Жидкостный ракетный двигатель с секторами дефлектора на срезе сопла

Изобретение относится к ракетным двигателям, в которых для управления вектором тяги в полете используются различные органы управления, расположенные у среза сопла или внутри него. ЖРД содержит камеру с охлаждаемой сверхзвуковой частью сопла, рулевые агрегаты и раму, на наружной поверхности охлаждаемой сверхзвуковой части сопла в районе среза выполнено четыре сектора со сферической наружной поверхностью с центром, расположенным на оси камеры, и боковыми стенками, соединяющими сферические поверхности секторов, с наружной поверхностью охлаждаемой сверхзвуковой частью сопла, на которые установлены части дефлектора, выполненные из углерод-углеродного композиционного материала (УУКМ), наружные и внутренние поверхности которого, эквидистантные наружной поверхности секторов, закреплены к сферическим секторам с помощью фасонных кронштейнов, расположенных по бокам частей дефлектора и имеющих эквидистантные внутренние поверхности относительно наружных поверхностей дефлектора, имеющих зазор между собой для крепления кронштейна, расположенного на наружной поверхности частей дефлектора, при этом все эквидистантные поверхности сферических секторов, частей дефлектора и кронштейнов имеют графитовое покрытие. Изобретение обеспечивает повышение эффективности, ресурса работы и получения большей величины бокового управляющего усилия и уменьшения усилия на рулевых органах. 3 ил.

 

Изобретение относится к ракетным двигателям, в которых для управления вектором тяги в полете используются различные органы управления, расположенные у среза сопла или внутри него.

Известно, что на заре развития жидкостных ракетных двигателей (ЖРД) в немецкой ракете ФАУ-2 для управления вектором тяги использовались газовые рули, выполненные из графита и расположенные на срезе сопла. При повороте этих рулей вокруг оси с увеличением площади натекания создается боковое усилие. Развитие ракетной техники потребовало создания более надежных и эффективных органов управления вектором тяги.

Известны газовые рули по патенту США №3251555 и по книге «Конструкция ракетных двигателей на твердом топливе» под общей редакцией Л.Н. Лаврова. – М.: Машиностроение, 1993, стр. 145, которые расположены в полости истекающей струи.

Недостатком является условие работы этих газовых рулей:

- тепловые и эрозионные воздействия высокотемпературного газового потока в течение всего времени работы двигателя;

- наличие механических нагрузок от сверхзвукового потока в течение всего времени работы двигателя.

Известен газовый руль ракетного двигателя, выбранный за прототип, содержащий перо, тарель с цилиндрическим выступом, вал, хвостовик которого с помощью кольцевой выточки через посредство разжимного кольца насажен на выступ тарели. В этой конструкции тарель и перо выполнены из разных деталей (патент России №2251013 F02К 9/80, 2003).

Недостатком данной конструкции является:

- низкая надежность органов управления, так как они все время находятся в высокотемпературном газовом потоке, что приводит к их эрозии и быстрому выгоранию;

- нахождение газовых рулей все время в потоке сопровождается наличием их лобового сопротивления, что снижает удельные энергетические характеристики;

- невозможность получения большой величины бокового управляющего усилия из-за небольшой рабочей поверхности органов управления;

- значительные усилия на рулевых органах.

Предлагаемое изобретение устраняет указанные недостатки прототипа и решает техническую задачу повышения эффективности, ресурса работы и получения большей величины бокового управляющего усилия и уменьшения усилия на рулевых органах.

Поставленная техническая задача решается тем, что в ЖРД, содержащем камеру с охлаждаемой сверхзвуковой частью сопла, рулевые агрегаты и раму, на наружной поверхности охлаждаемой сверхзвуковой части сопла в районе среза выполнено четыре сектора со сферической наружной поверхностью с центром, расположенным на оси камеры, и боковыми стенками, соединяющими сферические поверхности секторов, с наружной поверхностью охлаждаемой сверхзвуковой частью сопла, на которые установлены части дефлектора, выполненные из углерод-углеродного композиционного материала (УУКМ), наружные и внутренние поверхности которого, эквидистантные наружной поверхности секторов, закреплены к сферическим секторам с помощью фасонных кронштейнов, расположенных по бокам частей дефлектора и имеющих эквидистантные внутренние поверхности относительно наружных поверхностей дефлектора, имеющих зазор между собой для крепления кронштейна, расположенного на наружной поверхности частей дефлектора, при этом все эквидистантные поверхности сферических секторов, частей дефлектора и кронштейнов имеют графитовое покрытие.

