Способ определения массы растворителя в нефтедобывающей скважине

Изобретение относится к скважинной добыче нефти, осложненной выпадением асфальтосмолопарафиновых веществ на поверхности глубинного оборудования скважин. Техническим результатом является повышение эффективности эксплуатации скважин, осложненных образованием отложений из тяжелых компонентов нефти внутри частей глубинного насоса и колонны НКТ. Способ определения массы растворителя в нефтедобывающей скважине заключается в измерении давления столба жидкости на площадь известной величины. Причем датчик давления располагают в межтрубном пространстве скважины в зоне глубинного насоса, информация с датчика давления с необходимой частотой поступает на станцию управления скважины, а масса растворителя после его подачи в межтрубное пространство скважины определяется как произведение величины кратковременного изменения (скачка) давления на площадь межтрубного пространства по математической формуле. 3 ил.

 

Предлагаемое изобретение относится к нефтяной промышленности и предназначено для совершенствования технологий по удалению асфальтосмолопарафиновых отложений с подземного оборудования нефтедобывающих скважин.

Несмотря на применение ингибиторов парафинообразования при подъеме нефти по колонне лифтовых труб из-за изменения термобарических условий из нее выпадают и адгезируют на поверхности насосно-компрессорных труб (НКТ) асфальтосмолопарафиновые вещества (АСПВ). Для их удаления часто используют органические растворители путем их закачки в межтрубное пространство. После организации круговой циркуляции растворитель попадает на прием глубинного насоса и постепенно поднимается в полость колонны НКТ, тем самым выполняет важную функцию - растворяет АСПВ. Как правило, на нефтегазодобывающем предприятии заливки органического растворителя осуществляют в планово-предупредительном режиме по утвержденным технологическим картам. Доставка реагента в объеме 500-1000 литров и более в межтрубное пространство скважины организуется двумя способами:

1. С помощью передвижного насосного агрегата типа ЦА-320 без снижения давления газа в межтрубном пространстве скважины (МП).

2. Без агрегата типа ЦА-320 с предварительным выпуском попутного нефтяного газа в атмосферу. Растворитель сливается в МП из автоцистерны самотеком через гофрированный шланг.

По второй технологии при отсутствии счетного устройства или мерной тары на устье скважины массу слитого растворителя определяют приближенно по степени снижения уровня жидкости в емкости автоцистерны. Это приводит к значительной погрешности в измерении массы слитого растворителя, так как емкость автоцистерны имеет эллиптическую форму и не имеет тарировки объема жидкости по высоте жидкости от нижней образующей автоцистерны. На точность также влияет и степень горизонтальности положения автомашины у устья скважины. В скважину, успешно работающую, могут залить только часть от объема реагента, положенного по технологической карте. Оставшуюся часть растворителя технический персонал предприятия, как правило, использует для аварийных промывок других скважин, осложненных АСПО. Возникает техническая задача определения массы органического растворителя в полости скважины с тем, чтобы при статистическом анализе оценить влияние массы растворителя на эффективность удаления АСПО и степень восстановления показателей работы нефтедобывающей скважины: дебит по жидкости, величина нагрузок на глубинный насос.

Известен способ решения поставленной задачи, основанный на измерении уровня жидкости в межтрубном пространстве до и после закачки растворителя путем эхолотирования МП уровнемерами типа Микон или Судос. Для осуществления этих измерений необходимо чтобы вместе с автоцистерной от скважины к скважине перемещался и оператор по исследованию скважин с уровнемером.

Известен способ определения массы растворителя, основанный на измерении его объема в тарированной по объему мерной емкости. Необходимо по способу знать и плотность растворителя при той температуре, при которой ее слили в мерную емкость и скважину. Необходимо вместе с автоцистерной возить на обрабатываемую скважину лаборанта химического анализа с набором ареометров типа АОН-1.

Новая техническая задача по изобретению состоит в том, чтобы после подачи растворителя в межтрубное пространство его масса определялась точным образом в автоматическом режиме без участия человека.

