Способ извлечения серебра из хлоридных растворов

Изобретение относится к гидрометаллургии серебра и может быть использовано при извлечении из хлоридных растворов при переработке растворов выщелачивания сульфидных цинковых и медных руд, концентратов, а также других промпродуктов цветной металлургии. Серебро извлекают из хлоридных растворов дисульфидом бис(2,4,4-триметилпентил)дитиофосфиновой кислоты с концентрацией 0,02-0,2 моль/л в разбавителе. Реэкстракцию серебра осуществляют растворами тиомочевины. Техническим результатом изобретения является повышение эффективности процесса извлечения серебра за счет повышения степени извлечения серебра из хлоридных растворов и сокращения расхода реагентов. 5 табл., 6 пр., 1 ил.

 

Изобретение относится к гидрометаллургии серебра и может быть использовано при выделении серебра из солянокислых (хлоридных) растворов при переработке растворов выщелачивания сульфидных цинковых руд и концентратов, медного сульфидного сырья, шламов, а также других промпродуктов цветной металлургии.

Известно, что серебро имеет тенденцию к повышению растворимости с увеличением содержание хлорида в водных растворах и его необходимо извлекать. Если этого не делать, то, очевидно, могут быть значительные экономические потери, а также загрязнение других металлов серебром во время гидрометаллургической обработки.

Известен способ, по которому серебро из солянокислых растворов извлекают сорбцией на анионите ЭДЭ-10П (Лебедев В.К., Розманов В.М., Пахолков B.C., Чемезов В.А. Иониты в цветной металлургии. М.: «Металлургия», 1975, 352 с.). По этому способу серебро извлекается из растворов с концентрацией 0,1-6,0 моль/л HCl.

К недостаткам способа следует отнести длительность процесса сорбции (1-2 часа), низкую селективность (имеет место попутная сорбция металлов-примесей: Fe, Zn, Cu и др.), а также трудности десорбции серебра с анионита.

По другому способу серебро из растворов соляной кислоты (3-4 моль/л HCl) предложено извлекать экстракцией трибутилфосфатом при порционной подаче экстрагента (Воропанова Л.А., Кокоева Н.Б. Экстракция ионов серебра из солянокислых растворов трибутилфосфатом. Записки Горного института, Т. 218, 2016, с. 220-223). При этом способе степень извлечения серебра составляет 98,19-99,08%.

Недостатками способа являются низкая селективность экстрагента, поскольку наряду с серебром в органическую фазу извлекаются металлогалогенидные комплексы металлов-примесей (Fe, Zn, Cu, Pb и др.), а также невозможность концентрирования серебра при порционной подаче экстрагента.

Извлечь серебро из солянокислых растворов достаточно полно можно с помощью бис(2,4,4-триметилпентил)монотиофосфиновой (Cyanex 302) или бис(2,4,4-триметилпентил)дитиотиофосфиновой (Cyanex 301) кислот (Alam Shafiqul М., Inoue K., Yoshizuka K., Dong Y., Zhang P. Solvent extraction of silver from chloride media with some commercial sulfur-containing extractants. Hydrometallurgy. (1997), V. 44, I.1-2, P. 245-254).

Однако эти экстрагенты являются совершенно не селективными, поскольку вместе с Ag(I) извлекаются медь(II), Pb(II), Sb(III) и другие металлы.

Наиболее близким по технической сущности и достигаемому результату к заявляемому способу является способ (Abe Y., Flett D.S. Solvent Extraction of silver from chloride solutions by CYANEX® 471X. Solvent Extraction. (Proceedings of the ISEC'90). Amsterdam, Netherlands (1992), p.p. 1127-1132), по которому серебро извлекается из солянокислых растворов экстракцией 0,05-0,5 молярным раствором триизобутилфосфинсульфида (Cyanex 471X) в растворителе Escaid 110 с добавкой 5% ди(2-этилгексил)фосфорной кислоты. Экстракция серебра с Cyanex 471X проходит очень селективно, основные примеси, которые содержатся в растворах выщелачивания, [Fe(III), Cu(II), Zn и Pb], в органическую фазу практически не переходят и на экстракцию серебра не влияют. За 1-2 ступени экстракции можно извлечь до 98% серебра.

