Установка для идентификации турбулентного начального участка в каналах малого поперечного сечения

Изобретение относится к области гидродинамики и может быть использовано при разработке теплообменных аппаратов, использующих эффект начального участка. Установка для идентификации турбулентного начального участка в каналах малого поперечного сечения содержит емкость для исследуемой ньютоновской жидкости и теплообменник, представляющий собой трубопровод, состоящий из нескольких параллельных участков, соединенных между собой. Полость упомянутой емкости соединена с входной частью полости теплообменника, при этом выходная часть полости теплообменника открывается в полость мерной емкости, установленной на высокоточных весах. Полость емкости для исследуемой жидкости дополнительно соединена с выходной полостью компрессорного агрегата, а входная часть полости мерной емкости соединена с выходным патрубком емкости для исследуемой жидкости через полость теплообменника и через полость емкости исследуемой жидкости - с полостью компрессорного агрегата. Технический результат – исключение пульсаций жидкости на замеры. 3 ил.

 

Изобретение относится к области гидродинамики и может быть использовано при разработке теплообменных аппаратов, использующих эффект начального участка.

Одной из фундаментальных задач гидродинамики является определение влияния условий входа рабочего тела в каналы различного поперечного сечения на протяженность области, в которой формируется структура установившегося турбулентного течения ньютоновской жидкости. Данная задача имеет важное прикладное значение при идентификации явлений переноса в несопряженных и слабосопряженных процессах тепломассообмена в энергетике, авиакосмической технике, химической и пищевой промышленности и других областях техники.

Известен способ идентификации турбулентного начального участка в каналах малого поперечного сечения, заключающийся в определении влияния условий входа в каналы различного поперечного сечения на протяженность области, в которой формируется структура установившегося турбулентного течения ньютоновской жидкости, что, перед началом исследования, в емкость заливают исследуемую ньютоновскую жидкость затем жидкость из емкости подают в исследуемый теплообменник, представляющий собой трубопровод, состоящий из нескольких параллельных участков, соединенных между собой, после чего исследуемую жидкость из теплообменника сливают в мерную емкость, которую устанавливают на высокоточные весы, после чего определяют гипотетическое давление на входе в канал путем суммирования значения ранее измеренного давления в канале при помощи установленного на выходе манометра и определенного расчетным путем значения перепада давления (Lien K., Monty J.P., Chong M.S., Ooi A. The Entrance length for Fully Developed Turbulent Channel Flaw/ 15th Australasian Fluid Mechanics Conference. The University of Sydney, Sydney, Australia. Sydney: US. 2004. pp. 44-49).

Известна установка для реализации указанного способа, содержащая емкость для исследуемой ньютоновской жидкости, теплообменник, представляющий собой трубопровод, состоящий из нескольких параллельных участков, соединенных между собой, причем полость упомянутой емкости соединена с входной частью полости теплообменника, при этом выходная часть полости теплообменника открывается в полость мерной емкости, установленной на высокоточных весах, компрессорный агрегат (Lien K., Monty J.P., Chong M.S., Ooi A. The Entrance length for Fully Developed Turbulent Channel Flaw/ 15th Australasian Fluid Mechanics Conference. The University of Sydney, Sydney, Australia. Sydney: US. 2004. pp. 44-49 - прототип).

Основным недостатком указанной установки является влияние пульсаций жидкости на точность замеров.

Задачей предложенного изобретения является устранение указанных недостатков и создание установки для идентификации турбулентного начального участка в каналах малого поперечного сечения, применение которой позволит обеспечить требуемую точность измерений.

Решение указанной задачи достигается тем, что в предложенной установке для идентификации турбулентного начального участка в каналах малого поперечного сечения, содержащей емкость для исследуемой ньютоновской жидкости, теплообменник, представляющий собой трубопровод, состоящий из нескольких параллельных участков, соединенных между собой, причем полость упомянутой емкости соединена с входной частью полости теплообменника, при этом выходная часть полости теплообменника открывается в полость мерной емкости, установленной на высокоточных весах, согласно изобретению, полость емкости для исследуемой жидкости дополнительно соединена с выходной полостью компрессорного агрегата, а входная часть полости мерной емкости соединена с выходным патрубком емкости для исследуемой жидкости через полость теплообменника и через полость емкости исследуемой жидкости с полостью компрессорного агрегата.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 показана принципиальная схема установки, на фиг. 2 - графики изменения избыточного давления по длине трубы с внутренним диаметром 4,5 мм, полученные экспериментальным и теоретическим путем. На фиг. 3 приведена зависимость длины начального участка от числа Рейнольдса. Полученные данные свидетельствуют, что длина начального участка больше экспериментальных данных, полученных по действующим методикам. Сплошная линия-расчет без учета влияния начального участка. Точками обозначены экспериментальные значения.