Поставленная задача выполняется тем, что по способу определения массы растворителя в нефтедобывающей скважине, заключающемуся в измерении давления столба жидкости на площадь известной величины, датчик давления располагают в межтрубном пространстве скважины в зоне глубинного насоса, информация с датчика давления с необходимой частотой поступает на станцию управления скважины, а масса растворителя после его подачи в межтрубное пространство скважины определяется в зависимости от величины кратковременного изменения (скачка) давления и площади межтрубного пространства скважины по формуле:

где

Мраст - масса растворителя в скважине после его закачки, кг;

D - внутренний диаметр обсадной колонны, м2;

d - внешний диаметр колонны лифтовых труб (насосно-компрессорных труб - НКТ), м2;

P1 - показание датчика давления до начала подачи растворителя в межтрубное пространство скважины, Па;

Р2 - показание датчика давления после окончания процесса подачи растворителя в межтрубное пространство скважины, Па;

g - ускорение свободного падения, м/с2.

В схематичном виде подача растворителя в скважину самотеком из автоцистерны и способ оценки массы этого растворителя приведены на фиг. 1, где обозначены: 1 - обсадная колонна скважины, 2 - колонна НКТ, 3 - глубинный насос, 4 - кабель обратной информационной связи, 5 - датчик давления, 6 - вентиль обсадной колонны, 7 - гофрированный шланг, 8 - автоцистерна с растворителем, 9 - вентиль автоцистерны, 10 - поступивший в скважину растворитель массой Мраст, 11 - асфальтосмолопарафиновые отложения в колонне НКТ, 12 - станция управления скважиной.

Способ измерения массы растворителя при его доставке в скважину самотеком осуществляется в следующем порядке.

1. В межтрубное пространство скважины в зоне глубинного насоса 3 стационарно располагают датчик давления 5 с линией обратной связи 4 со станцией управления 12 на поверхности земли. В качестве канала обратной связи может служить электрический многожильный кабель, например кабель электропитания глубинного электроцентробежного насоса.

2. Для доставки растворителя в скважину предварительно из межтрубного пространства (МП) выпускают попутный нефтяной газ через вентиль 6. После этой процедуры давление в МП становится равным атмосферному.

3. К открытому вентилю 6 подсоединяют гофрированный шланг 7. Другой конец шланга соединяют через вентиль 9 с автоцистерной 8.

4. Вентиль 9 открывают, после чего растворитель начинает поступать в межтрубное пространство скважины.

5. После того как приближенно измеренный объем растворителя сливается самотеком в скважину закрывают вентиль 9, сливают содержимое шланга 7 в скважину и закрывают вентиль 6.

6. Автоцистерна уезжает на другую обрабатываемую скважину.

7. Датчик давления 5 в режиме реального времени на день обработки скважины растворителем выдает на станцию управления 12 и далее на компьютер инженерного персонала предприятия информацию в виде динамики давления в зоне глубинного насоса. Зависимость имеет вид, представленный на фиг. 2.

Зависимость интерпретируется следующим образом. До открытия вентиля 6 и выпуска нефтяного газа из скважины давление в зоне датчика 5 остается постоянной величиной (45 атм) и равной сумме давлений столба жидкости над датчиком (30 атм) и давления газа над динамическим уровнем жидкости в межтрубном пространстве (15 атм). В 1200 хронологического времени (условное время) задвижку 6 открывает оператор по добыче нефти, и в течение 12 минут нефтяной газ выходит в атмосферу, а избыточное давление газа снижается до нуля. По графику видно, что давление в зоне насоса снижается до 30 атм, то есть на 15 атм. Сразу после этой процедуры растворитель в течение 7 минут поступает в межтрубное пространство, и за счет растущего во времени гидростатического столба растворителя рассматриваемое давление, в конечном счете, вырастает до 37 атм. По формуле 1 контроллер станции управления рассчитывает массу растворителя в межтрубном пространстве скважины:

Полученная по изобретению информация важна с двух позиций. По данным станции управления непосредственно на скважине при соответствующей аппаратуре можно наблюдать за ростом массы растворителя в скважине и доставить в скважину необходимую по технологической карте массу растворителя. Вторая функция - контролирующая. После проведения всех обработок скважин за определенное время (декада или месяц) по данным станции управления за дни обработок можно узнать и хронологическое время обработки, и использованную массу растворителя. В дальнейшем статистическом анализе такая точная информация даст возможность выявлять значимые факторы успешности рассматриваемых обработок и совершенствовать технологии удаления асфальтосмолопарафиновых отложений со скважин.

