Способ дистанционного досмотра багажа в контролируемой области пространства

Использование: для дистанционного досмотра багажа. Сущность изобретения заключается в том, что выполняют облучение контролируемой области пространства когерентным СВЧ-излучением на наборе частот, регистрацию сигнала после прохождения сигналом этой области с помощью нескольких каналов регистрации и обработку зарегистрированного сигнала, который несет информацию о диэлектрических объектах в багаже, при этом облучение области СВЧ-излучением осуществляют несколькими передающими элементами, расположенными в различных точках пространства, а при обработке зарегистрированного сигнала определяют множество значений удлинения оптического пути, соответствующих определенной паре излучатель-регистратор на наборе частот, затем вычисляют распределение плотности удлинения оптического пути в конкретной области пространства, выделяют непрерывные трехмерные участки с близкими по значению плотностями удлинения оптического пути, затем для каждого выделенного участка вычисляют среднюю плотность удлинения ρ оптического пути, положение и размеры диэлектрического объекта, находящегося в багаже, в системе координат (x, y, z), диэлектрическую проницаемость ε диэлектрического объекта в сечении одной из плоскостей системы координат, причем диэлектрическую проницаемость вычисляют по заданной математической формуле, задают значения εниж и εверх, которые характерны для опасных диэлектрических объектов, и при εниж<ε<εверх констатируют присутствие опасного диэлектрического объекта в контролируемой области пространства. Технический результат: обеспечение возможности выявления опасных диэлектрических объектов, а также обеспечение возможности определения положения выявленного объекта в пространстве и его размеров.

 

Изобретение относится к области дистанционного досмотра багажа, в частности к способам обнаружения диэлектрических взрывчатых веществ, провозимых в багаже пассажира, где под багажом подразумевается сумка, рюкзак, чемодан или кейс.

Одна из нерешенных до конца проблем, связанных с обеспечением безопасности на транспорте и в прочих местах массового скопления людей, - это проблема обнаружения опасных диэлектрических объектов, в частности взрывчатых веществ и самодельных взрывчатых устройств, которые находятся в багаже.

Для решения этой задачи применяются, в основном, способы, основанные на использовании металлодетекторов, детекторов паров, рентгеновского оборудования, служебных собак и др.

Указанные способы не обеспечивают в достаточной степени возможность дистанционного и скрытного досмотра багажа и заблаговременного выявления взрывчатых веществ. Другим серьезным недостатком существующих способов является высокий уровень ложных тревог и низкая скорость обнаружения, что делает малоэффективным их применение в реальных условиях досмотра багажа больших потоков людей. Кроме того, существующие способы досмотра работают не в автоматическом режиме, для их работы необходим оператор, который принимает решение об уровне опасности досматриваемого багажа, а значит на окончательное решение влияет человеческий фактор.

Таким образом, задача обнаружения взрывных устройств требует соблюдения особых условий ее решения:

- дистанционность досмотра;

- возможность осуществления скрытного досмотра;

- автоматический режим досмотра;

- осуществление досмотра в режиме реального времени;

- безопасность человека, проходящего досмотр, а также окружающих людей;

- возможность привязки сигнала опасности к конкретному человеку при проведении досмотра в режиме реального времени;

- мобильность системы и относительно невысокая стоимость.

Известен способ дистанционного досмотра цели в контролируемой области пространства, включающий облучение этой области СВЧ-излучением с помощью двух или более элементарных излучателей, регистрацию отраженного от контролируемой области сигнала с помощью одного или более параллельных каналов регистрации, когерентную обработку отраженного сигнала и отображение полученной в результате обработки информации, US 5557283, 17.09.1996.

При реализации способа облучение СВЧ-излучением контролируемой области пространства происходит в полосе частот без корреляции ее ширины с радиальным пространственным разрешением изображения контролируемой области и интервалом времени регистрации, в течение которого возможна когерентная обработка зарегистрированного отраженного сигнала. Это обусловливает следующие недостатки:

- невозможность использования способа в случае движущегося досматриваемого объекта (цели), так как при движении объекта во время регистрации отраженного сигнала изменяется положение объекта относительно приемо-передающих антенн и нарушается условие применимости когерентной обработки зарегистрированного сигнала, а некогерентная обработка не позволяет получить изображение хорошего качества при неизвестной траектории досматриваемого объекта; таким образом, не обеспечивается скрытность досмотра объекта;

- низкое качество изображения, не позволяющее осуществлять его анализ с целью получения количественной информации о диэлектрической проницаемости объектов (компонентов цели) и их эквивалентной массе.

