Послеотборная ступень паровой турбины

Изобретение относится к области энергетического машиностроения и может быть использовано при конструировании и изготовлении паровых турбин для тепловых и атомных электростанций. Послеотборная ступень паровой турбины содержит лопатки соплового аппарата, тело диафрагмы, внешний обвод соплового аппарата, рабочие лопатки и диск рабочего колеса. Внешний обвод диафрагмы смещен в направлении корневого диаметра послеотборной ступени на величину Δ относительно внутреннего диаметра корпуса цилиндра паровой турбины в области расположения рабочих лопаток предотборной ступени, величину смещения Δ для необандаженных предотборных ступеней выбирают равной: а для предотборных ступеней с бандажом рабочих лопаток:

, где ΔGот - абсолютная величина расхода пара в регенеративный подогреватель, Gz - расход пара через предотборную ступень, - длина рабочих лопаток предотборной ступени, Δδ - толщина бандажа рабочих лопаток предотборной ступени, K1=1,1÷1,15 - коэффициент, учитывающий сопротивление линии регенеративного отбора. Достигается повышение эффективности послеотборной ступени, вибрационной надежности ротора паровой турбины, а также уменьшение гидравлического сопротивления тракта проточная часть-отборный патрубок. 2 ил.

 

Изобретение относится к области энергетического машиностроения и может быть использовано при конструировании и изготовлении паровых турбин для тепловых и атомных электростанций.

Известна ступень паровой турбины [Трухний А.Д. Стационарные паровые турбины. М.: Энергоатомиздат, 1990], содержащая сопловой аппарат, тело диафрагмы, внешний обвод диафрагмы и рабочее колесо.

Основной недостаток данного технического решения состоит в низкой эффективности ступени и вибрационной надежности ротора турбины в случае установки ступени после места организации отбора пара из проточной части турбины на регенеративный подогрев. Вызвано это большой окружной неравномерностью параметров потока и поля скоростей при входе пара в сопловой аппарат послеотборной ступени в связи с организацией отбора из проточной части турбины под углом 90° относительно направления движения основной части потока.

Наиболее близкой по технической сущности к заявляемому изобретению является ступень паровой турбины [авторское свидетельство PL №276424, опубл. 14.12.1988, МПК F01D 11/00, F01D], содержащая рабочее колесо предотборной ступени, сопловую диафрагму, криволинейный козырек, расположенный перед диафрагмой послеотборной ступени.

Основной недостаток данного технического решения заключается в низком коэффициенте полезного действия послеотборной ступени в связи со срывом потока пара и «затемнением» козырьком соплового аппарата послеотборной ступени.

Техническая задача, решаемая предлагаемым изобретением, заключается в уменьшении потерь энергии в послеотборной ступени, вызванных окружной неравномерностью параметров потока в ней. Техническая результат, заключающийся в повышении эффективности послеотборной ступени, вибрационной надежности ротора паровой турбины, а также уменьшении гидравлического сопротивления тракта проточная часть-отборный патрубок, достигается тем, что в известной послеотборной ступени паровой турбины, содержащей лопатки соплового аппарата, тело диафрагмы, внешний обвод соплового аппарата, рабочие лопатки и диск рабочего колеса, согласно изобретению внешний обвод диафрагмы смещен в направлении корневого диаметра послеотборной ступени на величину Δ относительно внутреннего диаметра корпуса цилиндра паровой турбины в области расположения рабочих лопаток предотборной ступени, величину смещения Δ для необандаженных предотборных ступеней выбирают равной:

а для предотборных ступеней с бандажом рабочих лопаток:

,

где ΔGот - абсолютная величина расхода пара в регенеративный подогреватель, Gz - расход пара через предотборную ступень, - длина рабочих лопаток предотборной ступени, Δδ - толщина бандажа рабочих лопаток предотборной ступени, K1=1,1÷1,15 - коэффициент, учитывающий сопротивление линии регенеративного отбора.

Сущность заявляемого изобретения поясняется чертежами, представленным на фиг.1, где изображен продольный разрез послеотборной ступени паровой турбины в совокупности с предотборной ступенью и камерой отбора, и фиг. 2, где представлено распределение относительного полного давления на входе в послеотборную ступень.