Такое исполнение ЖРД позволяет реализовать следующие процессы:

- когда не требуется боковое управляющее усилие, сектора дефлектора находятся в исходном положении и не обтекаются газовым потоком;

- при необходимости получения бокового усилия в определенной плоскости подается команда на соответствующие рулевые агрегаты. Рулевым агрегатом сектор дефлектора погружается в газовый поток.

Боковое управляющее усилие будет реализовываться из двух составляющих: усилия от распределения давления на поверхности дефлектора и усилия от повышения давления в зоне сопла перед дефлектором.

При погружении дефлектора в газовую струю боковое усилие будет реализовываться не только за счет повышения давления на поверхности дефлектора, но также и за счет повышения давления в отрывной зоне на сопловой части перед сектором дефлектора. Причем повышение давления на сопловой части перед сектором дефлектора вносит существенную составляющую в получение бокового управляющего усилия и позволяет значительно уменьшить усилия на рулевом агрегате. За счет этого реализуется эффективное боковое усилие при уменьшенном усилии на рулевом агрегате и уменьшенных осевых потерях импульса тяги.

Сущность предлагаемого изобретения поясняется схемами, показанными на фиг. 1, 2, 3.

ЖРД (фиг. 1) содержит камеру 1 с охлаждаемой сверхзвуковой частью сопла, сферические сектора 2, боковые стенки 3, части дефлектора 4, кронштейны 5, проушины (кронштейны) 6, рулевые агрегаты 7, раму двигателя 8.

На фиг. 2 показано расположение четырех частей дефлектора 4, фасонных кронштейнов 5, проушин (кронштейнов) 6, рулевых агрегатов 7

На фиг. 3 показана физическая картина получения бокового усилия. При погружении сектора дефлектора 4 в газовую струю на охлаждаемую сверхзвуковую часть сопла камеры 1 действует повышенное давление P1 за скачком уплотнения А перед сектором дефлектора 4, при этом на сектор дефлектора 4 действует давление Р2.

ЖРД с органами управления вектором тяги (частями дефлектора) работает следующим образом.

По команде «Запуск» ЖРД начинает работать по штатной циклограмме. Происходит подача компонентов топлива в камеру 1 и на их воспламенение, образуя внутри камеры газовую струю. При необходимости поворота на определенный угол от системы управления РН подается сигнал на соответствующие рулевые агрегаты 7, которые через проушину 6 поворачивают часть дефлектора 4 вокруг оси, расположенной на оси камеры 1. В результате погружения части дефлектора 4 в газовую струю на поверхности сектора дефлектора и охлаждаемой сверхзвуковой части сопла, примыкающей к сектору дефлектора, повышается статическое давление, которое существенно выше давления на противоположной части охлаждаемого сопла, в результате создается боковое управляющее усилие.

Таким образом, использование частей дефлектора со сферической поверхностью, выполненных из УУКМ и расположенных в районе среза сопла, позволяет получить большое управляющее усилие, уменьшение потерь в осевой тяге при получении бокового усилия, уменьшение усилия на рулевые агрегаты и повышение надежности работы и ресурса работы конструкции.

ЖРД, содержащий камеру с охлаждаемой сверхзвуковой частью сопла, рулевые агрегаты и раму, отличающийся тем, что на наружной поверхности охлаждаемой сверхзвуковой части сопла в районе среза выполнено четыре сектора со сферической наружной поверхностью с центром, расположенным на оси камеры, и боковыми стенками, соединяющими сферические поверхности секторов, с наружной поверхностью охлаждаемой сверхзвуковой частью сопла, на которые установлены части дефлектора, выполненные из углерод-углеродного композиционного материала, наружные и внутренние поверхности которого, эквидистантные наружной поверхности секторов, закреплены к сферическим секторам с помощью фасонных кронштейнов, расположенных по бокам частей дефлектора и имеющих эквидистантные внутренние поверхности относительно наружных поверхностей дефлектора, имеющих зазор между собой для крепления кронштейна, расположенного на наружной поверхности частей дефлектора, при этом все эквидистантные поверхности сферических секторов, частей дефлектора и кронштейнов имеют графитовое покрытие.



 

Похожие патенты:

Изобретение относится к ракетным двигателям, в которых используется центральное тело с расположенными вокруг него индивидуальными камерами сгорания. Жидкостной ракетный двигатель (ЖРД) состоит из рамы, центрального тела с профилированной поверхностью, расположенной коаксиально продольной оси двигателя, и нескольких индивидуальных камер сгорания с профилированными сверхзвуковыми соплами, расположенными вокруг центрального тела, и закрепленных на двигательной раме.