Известен способ обнаружения опасных объектов и веществ, который содержит генерацию микроволнового сигнала, который отражается объектом для воспроизведения одного или нескольких отраженных сигналов; один или несколько отраженных сигналов принимаются в антенной решетке; один или несколько отраженных сигналов преобразуются в цифровые отраженные сигналы; микроволновый сигнал преобразуется в цифровой сигнал; цифровые отраженные сигналы и цифровой сигнал обрабатываются для определения трехмерного положения мишени; цифровые отраженные сигналы и цифровой сигнал обрабатываются для идентификации мишени; цифровые отраженные сигналы и цифровой сигнал обрабатываются для определения состояния мишени; и определения того, является ли мишень опасным объектом, RU 2415402, опубл. 27.03.2011.

Недостатком этого технического решения является невысокая точность и достоверность обнаружения опасного диэлектрического объекта, т.к. отражательная способность диэлектрических объектов зависит от ориентации относительно излучающей антенны, при этом при некоторых ориентациях отражается только малая часть энергии, и обнаружение объекта становится невозможным.

Известен способ дистанционного досмотра цели в контролируемой области пространства, включающий облучение этой области СВЧ-излучением с помощью двух или более элементарных СВЧ-излучателей, регистрацию отраженного от контролируемой области сигнала с помощью одного или более параллельных каналов регистрации, когерентную обработку зарегистрированного сигнала с получением максимальных значений интенсивности восстановленной конфигурации рассеивателей в области досмотра в зависимости от дальности элементарных излучателей до цели и отображение полученной в результате обработки информации путем построения СВЧ-изображения в виде нескольких трехмерных поверхностей, RU 2294549 C1, 27.02.2007.

Недостатки данного способа в следующем:

- малая величина сигнала отражения от границы воздух-диэлектрик - около 7% по интенсивности для диэлектриков с диэлектрической проницаемостью ~3, характерной для взрывчатых веществ; это приводит к тому, что сигнал отражения от границы диэлектрик-тело человека (~90% по интенсивности) может существенно искажать трехмерную поверхность, изображающую физическую границу воздух-диэлектрик, а это, в свою очередь, приводит к ошибкам при определении наличия взрывчатого вещества;

- малый диапазон углов падения и приема СВЧ-излучения, при которых излучение, отраженное от границы воздух-диэлектрик, может быть зарегистрировано; это связано с тем, что, как правило, поверхность диэлектрика достаточно гладкая в сравнении с длиной волны в СВЧ-диапазоне, и рассеяние на границе приобретает характер зеркального отражения, таким образом, этот способ может быть эффективно реализован лишь в узком диапазоне возможных ракурсов досмотра.

Известен способ дистанционного досмотра цели в контролируемой области пространства, включающий облучение этой области СВЧ-излучением с помощью двух или более элементарных СВЧ-излучателей, регистрацию отраженного от контролируемой области сигнала с помощью одного или более параллельных каналов регистрации, когерентную обработку зарегистрированного сигнала с получением максимальных значений интенсивности восстановленной конфигурации рассеивателей в области досмотра в зависимости от дальности элементарных излучателей до цели и отображение полученной в результате обработки информации путем построения СВЧ-изображения соответствующей трехмерной поверхности; дополнительно получают видеоизображение цели с помощью двух или более видеокамер, синхронизированных с СВЧ-излучателями, преобразуют полученное видеоизображение в цифровой вид и строят трехмерное видеоизображение цели, переводят трехмерное видеоизображение и СВЧ-изображение в общую систему координат, определяют расстояние l в общей системе координат между СВЧ- и видеоизображениями, при l<lо, где lо - заданное пороговое значение l, констатируют отсутствие у цели скрытого диэлектрического объекта в количестве, превышающем предельно допустимое значение, а при l≥lо дополнительно определяют наличие впадин в трехмерном СВЧ-изображении в областях, где l≥lо, и при глубине h впадины больше где hо - пороговое значение h, ε - значение диэлектрической проницаемости искомого диэлектрического объекта, констатируют наличие у цели скрытого диэлектрического объекта, RU 2411504 C1 10.02.2011.