Послеотборная ступень паровой турбины (фиг. 1) содержит лопатки соплового аппарата 1, тело диафрагмы 2, внешний обвод соплового аппарата послеотборной ступени 3, рабочие лопатки 4 и диск рабочего колеса 5. Послеотборная ступень паровой турбины располагается после рабочего колеса преодотборной ступени 6, осерадиальной отборной щели 7, сообщенной с камерой отбора 8.

Внешний обвод диафрагмы смещен в направлении корневого диаметра послеотборной ступени на величину Δ относительно внутреннего диаметра корпуса цилиндра паровой турбины в области расположения рабочих лопаток преодтборной ступени. Величина смещения внешнего обвода соплового аппарата Δ зависит от величины относительного расхода пара в линию регенеративного отбора и высоты рабочей лопатки предотборной ступени и определяется следующим соотношением, вытекающим из уравнения расхода:

Соответственно для обандаженных ступеней:

где ΔGот - абсолютное значение пара, идущего в регенеративный подогреватель конденсата или питательной воды, Gz - расход пара через предотборную ступень, - длина рабочих лопаток предотборной ступени и Δδ - толщина бандажа рабочих лопаток предотборной ступени. Введенный в формулы (1) и (2) коэффициент K1, равный K1=1,1÷1,15, учитывает сопротивление линии регенеративного отбора.

Послеотборная ступень паровой турбины работает следующим образом.

В рабочем процессе пар выходит из рабочих лопаток предотборной ступени 6 и разделяется: часть потока (А), покидающая периферийную область предотборной ступени, направляется через осерадиальную щель 7, образованную периферийным обводом соплового аппарата послеотборной ступени, в камеру отбора 8, остальная часть потока (Б) направляется для расширения в сопловой и рабочий аппарат послеотборной ступени 1, 4 (фиг. 1).

Степень выравнивания поля скоростей в случае использования предлагаемой послеотборной ступени иллюстрируется кривыми на фиг. 2, где приведено распределение относительного полного давления за сопловой решеткой на ее среднем диаметре, как при установке после места отбора традиционной ступени паровой турбины [Трухний А.Д. Стационарные паровые турбины. М.: Энергоатомиздат, 1990] и при установке новой послеотборной ступени со смещенным внешним обводом диафрагмы в направлении корневого диаметра послеотборной ступени на величину Δ. Как видно, установка предлагаемой послеотборной ступени обеспечивает почти равномерное поле скоростей на ее входе.

Использование предложенной послеотборной ступени в паровых турбинах в местах организации отбора пара на регенеративный подогрев приведет к уменьшению неравномерности расходов пара в линии отбора, а также к уменьшению окружной неравномерности поля скоростей при входе пара в сопловой аппарат послеотборной ступени, что приводит к увеличению экономичности на 1,5% в результате уменьшения асимметрии параметров потока перед ней, что подтверждается распределением относительного полного давления на среднем диаметре перед послеотборной ступенью (Фиг. 2), полученного в результате численного моделирования.

Послеотборная ступень паровой турбины, содержащая лопатки соплового аппарата, тело диафрагмы, внешний обвод соплового аппарата, рабочие лопатки и диск рабочего колеса, отличающаяся тем, что внешний обвод диафрагмы смещен в направлении корневого диаметра послеотборной ступени на величину Δ относительно внутреннего диаметра корпуса цилиндра паровой турбины в области расположения рабочих лопаток предотборной ступени, величину смещения Δ для необандаженных предотборных ступеней выбирают равной:

а для предотборных ступеней с бандажом рабочих лопаток:

где ΔGот - абсолютная величина расхода пара в регенеративный подогреватель, Gz - расход пара через предотборную ступень, - длина рабочих лопаток предотборной ступени, Δδ - толщина бандажа рабочих лопаток предотборной ступени, K1=1,1÷1,15 - коэффициент, учитывающий сопротивление линии регенеративного отбора.



 

Похожие патенты:

Изобретение относится к энергетическому, транспортному и авиационному двигателестроению и может быть использовано в технических объектах, где в качестве источника энергии целесообразно использовать высокотемпературную высокооборотную центростремительную турбину с небольшим объемным расходом рабочего тела.