Изобретение относится к области ракетостроения и может быть использовано при разработке и изготовлении ракетных двигателей с соплами большой степени расширения для верхних ступеней ракет и космических аппаратов.

Изобретение относится к артиллерийской технике, в частности к ракетным двигателям снарядов, запускаемых из ствола орудия или миномета. Ракетный двигатель активно-реактивного снаряда содержит камеру сгорания с зарядом твердого топлива, сопло, инициатор и сопловую заглушку.

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя с раздвижным соплом. Сопло ракетного двигателя содержит раструб, первый насадок, наружный телескопический насадок, механизмы раздвижки, обеспечивающие перевод сопла из сложенного положения в рабочее, а также приводы раздвижки.

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя с раздвижным соплом. Сопло ракетного двигателя с механизмом раздвижки, обеспечивающим перевод сопла из сложенного положения в рабочее, содержит раструб и складной насадок, образованный лепестками с элементами кинематической связи лепестков с раструбом.

Изобретение относится к ракетной технике, в частности к устройству жидкостного ракетного двигателя с выдвижным многосекционным соплом. Жидкостный ракетный двигатель с выдвижным соплом, содержащий камеру с соплом из двух частей, одна из которых, смонтированная неподвижно с камерой сгорания, снабжена механизмом выдвижения в виде привода, исполнительного механизма и узлов направления и фиксации в конечном положении, а вторая - выполнена с возможностью перемещения вдоль оси сопла из двух частей, связанных телескопически друг с другом с возможностью взаимного кинематического взаимодействия и с узлами направления и фиксации, по цилиндрическому контуру на периферии неподвижной обечайки сопла выполнены профильные многозаходные винтовые направляющие, по одинаковым по окружности равноотстоящим друг от друга и продольной оси двигателя винтовым траекториям, а на корпусе выдвижной максимального диаметра части сопла с возможностью вращения и с осевой фиксацией установлена кольцевая обечайка, снабженная двумя группами направленных к продольной оси сопла и в другую от нее сторону цапф со сферическими подшипниками, одной - взаимодействующей своими подшипниками с внутренними профилями винтовых направляющих, и второй - группой цапф, снабженной сферическими подшипниками, через шатуны с группой цапф, размещенной с внешней части сопла максимального диаметра.

Изобретение относится к ракетной технике, в которой создание жидкостных ракетных двигателей с донной тепловой защитой, предназначенной для уменьшения теплового и газодинамического воздействия продуктов сгорания работающих двигателей, является актуальной задачей.

Изобретение относится к ракетно-космической технике. Компоновка маршевой многокамерной двигательной установки двухступенчатой ракеты-носителя с составным сопловым блоком, оснащенной ракетными блоками первой и второй ступеней, соединенными и работающими по параллельной схеме, содержащая охлаждаемые камеры жидкостных ракетных двигателей (ЖРД) первой ступени, расположенные вокруг укороченного центрального тела общего для этих камер штыревого сопла, и камеры сгорания второй ступени, расположенные во внутренней полости этого укороченного центрального тела около их общего круглого тарельчатого сопла, соединенные разъемными узлами силовой связи с разделяемыми ракетными блоками ступеней.

Сопло ракетного двигателя с механизмом раздвижки, обеспечивающим перевод сопла из сложенного положения в рабочее, содержит раструб и складной насадок, образованный лепестками с элементами кинематической связи лепестков с раструбом.

Изобретение относится к ракетной технике. Раструб сопла ракетного двигателя с тепловой изоляцией выполнен из композиционного материала, который представляет собой армированную углеродными волокнами керамическую матрицу.

Изобретение относится к ориентируемой системе ракетного двигателя для летательных аппаратов. Система ориентируемого ракетного двигателя для летательного аппарата, содержащая ракетный двигатель (4), содержащий камеру (7) сгорания и сопло (8), подсоединенное посредством горловины (9) сопла, при этом система выполнена с возможностью ориентировать ракетный двигатель (4) относительно исходного положения, определяющего исходную ось, которая, при нахождении ракетного двигателя (4) в исходном положении, ортогональна к отверстию (10) для выброса газов из сопла и проходит через центр (C) отверстия (10) для выброса газов, при этом система содержит средство (11) наклона, посредством которого ракетный двигатель (4) жестко подсоединен к горловине (9) сопла посредством прилегающей части сопла (8) и которое наклоняет сопло (8) и камеру (7) сгорания в противоположных направлениях так, что ракетный двигатель принимает, относительно исходного положения, наклонные положения, в которых центр (C) отверстия (10) для выброса газов из сопла (8) расположен, по меньшей мере, приблизительно на исходной оси, при этом средство (11) наклона содержит полую опорную конструкцию (14A), имеющую форму усеченной пирамиды, которая выполнена с возможностью деформации в обоих направлениях первого направления (12) деформации под действием первого приводного средства (15), на малом основании (24) которой размещен ракетный двигатель (4) и внутри которой размещена камера (7) сгорания.