Недостатки этого решения состоят в следующем.

Процесс сравнения сложных видеоизображений и СВЧ-изображений в ряде случаев может быть источником ошибок, поскольку наличие прозрачной в СВЧ-области излучения и непрозрачной в видеодиапазоне оболочки (например, некоторых видов одежды или упаковки), под которой расположен объект, находящийся в контролируемой области пространства, приводит к некомпенсируемым ошибкам при определении разности между СВЧ- и видеоизображениями. Поскольку способ основан на регистрации рассеянного излучения, уровень регистрируемых сигналов существенно ослабляется в зависимости от расстояний: от СВЧ-излучателя до контролируемого объекта и от этого объекта до регистратора, а также сечения рассеивания объекта. Таким образом отношение сигнал/шум весьма невелико, что обусловливает существенные погрешности при формировании трехмерных СВЧ-изображений и, соответственно, увеличивает возможность ошибок в результатах реализации способа.

Кроме того, способ реализуем только при достаточном уровне освещенности контролируемой области, необходимом для регистрации видеосигналов и построения трехмерных видеоизображений. Вместе с тем, в ряде случаев освещение контролируемой области не осуществляется исходя из специальных условий; также следует указать, что освещение может быть прервано в связи с перебоями в энергоснабжении, задымлением контролируемой области и т.п.

Известен способ дистанционного обнаружения скрытых объектов в контролируемой области пространства, включающий облучение этой области когерентным СВЧ-излучением на N частотах, регистрацию сигнала, несущего информацию о скрытом объекте, находящемся в контролируемой области пространства, с помощью одного или более параллельных каналов регистрации и когерентную обработку зарегистрированного сигнала, регистрацию сигнала, несущего информацию о скрытом объекте, находящемся в контролируемой области пространства, осуществляют после прохождения сигналом этой области, затем определяют зависимость функции F:

где N - количество частот СВЧ-излучения,

k - номер частоты СВЧ-излучения из N частот,

fk - k-я частота СВЧ-излучения из N частот,

i - мнимая единица,

c - скорость света в вакууме,

Аобъектk - амплитуда зарегистрированного сигнала на k-й частоте излучения в присутствии объекта в контролируемой области пространства,

Фобъектk - фаза зарегистрированного сигнала на k-й частоте излучения в присутствии объекта в контролируемой области пространства,

Аспk - амплитуда зарегистрированного сигнала на k-й частоте излучения в отсутствие объекта в контролируемой области пространства,

Фспk - фаза зарегистрированного сигнала на k-й частоте излучения в отсутствие объекта в контролируемой области пространства,

от х-координаты по оси, соединяющей регистратор и источник СВЧ-излучения, при этом определяют значение xmax, при котором функция F имеет максимальное значение Fmax, устанавливают F0 - пороговое значение, и при Fmax<F0 констатируют присутствие проводящего объекта в контролируемой области пространства, при Fmax>F0 и xmax>xпороговое, где xпороговое - установленное минимальное значение размеров объекта, констатируют присутствие диэлектрического объекта в контролируемой области пространства, а при Fmax>F0 и xmaxпороговое констатируют отсутствие объектов в контролируемой области пространства, RU 2014129117 A1, опубл. 10.02.2016.

Данное техническое решение принято в качестве прототипа настоящего изобретения.

Благодаря тому что регистрацию сигнала, несущего информацию об объекте, находящемся в контролируемой области пространства, осуществляют после прохождения сигналом этой области, достигается технический результат, состоящий в исключении необходимости построения СВЧ-изображения, трехмерного видеоизображения и последующего сравнения СВЧ- и видеоизображений, поскольку в заявленном способе происходит определение длин оптического пути СВЧ-излучения, проходящего через контролируемую область, в присутствии и в отсутствие в ней объекта. Таким образом исключаются ошибки, связанные с построением и сравнением СВЧ- и видеоизображений. При этом упрощается и удешевляется реализация способа, так как исключается необходимость наличия дорогостоящего специального видеооборудования. Поскольку способ-прототип не базируется на регистрации рассеянного излучения, уровень регистрируемых сигналов, практически, не ослабляется, в результате чего увеличивается отношение сигнал/шум, что позволяет уменьшить ошибки в результатах при осуществлении способа.