Конструкция турбомашины с теплообменником, интегрированным в выпускной газовоздушный тракт (10) потока горячих газов (1) турбомашины, отличающаяся тем, что элементы теплообмена (60, 60а-60i; 9), установленные в одном из элементов (11, 14, 14а, 14b, 15, 16, 16а, 16b, 18, 18а, 18с) выпускного газовоздушного тракта (10), выполнены с возможностью направлять часть потока горячих газов (1), проходящую через элементы теплообмена, с последующим использованием остаточной тепловой энергии указанной части потока горячих газов (1) для увеличения мощности на валу (30, 31) турбомашины (20, 20а, 20b), оставляя большую часть потока горячих газов (1) невозмущенной.

Изобретение относится к системам очистки от оксидов азота газов и может быть использовано для очистки выхлопных газов газотурбинных двигателей, например, газоперекачивающих агрегатов, газотурбинных электростанций.

Глушитель предназначен для снижения шума выхлопной струи пара. Глушитель состоит из верхней и нижней ступеней.

Концевые бандажи (411) на лопатках (419) последней ступени конденсационной паровой турбины (410) могут создавать значительное препятствие и образовывать завихрение у стенки паронаправляющей (423, 424) диффузора (300), что приводит к отрыву потока пара от указанной стенки паронаправляющей.

Диффузор (20), в частности, для осевого компрессора, предпочтительно стационарной газотурбинной установки. В диффузоре (20) кольцевой канал (17), имеющий первую площадь поперечного сечения, переходит в выходное пространство (21), имеющее вторую, большую площадь поперечного сечения вдоль оси (31) машины.

Выхлопной диффузор (10) для газовой турбины имеет расширяющийся в направлении выхода (20) диффузора проточный канал (22), в центре которого предусмотрен распространяющийся в осевом направлении направляющий аппарат (14).

Устройство выпуска отработавшего пара для модуля паровой турбины снабжено каналом (4а, 4b) для выпуска пара, ограниченным поверхностью (8а, 8b) диффузора (5а, 5b), направляющей пар, а также нижней стенкой (7а, 7b).

Выпускной патрубок (110) паровой турбины (10) содержит нижний выпускной патрубок (105), направляющую (24) для пара, отверстие (26) конденсатора, пластину (200) выпускного патрубка и внутренний канал (215).

Выпускное устройство (100) осевой паровой турбины содержит внутренний корпус (116) турбины и конденсатор (140) турбины, установленный ниже выпускного кожуха (121). Выпускной кожух (121) содержит верхний выпускной кожух (122) и нижний выпускной кожух (123) и обеспечивает двойной выпускной тракт (180, 190) к конденсатору (140) турбины.

Изобретение относится к конструкции узла с болтовым креплением в турбомашине и к турбомашине и направлено на уменьшение осевого усилия на болт. Конструкция болтового крепления включает в себя первый элемент, имеющий болтовое отверстие; второй элемент, имеющий участок с внутренней резьбой; болт, вставляемый в болтовое отверстие и в участок с внутренней резьбой для крепления первого элемента и второго элемента одного к другому; и гайку, размещаемую на первом элементе, имеющую выпуклый участок, выступающий в сторону второго элемента.

Изобретение относится к электростанции с комбинированным циклом. Электростанция содержит системы газовой и паровой турбины, выполненные на едином валу и объединенные с теплоэлектростанцией, имеющей потребитель тепла в виде системы централизованного отопления или промышленного предприятия, и по меньшей мере один отбор пара в паровой турбине среднего давления и трубопроводы отбора пара.

Изобретение относится к энергетике. Узел турбины содержит первую неподвижную конструкцию и вторую неподвижную конструкцию, расположенную радиально снаружи относительно первой неподвижной конструкции.

Сектор лопаток статора для прикрепления к корпусу осевой турбомашины содержит несколько лопаток с платформами, соединенных таким образом, чтобы описывать дугу окружности, и с аэродинамическим профилем, выступающим из внутренней поверхности каждой платформы и направленным к центру дуги окружности, описанной платформами.