Предложенная установка содержит компрессорный агрегат 1, соединенный с полостью емкости 2 для исследуемой ньютоновской жидкости (далее-жидкость). На выходе из полости емкости 2 установлен манометр 3, который измеряет давление жидкости на входе в теплообменник 4. На выходе из теплообменника 4 установлен манометр 5 для определения давления исследуемой ньютоновской жидкости. Из теплообменника 4 исследуемая ньютоновская жидкость под давлением поступает в приемную емкость 6. Приемная емкость 6 установлена на высокоточных весах 7. Для перепуска жидкости из теплообменника 4 в емкость 6 служит вентиль 8, а для перепуска жидкости из емкости 2 в теплобменник 4 - вентиль 9. Для измерения давления жидкости на входе в емкость 2 установлен манометр 10. Для соединения емкости 2 с компрессорным агрегатом 1 служит вентиль 11.

В линии между компрессорным агрегатом 1 и емкостью 2 установлен регулятор давления 12.

Предложенная установка работает следующим образом.

В емкость 2 заливается ньютоновскую жидкость. При помощи компрессорного агрегата 1 создается требуемое давление в паровом пространстве емкости 2. Контроль давления проводится по манометру 10. Величина создаваемого давления регулируется при помощи регулятора давления 12. Открывается вентиль 9, и при наступлении стационарного режима течения, который определяется по манометрам 3 и 5, установленным на входе и на выходе из теплообменника соответственно, открывается вентиль 8. Слив ньютоновской жидкости производится в приемную емкость 6, которая предварительно устанавливается на высокоточных весах 7. Установившийся режим течения контролируется по показаниям манометров 3 и 5.

На рабочем участке теплообменника, между манометрами 3 и 5, измерения проводят при помощи стационарных манометров типа МО с условными шкалами и одновитковой пружиной класса точности 0,15 (не обозначены).

Путем многократных сливов определяются начало tнач и окончание tкон промежутка времени в секундах, а также показания весов в эти моменты времени mнач и mкон в килограммах, после чего находятся локальные массовые расходы Gi:

После определения локальных расходов определяется массовый расход G:

Работы проводились при четырехкратных проливках.

Зная плотность жидкости ρ, определяется объемный расход U:

После чего, определив проходную площадь сечения S по внутреннему диаметру канала d, определяют среднюю скорость течения жидкости в канале:

По вычисленной средней скорости и известной кинематической вязкости ϑ исследуемой ньютоновской жидкости определяется режим течения по числу Рейнольдса Re:

После этого по числу Рейнольдса и формуле Блазиуса для установившегося режима получается значение коэффициента сопротивления трению ξ:

И далее определяется перепад давления ΔР на теплообменнике без учета начального давления по формуле Дарси:

,

где: - длина канала.

После чего, по измеренному давлению на манометре 5, определяется гипотетическое давление на входе в канал Ро теплообменника

Проведенные авторами и заявителем теоретические, экспериментальные и аналитические исследования подтвердили правильность приложенных конструкторско-технологических решений.

Следует понимать, что в устройство вышеописанной установки и ее составных частей можно вносить различные изменения, модификации и (или) добавления, не выходя при этом за рамки сущности и объема изобретения.

Использование предложенного технического решения позволит создать установку для идентификации турбулентного начального участка в каналах малого поперечного сечения, применение которой даст возможность более подробно описать турбулентное течение на входном гидродинамическом участке и исключить влияние пульсаций жидкости на замеры.

Установка для идентификации турбулентного начального участка в каналах малого поперечного сечения, содержащая емкость для исследуемой ньютоновской жидкости, теплообменник, представляющий собой трубопровод, состоящий из нескольких параллельных участков, соединенных между собой, причем полость упомянутой емкости соединена с входной частью полости теплообменника, при этом выходная часть полости теплообменника открывается в полость мерной емкости, установленной на высокоточных весах, компрессорный агрегат, отличающаяся тем, что полость емкости для исследуемой жидкости дополнительно соединена с выходной полостью компрессорного агрегата, а входная часть полости мерной емкости соединена с выходным патрубком емкости для исследуемой жидкости через полость теплообменника и через полость емкости исследуемой жидкости с полостью компрессорного агрегата.



 

Похожие патенты:

Изобретение относится к области измерительной техники, а именно в химической и нефтехимической отраслях промышленности на любых предприятиях и заводах, где вязкость изготовляемых ими продуктов является основным показателем качества.

Капиллярное устройство для индикаторов отображения текучей среды, содержащих ограничитель текучей среды и капиллярную трубку. Ограничитель текучей среды содержит сквозное отверстие малого диаметра.

Изобретение может быть использовано в нефтяной, автомобильной, авиационной, машиностроительной отраслях промышленности. С помощью устройства определяются плотность, динамическая и кинематическая вязкость жидкости.