Несколько иной вид зависимости давления в зоне глубинного насоса получается при использовании насосного агрегата типа ЦА-320. При такой технологии попутный нефтяной газ из межтрубного пространства не выпускается, а растворитель закачивается в МП под давлением насосного агрегата. Датчик давления выдает в день обработки скважины информацию, представленную на фиг. 3. Из динамики давления видно, что закачка растворителя была произведена в 1200, и давление в зоне датчика (насоса) выросло на 5,5 атм с 45 до 50,5 атм. По формуле 1 рассчитывается масса закачанного в скважину растворителя:

Датчики давления смогут выполнять в умных скважинах недалекого будущего много функций. Они работают во всех средах независимо от количества налипшего на них АСПВ, так как давление способно передаваться через несплошные среды.

В изобретении предложен способ определения массы растворителя, доставленного в скважину. Способ основан на известном законе физики: давление - это сила, приходящаяся на единицу рассматриваемой площади. Новизной и существенным отличием нашего предложения является, на наш взгляд, то, что предложено датчик давления использовать как измерительное устройство, ведь площадь до и после технологического воздействия остается величиной постоянной и равной площади кольцевого пространства между обсадной колонной и колонной насосно-компрессорных труб. Датчик давления предложено в условиях скважины использовать как устройство по измерению массы растворителя.

Способ определения массы растворителя в нефтедобывающей скважине, заключающийся в измерении давления столба жидкости на площадь известной величины, отличающийся тем, что датчик давления располагают в межтрубном пространстве скважины в зоне глубинного насоса, информация с датчика давления с необходимой частотой поступает на станцию управления скважины, а масса растворителя после его подачи в межтрубное пространство скважины определяется как произведение величины кратковременного изменения (скачка) давления на площадь межтрубного пространства по формуле:

,

где

Мраст - масса растворителя в скважине;

D - внутренний диаметр обсадной колонны;

d - внешний диаметр колонны лифтовых труб (насосно-компрессорных труб - НКТ), м2;

P1 - показание датчика давления до начала подачи растворителя в межтрубное пространство скважины;

Р2 - показание датчика давления после окончания процесса подачи растворителя в межтрубное пространство скважины;

g - ускорение свободного падения, м/с2.



 

Похожие патенты:

Изобретение относится к нефтедобывающей промышленности, в частности к погружным устройствам для подачи реагента в скважину, на поверхность погружных электродвигателей и вход электроцентробежных насосов.

Изобретение относится к нефтедобывающей промышленности, в частности к погружным устройствам для подачи реагента в скважину, на поверхность погружных электродвигателей и вход электроцентробежных насосов, и может быть использовано для предотвращения коррозии, отложения солей и парафинов.

Изобретение относится к нефтяной промышленности, в частности к погружным устройствам для внутрискважинной подачи ингибитора солеотложений на вход погружных установок для добычи пластовой жидкости.

Изобретение относится к нефтяной промышленности и предназначено для снижения асфальтеносмолопарафиновых отложений (АСПО) на внутрискважинном оборудовании и разрушения водонефтяной эмульсии в скважине при эксплуатации скважины, добывающей высоковязкую нефть.

Изобретение относится к устройствам, дозирующим реагент, и может использоваться в нефтяной отрасли промышленности для подачи в пластовую жидкость ингибитора солеотложений.

Изобретение относится к погружным контейнерам преимущественно с порошкообразным реагентом и предназначено для предупреждения отложения солей на нефтепогружном оборудовании.

Изобретение относится в нефтедобывающей промышленности и может быть использовано при эксплуатации скважин, в лифтовых трубах которых образуются различного рода отложения.

Изобретение относится к области трубопроводного транспорта, в частности к способам очистки внутренней поверхности магистральных нефтепроводов. Осуществляют химическую очистку внутренней поверхности нефтепровода, предварительного разделенного на очищаемые участки, путем пропуска по всей длине очищаемого участка пробки растворителя асфальтосмолопарафиновых отложений.

Группа изобретений относится к нефтяной промышленности и может быть использована для ремонтных работ нефтегазового оборудования и хранилищ нефтепродуктов с целью ликвидации и предотвращения образования гидратопарафиновых и асфальтосмолистых отложений и пробок.

