую сторону пластины кремния; р-слой; n-слой; контактные токосъемные слои в виде прозрачных проводящих оксидов; тыльный токосъемный слой в виде металлического непрозрачного проводящего слоя, при этом в качестве р-слоя и n-слоя применяют металлические оксиды соответственно р-типа и n-типа, при этом слои n-типа и р-типа, пассивирующий и токосъемный слои наносятся методом магнетронного распыления. В качестве металлического оксида n-типа используют оксид цинка (ZnO), или SnO2, Fe2О3, ТiO2, V2O7, МnО2, CdO, или другие металлические оксиды n-типа. В качестве металлического оксида р-типа используют МоО, или СоО, Сu2О, NiO, Сr2О3, или другие металлические оксиды р-типа. Линия по производству фотопреобразователя на основе кристаллического кремния, включающая последовательные операции, такие как: очистку и текстурирование пластин кристаллического кремния; нанесение пассивирующего слоя аморфного гидрогенизированного кремния на каждую сторону пластины кремния; нанесение р-слоя фотопреобразователя; нанесение n-слоя фотопреобразователя; нанесение контактных токосъемных слоев фотопреобразователя; нанесение тыльного токосъемного слоя; окончательная сборка, при этом выполняют последовательное магнетронное напыление пассивирующего слоя, р-слоя в виде металлического оксида р-типа, n-слоя в виде металлического оксида n-типа и токосъемных слоев методом магнетронного распыления. При этом может осуществляться магнетронное распыление кремниевой мишени в атмосфере силана и аргона с добавлением водорода. Изобретение позволяет повысить производительность, уменьшить габариты производственной линии, исключить необходимость переворота пластин кремния в процессе производства. 2 н. и 3 з.п. ф-лы, 1 ил.

Оптопара // 2633934
Изобретение относится к области к технике преобразования световой энергии в электрическую и предназначено для преобразования световой энергии в электрическую. Заявленная оптопара содержит источник света, фотопреобразователь и корпус. В качестве источника света использована шаровая ксеноновая лампа, а в качестве фотопреобразователя использована батарея солнечных элементов. Дополнительно введены линза, полый изолятор, сферическая отражающая поверхность, зеркало, еще один корпус. При этом один из корпусов имеет форму сферы, а другой имеет форму цилиндра, причем оба корпуса имеют отверстия в боковой поверхности в виде кругов и соединены между собой с помощью полого изолятора. В центре сферического корпуса расположена шаровая ксеноновая лампа, а в торце полого изолятора, обращенного к шаровой ксеноновой лампе, расположена линза. В одном торце цилиндрического корпуса расположена сферическая отражающая поверхность, а во втором торце – батарея солнечных элементов, причем ось полого изолятора совпадает с осями сферического корпуса и шаровой ксеноновой лампы и перпендикулярна оси цилиндрического корпуса, совпадающей с осями сферической отражающей поверхности и батареи солнечных элементов. На пересечении осей расположено поворотное зеркало, обращенное к сферической отражающей поверхности, внутренние поверхности полого изолятора, сферического и цилиндрического корпусов имеют зеркальное покрытие, а шаровая ксеноновая лампа, батарея солнечных элементов оптически связаны между собой через линзу, поворотное зеркало и сферическую отражающую поверхность. Технический результат - расширение технологических возможностей оптопары. 1 ил.

Изобретение относится к сканирующим матричным фотоприемным устройствам (МФПУ) - устройствам, преобразующим входное оптическое изображение, формируемое объективом, в заданный спектральный диапазон, а затем в выходной электрический видеосигнал с помощью сканирования изображения. МФПУ включает N каналов и подчиняется заданному критерию дефектности по пороговой фотоэлектрической характеристике, вероятности безотказной работы, количеству и расположению дефектных и неработоспособных каналов, при сохранении заданной вероятности его безотказной работы. Для получения заданной величины наработки МФПУ при сохранении его критерия дефектности количество фоточувствительных элементов (ФЧЭ) в канале увеличено до заданной величины, определяемой величиной средней наработки ФЧЭ до отказа и уровнем пороговой фотоэлектрической характеристики. Изобретение позволяет повысить время наработки МФПУ. 3 ил.

Настоящее изобретение относится к многомодульным устройствам, сформированным на общей подложке, которые более предпочтительны, чем одиночные модульные устройства, особенно в фотоэлектрических областях применения. Многомодульное устройство, обеспечивающее электрическую изоляцию модулей без механической изоляции модулей, включает подложку; омические контакты для двух внешних соединений многомодульного устройства, имеющие электрическое напряжение, электрическое поле на подложке и движение тока между двумя внешними соединениями; несколько модулей, сформированных на подложке и отделенных расстоянием друг от друга так, чтобы стороны модулей были смежными без механической изоляции между модулями; каждый модуль из множества модулей включает в себя P-N-переход для создания диффузионного поля между материалом Р-типа и материалом N-типа P-N-перехода в результате наличия фотогенерированных или генерированных смещением носителей, причем материал Р-типа и материал N-типа являются встречно-штыревыми; и шинную конструкцию, содержащую шинные части для прохождения движения тока в многомодульном устройстве, при этом каждая шинная часть проходит по подложке от первой стороны одного из множества модулей к смежной стороне другого из множества модулей, так что между модулями отсутствует механическая изоляция; и P-N-переход каждого модуля ориентирован так, чтобы диффузионное поле внутри каждого P-N-перехода было направлено перпендикулярно движению тока в многомодульном устройстве, движению паразитного тока и электрическому полю на подложке между двумя внешними соединениями, обеспечивая электрическую изоляцию между модулями. Многомодульные устройства, выполненные согласно изобретению, работают с низкими токами, высокими выходными напряжениями и низкими потерями внутренней энергии. 5 н. и 17 з.п. ф-лы, 4 ил.