Настоящее изобретение относится к наружному корпусу из композиционного материала для компрессора осевой турбомашины, при этом корпус содержит в целом круглую стенку с матрицей и волокнистым элементом жесткости.

Осевая турбина газотурбинного двигателя содержит наружный корпус с установленными в нем неподвижными лопатками и надроторными вставками, образующими с корпусом по меньшей мере одну полость наддува, соединенную с системой подвода охлаждающего воздуха, ротор с рабочими лопатками, имеющими профильную часть, ограниченную вогнутой и выпуклой поверхностями.

Группа изобретений относится к наружному корпусу из композиционного материала для осевой турбомашины. Корпус из композиционного материала для осевой турбомашины содержит круглую стенку, содержащую матрицу и сплетенный волокнистый элемент жесткости (40).

Статорное колесо турбинного двигателя содержит множество лопаток и металлическое сборочное кольцо. Каждая из лопаток содержит внутреннюю платформу, наружную платформу, имеющую крепежные лапки снаружи, и по меньшей мере одну аэродинамическую поверхность, продолжающуюся между внутренней и наружной платформами.

Изобретение относится к области авиационного машиностроения и может быть использовано при проектировании, изготовлении и эксплуатации турбореактивного авиационного двигателя.

Изобретение относится к двигателестроению, а именно к реверсивным устройствам газотурбинных двигателей. Устройство для присоединения реверсивного устройства к переднему корпусу двигателя включает «пушечный» замок с подвижным кольцом.

Разделенный на сектора направляющий аппарат компрессора турбомашины содержит скрепленные сектора, образующие внешнее и внутреннее концентрические кольца, между которыми размещены лопатки. Внешнее кольцо снаружи снабжено средством крепления с внешним корпусом и содержит боковую стенку, проходящую между передней и задней сторонами внешнего кольца. Средство крепления смещено в осевом направлении относительно задней стороны внешнего кольца и содержит, относительно направления потока, проходящего через лопатки, либо передний и задний угловые периферические выступающие края зацепления, либо кольцевой фланец. Передний угловой периферический выступающий край зацепления расположен на уровне передней стороны внешнего кольца упомянутых секторов, а задний угловой периферический выступающий край зацепления смещен от задней стороны внешнего кольца. Задний угловой периферический выступающий край зацепления и конец заднего углового края зацепления расположены посередине лопаток между их передними и задними кромками. Передний и задний угловые периферические края зацепления выполнены с возможностью заходить в пазы удерживания внешнего корпуса. Кольцевой фланец предусмотрен по периферии внешнего кольца и расположен над лопатками между их передними и задними кромками. Кольцевой фланец расположен посередине от передних и задних кромок лопаток в самом толстом районе лопатки, расположенном в центре лопатки. Кольцевой фланец содержит множество отверстий, принимающих крепежные болты для его крепления к внешнему корпусу. Изобретение позволяет повысить усталостную прочность направляющего аппарата компрессора турбомашины. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области энергетического машиностроения и может быть использовано при конструировании и изготовлении паровых турбин для тепловых и атомных электростанций. Послеотборная ступень паровой турбины содержит лопатки соплового аппарата, тело диафрагмы, внешний обвод соплового аппарата, рабочие лопатки и диск рабочего колеса. Внешний обвод диафрагмы смещен в направлении корневого диаметра послеотборной ступени на величину Δ относительно внутреннего диаметра корпуса цилиндра паровой турбины в области расположения рабочих лопаток предотборной ступени, величину смещения Δ для необандаженных предотборных ступеней выбирают равной: а для предотборных ступеней с бандажом рабочих лопаток: , где ΔGот - абсолютная величина расхода пара в регенеративный подогреватель, Gz - расход пара через предотборную ступень, - длина рабочих лопаток предотборной ступени, Δδ - толщина бандажа рабочих лопаток предотборной ступени, K11,1÷1,15 - коэффициент, учитывающий сопротивление линии регенеративного отбора. Достигается повышение эффективности послеотборной ступени, вибрационной надежности ротора паровой турбины, а также уменьшение гидравлического сопротивления тракта проточная часть-отборный патрубок. 2 ил.

Наверх