Недостатками прототипа являются:

- невозможность определить диэлектрическую проницаемость объекта и выявить опасные диэлектрические объекты,

- невозможность определить положение объекта в пространстве и его размеры.

Задачей настоящего изобретения является обеспечение возможности выявления опасных диэлектрических объектов за счет определения их диэлектрической проницаемости и сравнения ее с диэлектрической проницаемостью, характерной для опасных диэлектрических объектов, а также обеспечение возможности определения положения выявленного объекта в пространстве и его размеров.

Согласно изобретению в способе дистанционного досмотра багажа в контролируемой области пространства, включающем облучение этой области когерентным СВЧ-излучением на наборе частот, регистрацию сигнала после прохождения сигналом этой области с помощью нескольких каналов регистрации и обработку зарегистрированного сигнала, который несет информацию о диэлектрических объектах в багаже, согласно изобретению облучение области СВЧ-излучением осуществляют несколькими передающими элементами, расположенными в различных точках пространства, а при обработке зарегистрированного сигнала определяют множество значений удлинения оптического пути, соответствующих определенной паре излучатель-регистратор на наборе частот, затем вычисляют распределение плотности удлинения оптического пути в конкретной области пространства методом обратного проецирования, выделяют непрерывные трехмерные участки с близкими по значению плотностями удлинения оптического пути методом сегментации трехмерного изображения, затем для каждого выделенного непрерывного участка вычисляют среднюю плотность удлинения оптического пути ρ, положение и размеры диэлектрического объекта, диэлектрического объекта, находящегося в багаже, в системе координат (x, y, z), диэлектрическую проницаемость диэлектрического объекта в сечении одной из плоскостей системы координат, при этом:

среднюю плотность удлинения оптического пути ρ вычисляют по формуле:

где:

ρ - средняя плотность удлинения,

N - количество вокселей (аналог двумерных пикселов для трехмерного пространства) в выделенном непрерывном участке,

ρi - плотность удлинения в i-м вокселе,

размеры объекта в системе координат (x, y, z) вычисляют по формуле:

Li=6σi, где:

где:

i - x, y или z координата,

N - количество вокселей в выделенном непрерывном участке,

rij - координата j-гo вокселя по i-й координате,

μi - i-я координата центра выделенного непрерывного участка,

диэлектрическую проницаемость диэлектрического объекта в сечении одной из плоскостей системы координат вычисляют по формуле:

где:

ε - диэлектрическая проницаемость,

ρ - средняя плотность удлинения оптического пути для диэлектрического объекта,

Lx - размер по оси х,

Lz - размер по оси z,

при этом задают значения εниж и εверх, которые характерны для опасных диэлектрических объектов, и при εниж<ε<εверх констатируют присутствие опасного диэлектрического объекта в контролируемой области пространства.

Заявителем не выявлены какие-либо технические решения, идентичные заявленному, что позволяет сделать вывод о соответствии изобретения условию патентоспособности «Новизна».

Благодаря тому что облучение области СВЧ-излучением осуществляют несколькими передающими элементами, расположенными в различных точках пространства, обеспечивается возможность вычисления распределения плотности удлинения оптического пути, соответствующего определенной паре излучатель-регистратор на наборе частот в конкретной области пространства, что позволяет определить положение объекта в пространстве, его размеры и диэлектрическую проницаемость, которую сравнивают с диэлектрической проницаемостью, характерной для опасных диэлектрических объектов, и тем самым выявляют опасный объект.

Заявителем не выявлены источники информации, в которых содержались бы сведения о влиянии отличительных признаков изобретения на достигаемый технический результат.

Указанные обстоятельства позволяют сделать вывод о соответствии заявленного технического решения условию патентоспособности «Изобретательский уровень».