Солнечный фотоэлектрический концентраторный модуль содержит первичный оптический концентратор (3) в виде линзы Френеля, с линейным размером D, оптическая ось (4) которой проходит через центр (5) фотоактивной области фотоэлемента (1), выполненной в виде круга диаметром d, и соосный с ним вторичный концентратор (6), выполненный в виде четвертьволнового радиального градана диаметром d и высотой h1, установленный на расстоянии h2 от фронтальной поверхности линзы Френеля, при этом величины h1, h2, и D удовлетворяют определенным соотношениям. Изобретение обеспечивает формирование фотоэлектрического модуля с повышенной надежностью, с увеличенным сроком службы и высокой энергопроизводительностью за счет выравнивания освещенности фотоактивной области и уменьшения локальной концентрации солнечного излучения. 1 з.п. ф-лы, 1 ил.

Многопереходной солнечный элемент включает первый субэлемент, состоящий из соединения из InGaAs, причем первый субэлемент имеет первую постоянную решетки, и второй субэлемент со второй постоянной решетки, причем первая постоянная решетки по меньшей мере на 0,008 больше, чем вторая постоянная решетки, и, кроме того, предусмотрен метаморфный буфер, который выполнен между первым субэлементом и вторым субэлементом. Буфер содержит последовательность по меньшей мере из трех слоев, постоянная решетки у этой последовательности увеличивается по направлению к первому субэлементу. Постоянные решетки слоев буфера больше, чем вторая постоянная решетки, один слой буфера имеет третью постоянную решетки, которая больше, чем первая постоянная решетки. Между метаморфным буфером и первым субэлементом выполнено N компенсирующих слоев для компенсации остаточного напряжения метаморфного буфера. Постоянные решетки соответствующих компенсирующих слоев меньше, чем первая постоянная решетки на величину ΔАN>0,0008, и компенсирующие слои имеют содержание индия более 1%, а толщины количества N компенсирующих слоев выбраны из определенного соотношения. Изобретение обеспечивает возможность повышения коэффициента полезного действия многопереходного солнечного элемента. 16 з.п. ф-лы, 6 ил.

Изобретение относится к технологии изготовления фотопреобразователя с повышенным коэффициентом полезного действия (КПД). Предложен способ изготовления фотопреобразователя путем формирования в pin-структуре i-слоя на основе арсенида индия InGaAs между слоями GaAs и AlGaAs на подложках GaAs, при давлении 4⋅10-7-10-8 Па, температуре 600-800°С и скорости роста 2 Å/с. Изобретение обеспечивает повышение КПД преобразования, обеспечение технологичности, улучшение параметров, повышение качества и увеличение процента выхода годных. 1 табл.

Настоящее изобретение относится к способу формирования сильнолегированного серой микроструктурированного кристаллического слоя на поверхности кремния, который может быть использован в солнечной энергетике, оптоэлектронике, приборах ночного и тепловидения. Способ заключается в размещении поверхности кремния под химически активной жидкой средой серосодержащего соединения и облучении поверхности кремния импульсами сфокусированного лазерного излучения наносекундной длительности инфракрасного диапазона, при этом задают плотность энергии лазерного излучения достаточной для проникновения этим излучением через жидкую среду к поверхности кремния с разложением молекул серосодержащего соединения до выделения атомов серы и для нагрева поверхности кремния до температуры, при которой происходит диффузия в нее атомов серы вместе с ее абляционным микроструктурированием и отжигом. Технический результат изобретения состоит в многократном расширении области и величины высокой поглощательной способности (в том числе высокого коэффициента поглощения) поверхностного слоя кремния в процессе сверхлегирования атомами серы под действием лазерного облучения с сохранением его кристаллического характера. 6 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике и может быть использовано для дистанционного беспроводного измерения различных физических величин, в частности температуры, давления, перемещения, магнитной индукции, ультрафиолетового излучения, концентрации газов и др., с помощью датчиков на поверхностных акустических волнах при их облучении радиоимпульсами. Вторично отраженные от ВШП ПАВ, которые возникают из-за отражений ПАВ от приемопередающего ВШП и вторично от них отражаются, затем вместе с первично отраженными ПАВ через приемопередающую антенну попадают на считыватель. Производят Фурье-преобразование частотной зависимости комплексного коэффициента отражения антенны считывателя и получают импульсный отклик датчика ПАВ, содержащий вторичные пики отражения от опорного отражательного ВШП, отражательного ВШП, нагруженного на импеданс, величина которого зависит от измеряемой физической величины, или этот ВШП не нагружен, но перед ним может быть расположена пленка, параметры которой зависят от измеряемой физической величины, далее определяют временное положение полученных пиков и отношение амплитуд этих пиков, которые пропорциональны квадрату коэффициента отражения ПАВ от ВШП, а также удвоенному затуханию ПАВ под пленкой, если она расположена перед отражательным ВШП, а расстояние между вторично отраженными ПАВ импульсами удваивается. Технический результат заключается в повышении точности измерения физических величин за счет учета вторичных отражений ПАВ. 1 з.п. ф-лы, 14 ил.

Наверх