Изобретение относится к управлению вектором тяги жидкостного ракетного двигателя (ЖРД). ЖРД содержит камеру с охлаждаемой сверхзвуковой частью сопла, неохлаждаемый насадок из углерод-углеродного композиционного материала (УУКМ), рулевые агрегаты и раму, наружная поверхность неохлаждаемого насадка в районе среза выполнена в виде сферы с центром вращения на оси камеры, на которую устанавливается дефлектор из УУКМ, состоящий из двух частей, соединенных между собой при помощи фланцевого соединения с уплотнением из терморасширенного графита, внутренняя поверхность которого имеет сферическую форму, эквидистантную сферической поверхности неохлаждаемого насадка, а на наружной поверхности выполнены проушены для закрепления к рулевым агрегатам, которые крепятся к раме двигателя, при этом сферические поверхности неохлаждаемого насадка и дефлектора имеют графитовое покрытие.

Изобретение относится к области ракетостроения, в частности к жидкостным ракетным двигателям с управляемым вектором тяги. Жидкостной ракетный двигатель с управляемым вектором тяги, содержащий камеру с возможностью качания в цапфах в главных плоскостях стабилизации, магистрали подвода компонентов на периферии двигателя вдоль его оси, турбонасосный агрегат с центробежными основными насосами высокого давления и подкачивающие агрегаты, выходы насосов которых выполнены в виде спиральных отводов с коническими патрубками и соединены у последних с входами основных насосов по периферии камеры двумя парами двух взаимно перпендикулярных последовательных гибких трубопроводов в виде сильфонов, параллельных главным плоскостям стабилизации и соединенных криволинейными патрубками, согласно изобретению подкачивающие центробежные насосы установлены своими входами соосно магистралям подвода компонентов, а коническими патрубками выходов вдоль продольных осей симметрии первых по направлению к насосам высокого давления и ближайшим сильфонам гибких трубопроводов, причем подкачивающий насос одного компонента выполнен с возможностью вращения ротора в противоположном направлении от направления вращения ротора подкачивающего насоса другого компонента.

Изобретение относится к узлам качания камеры сгорания жидкостного ракетного двигателя (ЖРД) и может быть использовано для установки геометрической оси камеры, качающейся в одной плоскости, в заданном положении, с высокой точностью.

Изобретение относится к области ракетостроения, а именно к способам повышения тяги ракетного двигателя, и может быть использовано для увеличения тяги ракетных и авиационных двигателей.

Изобретение относится к области ракетно-космической техники и может быть использовано в ракетных комплексах на базе ракет-носителей несимметричного пакетного типа с жидкостными ракетными двигателями.

Изобретение относится к жидкостным ракетным двигателям (ЖРД). .

Изобретение относится к ракетной технике и может быть использовано в жидкостных ракетных двигателях. .

Изобретение относится к области ракетостроения. .

Изобретение относится к авиационно-ракетной технике, в частности к реактивным двигателям летательных аппаратов с управляемыми соплами, обеспечивающими отклонение газовой струи с целями управления направлением движения летательных аппаратов путем создания управляемого вектора тяги и/или изменения эффективного критического сечения сопла при изменении режимов полета для повышения тяги.

Изобретение относится к жидкостным ракетным двигателям, работающим на первой и второй ступенях ракетоносителя. Камера жидкостного ракетного двигателя с регулируемым соплом содержит охлаждаемую часть сопла и неохлаждаемый насадок из углерод-углеродного композиционного материала, рулевые агрегаты и раму, согласно изобретению в неохлаждаемом насадке выполнены ниши, в которых расположены несколько секций разъемного земного сопла, имеющих валы вращения, расположенные по касательным в районе стыка неохлаждаемого насадка с охлаждаемой частью сопла, установленные в кронштейны, закрепленные на охлаждаемой части сопла и соединенные рулевыми агрегатами с рамой двигателя. Изобретение обеспечивает повышение эффективности и надежности работы ЖРД по всей траектории полета ракеты. 3 ил.
Наверх