Реализация способа поясняется конкретным примером.

Для осуществления дистанционного досмотра багажа, находящегося в контролируемой области, эту область облучают когерентным СВЧ-излучением последовательно набором из 32 фиксированных эквидистантных частот в диапазоне 8-18 ГГц. Облучение производят с помощью множества элементарных излучателей, собранных в конкретном примере в два массива по 16×16 элементарных передающих антенн. Прошедший через контролируемую область пространства сигнал регистрируют в данном примере с помощью 6-и широкополосных антенн Вивальди, расположенных в различных точках пространства так, чтобы обеспечивать достаточно широкую область геометрических пересечений. Антенны Вивальди связаны с регистратором.

В данном примере размеры области в ширину, высоту и глубину соответственно составляли 80×30×30 см (размеры по осям X, Y и Z). В качестве объекта поиска использовали брусок из поливинилхлорида размером 15×15×8 см с заранее измеренной диэлектрической проницаемостью ε=4,0±0,2. Исследуемый объект помещали в чемодан размером 80×60×40 см. Заранее были установлены верхний и нижний пороги диэлектрической проницаемости: εниж=2.5 и εверх=5, характерные для опасных диэлектрических объектов.

Определяли множество значений удлинения оптического пути, соответствующих определенной паре излучатель-регистратор на наборе частот, затем вычисляли распределение плотности удлинения оптического пути в конкретной области пространства методом обратного проецирования (см. Троицкий И.Н. Статистическая теория томографии. Москва: Радиосвязь, 1989 г., стр. 25, формула 1.48), выделяли непрерывные трехмерные участки с близкими по значению плотностями удлинения оптического пути методом сегментации 3-мерного изображения (см. выкопировку с сайта в Интеренете: Wolfram Language System. Documentation Center, http://reference.wolfram.com/language/guide/3DImages.html, http://reference.wolfram.com/language/guide/Segmentation Analysis.html, http://reference.wolfram.com/language/ref/ArrayComponents.html), аналитически для каждого выделенного участка вычисляли среднюю плотность удлинения ρ оптического пути, положение и размеры диэлектрического объекта, находящегося в багаже, в системе координат (x, y, z), диэлектрическую проницаемость диэлектрического объекта в сечении одной из плоскостей системы координат.

Среднюю плотность удлинения оптического пути ρ вычисляли по формуле:

где:

ρ - средняя плотность удлинения,

N - количество вокселей (аналог двумерных пикселов для трехмерного пространства) в выделенном непрерывном участке,

ρi - плотность удлинения в i-м вокселе.

В данном примере ρ=13,7194 см.

Размеры объекта в системе координат (x, y, z) вычисляли по формуле:

Li=6σi, где:

где:

где:

i - x, y или z координата,

N - количество вокселей в выделенном непрерывном участке,

rij - координата j-гo вокселя по i-й координате,

μi - i-я координата центра выделенного непрерывного участка.

В примере положение объекта - (-20.7778; 0.253086; -19.3025) см и размеры объекта в системе координат (x, y, z) составили Lx=16.9645 см, Ly=10.6471 см, Lz=10.8513 см.

Диэлектрическую проницаемость диэлектрического объекта в сечении одной из плоскостей системы координат вычисляли по формуле:

где:

ε - диэлектрическая проницаемость,

ρ - средняя плотность удлинения оптического пути для диэлектрического объекта,

Lx - размер по оси х,

Lz - размер по оси z.

В данном примере диэлектрическая проницаемость ε=4.14736.

Сравнивали полученное значение диэлектрической проницаемости ε=4.14736 со значениями εниж=2,5 и εверх=5, которые характерны для опасных диэлектрических объектов.

Таким образом, выполняется условие εниж<ε<εверх, при котором констатируют присутствие опасного диэлектрического объекта в контролируемой области пространства.

Данный способ обеспечивает возможность выявления опасных диэлектрических объектов в багаже, а также обеспечивает возможность определения положения выявленного объекта в пространстве и его размеров.