Изобретение относится к области технической физики, в частности к способам измерения вязкости газов, и может найти применение в различных отраслях промышленности и в лабораторной практике.

Изобретение относится к области измерительной техники и может быть использовано для определения вязкости текучей среды. Предложены измерительное электронное устройство (20) и способ получения вязкости текучей среды потока при заданной эталонной температуре.

Изобретение относится к области технической физики, а именно к технике определения вязкостных свойств жидких сред. Вискозиметр содержит вертикальный калиброванный капилляр, заполненный исследуемой жидкостью.

Изобретение относится к области измерительной техники, в частности к бесконтактным аэродинамическим способам контроля поверхностного натяжения жидкостей, и может найти применение в химической промышленности и энергетике.

Изобретение относится к области микрофлюидики и может быть использовано для создания течения в капле жидкости и перемешивания жидкостей в малых объемах. Предложенный способ заключается в том, что каплю жидкости, в которой нужно создать течение, помещают на горизонтально расположенную тонкую упругую пластину со свободными краями, в которой возбуждают изгибные колебания с частотой собственных колебаний в интервале звуковых и ультразвуковых частот пьезоэлектрическим преобразователем.

Изобретение предоставляет датчик для расходомера, который может использоваться в различных устройствах для измерений параметров потока, использующих полупроводниковые либо керамические терморезисторы.

Изобретение относится к технической физике, а именно к способам и устройствам контроля физических параметров: вязкости, электропроводности, плотности, поверхностного натяжения у образцов металлических расплавов.

Изобретение относится к авиационной технике, а именно к струйным датчикам уровня, управляющим порядком выработки топлива из баков летательных аппаратов. Струйный датчик уровня содержит корпус и головку, при этом в корпусе расположены штуцер для подвода топлива и штуцер для отвода топлива, а в головке расположены форсунка и приемник, причем штуцер для подвода топлива соединен с форсункой посредством первой трубки, а штуцер для отвода топлива соединен с приемником посредством второй трубки, дополнительно в корпусе расположен штуцер для подвода перебивающего потока топлива, а в головке расположена дополнительная форсунка, при этом штуцер для подвода перебивающего потока топлива соединен с дополнительной форсункой посредством третьей трубки.

Изобретение относится к газодобывающей промышленности и может быть использовано для определения динамического уровня жидкости в затрубном пространстве, между эксплуатационной колонной и насосно-компрессорными трубами, обводненных газовых скважин в процессе откачки пластовой жидкости погружными электроцентробежными насосами.

Изобретение относится к автоматизированным системам контроля расхода транспортными средствами. Техническим результатом изобретения являются возможность измерения плотности и уровня топлива в топливных баках транспортного средства, автоматическая компенсация дополнительной погрешности измерения при изменении угла наклона топливного бака относительно поверхности земли, автоматизация процесса измерения.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения динамического или статического уровня жидкости в нефтедобывающей или водозаборной скважинах.

Изобретение относится к гидротехническим сооружениям, а именно к устройствам для измерения уровней и расходов воды в каналах и реках, и может быть использовано в водном хозяйстве.

Изобретение относится к области измерительной техники и может быть использовано в сложных технологических условиях, в частности, для контроля уровня и плотности технологических растворов радиохимической переработки облученного ядерного топлива.

Изобретение относится к контрольно-измерительной технике и может быть использовано в нефтехимической и радиохимической промышленности при необходимости измерения переменного уровня жидкости с неизвестной плотностью.

Изобретение относится к хранению нефтепродуктов и может быть использовано в нефтехимической и нефтеперерабатывающей промышленности, а также в других отраслях, связанных с хранением легкоиспаряющихся продуктов.

Изобретение относится к металлургии, а именно к контролю состояния расплава в ковше при внепечной обработке стали. .

Изобретение относится к системе для определения оставшегося количества жидкого водорода, хранимого в устройстве хранения водорода. .

Группа изобретений относится к машиностроению, а именно к способам и устройствам по выявлению нарушения целостности картера и ухудшения характеристик системы вентиляции картера. Способ для двигателя включает этап, на котором указывают, посредством электронного контроллера (48), как ухудшение характеристик системы (16) вентиляции картера, так и уровень масла в поддоне (32) картера на основании единственного общего датчика картера (63). Уровень масла в поддоне (32) картера определяют электронным контроллером (48) в зависимости от выравнивания давления в картере (28) с атмосферным давлением. При этом единственный общий датчик (63) картера представляет собой датчик давления, считывающий давление ниже уровня масла в поддоне (32) картера. Также раскрыта система двигателя. Технический результат заключается в сокращении аппаратных средств двигателя, а также снижении шумов в сигнале давления и повышение точности определения давления. 2 н. и 10 з.п. ф-лы, 4 ил.
Наверх