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны горизонтальных стволов скважин, вскрывших карбонатную породу.

Изобретение относится к нефтедобывающей промышленности, в частности к погружным устройствам для подачи реагента в скважину, на поверхность погружных электродвигателей и вход электроцентробежных насосов. Устройство содержит цилиндрический корпус, с одной стороны которого установлены герметичный модуль с интеллектуальным блоком, с другой стороны установлено основание с камерой смешивания, с управляемым клапаном и с выходным каналом, сообщенным с камерой смешивания. Интеллектуальный блок соединен электрическим проводником в изоляционной оболочке, находящимся в герметичной трубе, с управляемым клапаном. Внутренняя полость цилиндрического корпуса выполнена герметичной с возможностью заполнения пластовой жидкостью и химическим реагентом и герметично разделена поршнем. Герметичная труба является направляющей для поршня и расположена по оси цилиндрического корпуса. В основании дозатора дополнительно выполнен заливной канал химического реагента с клапаном. В качестве управляемого клапана установлен электромагнитный клапан, выполненный с возможность открытия/закрытия по управляющему сигналу. Электромагнитный клапан установлен в выходном канале. Дозатор дополнительно содержит компенсатор, расположенный в полости корпуса, заполненной пластовой жидкостью. Внутренняя полость компенсатора соединена с полостью герметичной емкости посредством канала, выполненного в ниппеле герметичной емкости. Интеллектуальный блок соединен нулевым проводом трехфазного электрического привода погружного насоса. Повышается надежность конструкции. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области нефтяной и газовой промышленности, в частности к способам предупреждения образования гидратов в углеводородах, и может быть использовано при их добыче, транспортировке и переработке. Способ включает ввод в углеводороды антигидратного реагента. Дополнительно подают один или несколько газов, в каждом из которых гидраты образуются при давлении большем и температуре меньшей, чем в углеводородах, и получают смесь, в которой образование гидратов не происходит при исходных давлении и температуре углеводородов. При ликвидации гидратов, помимо газов, подают еще и антигидратный реагент, причем газы и реагент подают с расходами, обеспечивающими необходимую скорость разложения гидратов, определяемую по формуле. Уменьшаются энергетические затраты. 6 з.п. ф-лы, 2 ил., 6 пр.

Группа изобретений относится к области нефтедобычи, в частности к способам подачи реагентов в скважину и наземное оборудование. Способ включает размещение устройства с реагентом в стволе скважины или во внутритрубном пространстве поверхностного нефтепромыслового оборудования, растворение реагента добываемой жидкостью. В качестве устройства для подачи реагента используется камерный контейнер, состоящий по меньшей мере из одной камеры с установленными в каждой камере по меньшей мере одним наружным и по меньшей мере одним внутренним дозатором, одни из которых, внутренние или наружные, выполняются регулируемыми, а вторые нерегулируемыми, при этом указанные камеры заполнены реагентом. Обеспечивается возможность применения регулируемого способа подачи реагента в скважины, выводимые из бурения, или после гидроразрыва пласта, или после капитального ремонта скважин, или в другие скважины, где для настройки устройства ограниченно используются параметры глубинно-насосного оборудования и/или скважины, повышается надежность, снижаются временные затраты на настройку. 2 н. и 8 з.п. ф-лы, 2 ил.

Изобретение относится к области внутрипромыслового сбора газа, а именно к системам ввода ингибитора образования гидратов в газовые шлейфы. Система содержит емкость с ингибитором, трубопроводы подачи ингибитора к защищаемым точкам, исполнительный механизм, обеспечивающий прямую управляемую программную подачу ингибитора, преобразователи температуры и давления, установленные в защищаемых точках и соединенные со станцией управления и исполнительным механизмом беспроводным каналом связи, устройства дозирования ингибитора, состоящие из обратного и управляемого прямого клапанов и регулирующей шайбы, которые установлены в защищаемых точках и соединены с трубопроводом подачи ингибитора. Емкость с ингибитором выполнена в виде гидроаккумулятора с датчиком давления, соединенным со станцией управления беспроводным каналом связи. Исполнительный механизм выполнен в виде регулирующего редуктора. Обеспечивается диагностирование образования гидратной пробки в режиме реального времени и оперативная подача ингибитора непосредственно на тот участок, в котором начинается образование гидратной пробки. 2 ил.