Способ дистанционного досмотра багажа в контролируемой области пространства, включающий облучение этой области когерентным СВЧ-излучением на наборе частот, регистрацию сигнала после прохождения сигналом этой области с помощью нескольких каналов регистрации и обработку зарегистрированного сигнала, который несет информацию о диэлектрических объектах в багаже, отличающийся тем, что облучение области СВЧ-излучением осуществляют несколькими передающими элементами, расположенными в различных точках пространства, а при обработке зарегистрированного сигнала определяют множество значений удлинения оптического пути, соответствующих определенной паре излучатель-регистратор на наборе частот, затем вычисляют распределение плотности удлинения оптического пути в конкретной области пространства методом обратного проецирования, выделяют непрерывные трехмерные участки с близкими по значению плотностями удлинения оптического пути методом сегментации трехмерного изображения, затем для каждого выделенного непрерывного участка вычисляют среднюю плотность удлинения оптического пути ρ, положение и размеры диэлектрического объекта, находящегося в багаже, в системе координат (х, y, z), диэлектрическую проницаемость диэлектрического объекта в сечении одной из плоскостей системы координат, при этом:

среднюю плотность удлинения оптического пути ρ вычисляют по формуле:

,

где:

ρ - средняя плотность удлинения,

N - количество вокселей в выделенном непрерывном участке,

ρi - плотность удлинения в i-м вокселе,

размеры объекта в системе координат (х, y, z) вычисляют по формуле:

Li=6σi, где:

,

где:

,

где i - х, y или z координата,

N - количество вокселей в выделенном непрерывном участке,

rij - координата j-гo вокселя по i-й координате,

μi - i-я координата центра выделенного непрерывного участка,

диэлектрическую проницаемость диэлектрического объекта в сечении одной из плоскостей системы координат вычисляют по формуле:

,

где:

ε - диэлектрическая проницаемость,

ρ - средняя плотность удлинения оптического пути для диэлектрического объекта,

Lx - размер по оси х,

Lz - размер по оси z,

при этом задают значения εниж и εверх, которые характерны для опасных диэлектрических объектов, и при εниж<ε<εверх констатируют присутствие опасного диэлектрического объекта в контролируемой области пространства.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или перекачиваются по трубопроводу.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода.

Использование: для обнаружения потенциально опасных и/или взрывчатых веществ, скрытых под одеждой или в багаже. Сущность изобретения заключается в том, что путем излучения, отражения и регистрации микроволн можно получить трехмерное изображение интересующего объекта.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, сыпучих веществ, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам.

Изобретение относится к измерительной технике, может быть использовано для определения электрофизических параметров слоя полупроводника на поверхности диэлектрика и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев.

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами трехкомпонентного вещества, неподвижного или транспортируемого по трубопроводу.

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами двухфазного вещества, неподвижного или транспортируемого по трубопроводу.

Изобретение относится к области противодействия терроризму и может быть использовано в системах защиты объектов. Способ обнаружения осколочных взрывных устройств основан на методе нелинейной радиолокации и включает облучение СВЧ электромагнитным зондирующим полем и регистрацию новых составляющих в спектре отраженного сигнала.

Предлагаемый способ относится к области электрических измерений и может применяться для контроля изменений интегрального состава вещества в химической промышленности, добывающей промышленности, в системах контроля отработанных газов двигателей внутреннего сгорания, либо в аналогичных комплексных системах, где крайне важна задача мониторинга изменения интегрального состава вещества, находящегося в любом агрегатном состоянии. Контроль изменений интегрального состава вещества основан на измерении изменений набега фазы микроволнового сигнала при его многократном распространении через объем контролируемого вещества.

Одной из главнейших задач обеспечения безопасности работ в угледобывающих шахтах является контроль содержания в рудничной атмосфере опасных газов и смесей, среди которых наибольшую угрозу представляют метан и угольная пыль. Предлагаемый способ относится к области электрических измерений и может применяться для контроля изменения состава интегральной газовой среды в угледобывающих шахтах, в системах контроля отработанных газов, которые выделяются вследствие промышленной деятельности человека, либо в аналогичных комплексных системах, где крайне важна задача мониторинга концентрации вторичных взрыво- и пожароопасных продуктов производства. Контроль изменений интегрального состава газовой среды основан на измерении изменений набега фаз микроволнового сигнала при его многократном распространении по замкнутой волноводной структуре, через которую также пропускают воздух их окружающей среды.

Изобретение относится к области СВЧ-техники и может быть использовано для определения концентраций веществ в водных растворах, в том числе для контроля влаги в углеводородных смесях, при контроле загрязнения водных сред, при контроле концентрации биологических клеток в суспензиях. Способ определения содержания воды в жидкостях заключается в повышении температуры при воздействии СВЧ-излучения на капиллярную трубку с исследуемой жидкостью в течение фиксированного промежутка времени и определении соответствующего изменения поглощения за этот промежуток времени, после чего на основании разности поглощения СВЧ-излучения жидкостью при различных температурах определяется концентрация воды в жидкости. Повышение точности измерений в условиях максимальной добротности резонатора является техническим результатом изобретения. 1 ил.

Изобретение относится к медицинской технике. Устройство для диагностики заболеваний бронхолегочной системы содержит управляемый генератор высокой частоты (3), аналого-цифровой преобразователь (9), блок управления (4), блок регистрации и отображения результатов измерений (2), блок генерации и измерения (1), основной (6), опорный (7) и приемный (8) каналы. В блоке генерации и измерения (1) в качестве генератора высокой частоты (3) использован синтезатор частот СВЧ диапазона, первый выход которого соединен с входом делителя мощности (5) для разделения мощности СВЧ сигнала между основным (6) и опорным (7) каналами. Основной канал (6) образован усилителем мощности (12) и передающей антенной-аппликатором (13), опорный канал (7) - аттенюатором (15) и измерителем коэффициента усиления (16), приемный канал (8) - приемной матрицей антенн-аппликаторов (19), блоком мультиплексирования (18) и усилителем мощности (17). Датчики нажима (14, 20) передающей антенны-аппликатора (13) и приемной матрицы антенн-аппликаторов (19) и оптический датчик положения (11) передающей антенны-аппликатора (13) соединены с блоком управления (4), который связан с электронно-вычислительной машиной (21) с помощью шины данных через устройство сопряжения (10). Достигается определение наличия изменений в бронхолегочной системе и их локализации у пациентов всех возрастных групп, в том числе детей раннего возраста, повышение достоверности, точности и информативности получаемых результатов обследования. 3 з.п. ф-лы, 1 ил.

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей. Техническим результатом изобретения является повышение достоверности обнаружения взрывчатых и наркотических веществ, размещенных на контролируемых объектах, путем точного и однозначного определения местоположения контролируемого объекта и его перемещения в пространстве. Устройство, реализующее предлагаемый способ, содержит приемопередающую антенну (1), антенный переключатель (2), передатчик (3), приемник (4), усилители (5, 21 и 29) высокой частоты, аналого-цифровой преобразователь (6), измерительное устройство (7), блок (8) памяти, блок (9) индикации, контролируемый объект (10), процессор (11), блок (12) сравнения, ключ (13), корреляторы (14), (22, 30 и 36), перемножители (15, 23, 31 и 37), фильтры (16, 24, 32 и 38) нижних частот, экстремальные регуляторы (17, 25, 33 и 39), блоки (18, 26, 34 и 40) регулируемой задержки, индикатор (19) дальности, приемные антенны (20 и 28), индикатор (35) угла места, индикатор (41) угла ориентации. 2 н.п. ф-лы, 2 ил.

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого вдоль его продольной оси пропущен диэлектрический трубопровод с контролируемым диэлектрическим веществом, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок, при этом волноводный резонатор выполнен в виде прямоугольного волноводного резонатора, в котором возбуждены колебания типа H10n, n=1, 2, …, и в котором у каждой из его узких стенок установлена диэлектрическая вставка с тем же поперечным размером, что и у прямоугольного резонатора, ее продольный размер имеет величину , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Технический результат: обеспечение возможности повышения точности измерения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Техническим результатом является повышение точности и упрощение процесса определения состояния поверхности дороги. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, возбуждаемыми в волноводе, размещаемом под контролируемой поверхностью, с одного из его торцевых участков, который встраивают в поверхностный слой контролируемого участка дороги, и определяют одну из характеристик стоячей волны в волноводе. С другого торцевого участка волновода зондируют электромагнитными волнами поверхность, идентичную участку поверхности дороги с эталонными значениями ее состояния, соответствующими отсутствию покрывающего слоя на поверхности дороги. В качестве поверхности, зондируемой с другого торцевого участка волновода, может быть использован участок поверхности дороги с эталонными значениями ее состояния, соответствующими отсутствию покрывающего слоя на поверхности дороги, а данный торцевой участок волновода встраивают в поверхностный слой этого участка поверхности дороги. 1 з.п. ф-лы, 3 ил.