Группа изобретений относится к нефтедобывающей промышленности, а именно к устройствам для дозирования реагента-ингибитора в жидкую среду. Контейнер по обоим вариантам состоит из корпуса 1, в стенках которого выполнены перфорационные отверстия 2. Отверстия 2 в корпусе 1 выполнены в его верхней 3 и/или в средней 4 частях. Корпус 1 снабжен по торцам перфорированными нижней 5 и верхней 6 заглушками, или перфорированной нижней и глухой 20 верхней заглушками. Внутри контейнера размещена, по меньшей мере, одна цилиндрическая емкость 7, заполненная ингибитором 8 и снабженная по торцам глухими крышкой 9 и днищем 10. Емкость 7 выполнена перфорированной в радиальном направлении. Диаметр отверстий 11 составляет 1-7 мм. По второму варианту емкость 7 выполнена в виде капсулы с торцевыми выступами, имеющими закругленную форму, преимущественно, подобно полусферической, с глухой крышкой и глухим днищем, выполненным заодно с телом капсулы. Капсула выполнена перфорированной в боковых областях, отверстия могут быть чуть смещены к торцевым выступам и их размер составляет 1-7 мм. По обоим вариантам емкости не закреплены в корпусе 1 и образуют зазоры между их наружными стенками и внутренней поверхностью корпуса 1. Соотношение суммарной площади отверстий 2 в корпусе 1 контейнера к суммарной площади отверстий 11 (или 19) во всех емкостях 7, находящихся внутри корпуса 1, должно составлять 1 к (0,003-70) соответственно. Повышается продолжительность дозирования ингибитора за счет равномерности растворения ингибитора при различных температурных скважинных условиях и при различном, в том числе повышенном, содержании мехпримесей в пластовой жидкости 2 н. и 14 з.п. ф-лы; 1 табл.; 2 ил.

Изобретение относится к частице сшитого препятствующего образованию отложений вещества для операций добычи нефти, для источника воды охлаждающей колонны, способу изготовления частицы и ее использованию. Частица сшитого препятствующего образованию отложений вещества для операций добычи нефти, для источника воды охлаждающей колонны, содержащая препятствующее образованию отложений вещество и сшивающий реагент. Препятствующее образованию отложений вещество сшивается сшивающим реагентом. Способ изготовления частиц согласно настоящему изобретению. Способы осуществления операции механического гидроразрыва для уменьшения образования отложений в нефтяной скважине и в охлаждающей колонне с использованием частиц согласно настоящему изобретению. Изобретение развито в зависимых пунктах формулы. Технический результат – повышение эффективности обработки при использовании указанных частиц. 9 н. и 32 з.п. ф-лы, 35 пр., 13 табл., 1 ил.

Изобретение относится к скважинным устройствам дозированной подачи реагента в пластовую жидкость с целью защиты насосного оборудования от солей, коррозии и парафинов. Устройство содержит контейнер с дыхательным отверстием, в который помещена деформируемая оболочка, заполненная жидким реагентом, и дозирующий перистальтический насос с эластичной трубкой, взаимодействующей с ротором посредством прижимных роликов. Приводом перистальтического насоса служит гидротурбина, вал которой соединен через редуктор с ротором перистальтического насоса. Гидротурбина охвачена снизу уплотнительным элементом, упирающимся в стенку скважины, и приводится во вращение пластовой жидкостью. Повышается надежность дозированной подачи реагента за счет обеспечения его автономным источником энергии. 2 ил.