Использование: для обнаружения диэлектрических взрывчатых веществ, скрытых под одеждой на теле человека и в носимом багаже. Сущность изобретения заключается в том, что выполняют облучение контролируемой области когерентным СВЧ-излучением на N частотах, регистрацию сигнала, несущего информацию о скрытом объекте, находящемся в контролируемой области пространства, с помощью одного или более параллельных каналов регистрации и когерентную обработку зарегистрированного сигнала, причем регистрацию сигнала, несущего информацию о скрытом объекте, находящемся в контролируемой области пространства, осуществляют после прохождения сигналом этой области, затем определяют зависимость заданной функции от х - координаты по оси, соединяющей регистратор и источник СВЧ-излучения, при этом определяют значение хmax, при котором функция F имеет максимальное значение Fmax, устанавливают F0 - пороговое значение, и при Fmax<F0 констатируют присутствие проводящего объекта в контролируемой области пространства, при Fmax>F0 и xmax>xпороговое, где xпороговое - установленное минимальное значение размеров объекта, констатируют присутствие диэлектрического объекта в контролируемой области пространства, а при Fmax>F0 и xmax<xпороговое констатируют отсутствие объектов в контролируемой области пространства. Технический результат: повышение точности и достоверности результатов дистанционного обнаружения скрытых объектов, а также возможность осуществления досмотра цели при отсутствии достаточной освещенности контролируемой области.

Настоящее изобретение относится к области нелинейной радиолокации и может быть использовано при разработке нелинейных радиолокаторов (НРЛ), осуществляющих поиск объектов, имеющих в своем составе нелинейные элементы (НЭ). Техническим результатом предлагаемого изобретения является улучшение характеристик сигнала на выходе оптимальной обработки за счет использования в качестве ЗС суммы двух ЛЧМ сигналов на разных несущих частотах и организации обработки отраженного от объекта поиска сигнала на комбинированной составляющей (суммарной комбинационной составляющей совместно со второй гармоникой). Это позволяет улучшить тактико-технические характеристики НРЛ, такие как разрешающая способность, отношение сигнал/боковик и стабилизация уровня ложных тревог. 5 ил.

Использование: для дистанционного досмотра багажа. Сущность изобретения заключается в том, что выполняют облучение контролируемой области пространства когерентным СВЧ-излучением на наборе частот, регистрацию сигнала после прохождения сигналом этой области с помощью нескольких каналов регистрации и обработку зарегистрированного сигнала, который несет информацию о диэлектрических объектах в багаже, при этом облучение области СВЧ-излучением осуществляют несколькими передающими элементами, расположенными в различных точках пространства, а при обработке зарегистрированного сигнала определяют множество значений удлинения оптического пути, соответствующих определенной паре излучатель-регистратор на наборе частот, затем вычисляют распределение плотности удлинения оптического пути в конкретной области пространства, выделяют непрерывные трехмерные участки с близкими по значению плотностями удлинения оптического пути, затем для каждого выделенного участка вычисляют среднюю плотность удлинения ρ оптического пути, положение и размеры диэлектрического объекта, находящегося в багаже, в системе координат, диэлектрическую проницаемость ε диэлектрического объекта в сечении одной из плоскостей системы координат, причем диэлектрическую проницаемость вычисляют по заданной математической формуле, задают значения εниж и εверх, которые характерны для опасных диэлектрических объектов, и при εниж<ε<εверх констатируют присутствие опасного диэлектрического объекта в контролируемой области пространства. Технический результат: обеспечение возможности выявления опасных диэлектрических объектов, а также обеспечение возможности определения положения выявленного объекта в пространстве и его размеров.

Наверх