Группа изобретений относится к нефтедобывающей промышленности, в частности к предотвращению отложений на глубинно-насосном оборудовании. Способ включает приготовление гидрофобной термопластичной смеси, содержащей ингибитор, размещение ее в цилиндрическом корпусе с отверстиями на торцах, спуск корпуса в скважину, нагрев смеси до температуры окружающей среды, растворение гидрофобной части смеси на поверхности проницаемого материала, перекрывающего дозировочное отверстие в днище корпуса, скапливающейся под ним нефтью с последующим растворением частичек водорастворимого ингибитора водой (при наличии ингибитора в смеси), частично содержащейся в нефти на поверхности проницаемого материала, и окончательным растворением упавшего ингибитора в гидрозатворе нижерасположенной секции. Растворение осуществляют со скоростью, меньшей скорости оседания смеси на поверхность проницаемого материала, с последующим постоянным во времени переносом растворенного ингибитора в пластовую жидкость независимо от изменения обводненности пластовой жидкости во времени. Устройство включает по меньшей мере одну секцию в виде полого цилиндрического корпуса с днищем для размещения термопластичной смеси и перекрыто снизу перфорированной заглушкой. Корпус выполнен с непроницаемой боковой поверхностью, обладающей адгезией к гидрофобной смеси. Днище снабжено дозировочным отверстием, перекрытым проницаемым материалом. Под днищем расположенного выше нижнего торца корпуса скапливается нефть для растворения смеси независимо от обводненности пластовой жидкости. Газ, скапливающийся под днищем, отводится с помощью трубки за пределы корпуса. Для образования гидрозатвора над термопластичной смесью секция открыта со стороны верхнего торца и размещена с образованием зазора в цилиндрическом кожухе. Повышается эффективность и экономичность процесса подачи ингибитора. 2 н. и 13 з.п. ф-лы, 2 ил.

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для глушения и промывки скважин. Состав полисахаридной жидкости для промывки скважин или промысловых трубопроводов или глушения скважин, полученный растворением биоцида «Биолан» в пресной или минерализованной воде, представленной преимущественно раствором одновалентных катионов, растворением и гидратацией в полученном растворе гуарового загустителя, последующим введением комплексного реагента Нефтенол УСП с перемешиванием до получения мицеллярной дисперсии, с последующим добавлением борного сшивающего агента СП-РД и перемешиванием до полного сшивания, при следующем соотношении компонентов, мас.%: гуаровый загуститель 0,2-1,0, указанный сшивающий агент 0,2-1,0, реагент Нефтенол УСП 6,0-10,0, биоцид «Биолан» 0,004-0,01, указанная вода - остальное. Способ промывки скважин и очистки интервала перфорации от асфальтосмолопарафиновых отложений в скважинах с аномально низким пластовым давлением, включающий закачку указанного выше состава в затрубное пространство скважины в качестве блокирующей пачки, выдержку для размещения ее на забое скважины, последующую обратную промывку скважины закачкой в затрубное пространство скважины промывочной жидкости, в качестве которой используют подогретый до 30-40°C водный раствор реагента Нефтенол УСП с концентрацией 60-100 л на 1 м3 пресной или минерализованной воды, объем блокирующей пачки определяют расчетным путем с учетом объема зумпфа и оставления стакана, перекрывающего интервал перфорации на 100-200 м, и ее плотность превышает на 20-50 кг/м3 плотность указанной промывочной жидкости. Способ промывки скважин, включающий закачку в скважину указанного выше состава и его циркулирование в полном объеме скважины. Способ промывки промысловых трубопроводов, включающий закачку в промысловый трубопровод подогретой до 30-40°C промывочной жидкости, в качестве которой используют водный раствор реагента Нефтенол УСП с концентрацией 60-100 л на 1 м3 пресной или минерализованной воды, и затем продавку указанного выше состава. Способ промывки промысловых трубопроводов, включающий закачку в промысловый трубопровод указанного выше состава. Технический результат – повышение эффективности обработки. 5 н.п. ф-лы, 2 табл.

Изобретение относится к скважинной добыче нефти, осложненной выпадением асфальтосмолопарафиновых веществ на поверхности глубинного оборудования скважин. Техническим результатом является повышение эффективности эксплуатации скважин, осложненных образованием отложений из тяжелых компонентов нефти внутри частей глубинного насоса и колонны НКТ. Способ определения массы растворителя в нефтедобывающей скважине заключается в измерении давления столба жидкости на площадь известной величины. Причем датчик давления располагают в межтрубном пространстве скважины в зоне глубинного насоса, информация с датчика давления с необходимой частотой поступает на станцию управления скважины, а масса растворителя после его подачи в межтрубное пространство скважины определяется как произведение величины кратковременного изменения давления на площадь межтрубного пространства по математической формуле. 3 ил.

Наверх