Существенным недостатком способа является сильная зависимость извлечения серебра от концентрации хлорид-иона в водном растворе и концентрации экстрагента. Так, при экстракции 0,5 молярным раствором Cyanex 471X из 1,0 молярного раствора HCl извлечение серебра в органическую фазу составило 97,2%, тогда как при концентрации HCl, равной 5,6 моль/л, всего -30,1%. Достаточно полное извлечение достигается только при концентрациях экстрагента более 0,2 моль/л. Так, при экстракции серебра из хлоридного раствора (3,0 моль/л хлорид-иона) 0,2 молярным раствором Cyanex 471Х извлечение серебра составило 87,3%, тогда как при концентрации экстрагента 0,5 моль/л - 94,0%.

Задача изобретения - повысить эффективность процесса извлечения серебра из хлоридных растворов.

Техническим результатом изобретения является повышение эффективности процесса извлечения серебра за счет повышения степени извлечения серебра из хлоридных растворов и сокращения расхода реагентов.

Технический результат достигается тем, что в способе извлечения серебра из хлоридных растворов, включающем экстракцию серебра нейтральным фосфорсеросодержащим экстрагентом в разбавителе, согласно изобретению в качестве экстрагента используют дисульфид бис(2,4,4-триметилпентил)дитиофосфиновой кислоты с концентрацией 0,02-0,2 моль/л.

Экстрагент - дисульфид бис(2,4,4-триметилпентил)дитиофосфиновой кислоты (R-R) имеет структурную формулу:

Этот экстрагент был синтезирован из коммерчески доступного экстрагента Cyanex 301{бис(2,4,4-триметилпентил)дитиофосфиновая кислота [(R2P(S)SH]}.

С учетом того, что в достаточно концентрированных хлоридных растворах серебро присутствует преимущественно в анионных формах, [AgCln]n-1, где n=2-4, экстракцию серебра из хлоридных растворов дисульфидом можно записать в виде уравнения (1)

Предлагается использовать концентрации дисульфида в органической фазе от 0,02 до 0,2 моль/л, так как при меньшей концентрации экстрагента существенно уменьшается извлечение серебра, а при большей - неоправданно возрастает расход экстрагента без существенного увеличения степени извлечения серебра.

Реэкстракция металлов может быть осуществлена растворами тиомочевины в серной кислоте. В качестве растворителей используются обычные растворители из ряда ароматических, алифатических или хлорсодержащих углеводородов (толуол, Shellsol, декан, керосин и др.).

Способ подтверждается конкретными примерами.

Пример 1. Приведены данные зависимости степени извлечения серебра (ε; %) из солянокислых растворов дисульфидом бис(2,4,4-триметилпентил)дитиофосфиновой кислоты (R-R) и триизобутилфосфинсульфидом (Cyanex 471X; R) (способ-прототип) от концентрации экстрагентов, составы экстрагентов и исходного водного раствора, а также условия эксперимента (см. табл. 1).

Из таблицы видно, что дисульфид очень эффективно извлекает серебро даже при небольших концентрациях экстрагента. Видно также, что в сравнимых условиях извлечение серебра в предлагаемом способе всегда выше, чем с Cyanex 471X (способ-прототип).

Пример 2. Приведены данные зависимости степени извлечения серебра (ε; %) из солянокислых растворов дисульфидом бис(2,4,4-триметилпентил)дитиофосфиновой кислоты (R-R) в толуоле от концентрации соляной кислоты в водной фазе, составы экстрагента и исходных водных растворов, а также условия эксперимента (см. табл. 2).

Из таблицы видно, что дисульфид эффективно извлекает серебро в широком интервале концентрации соляной кислоты. В сравнимых условиях извлечение серебра в предлагаемом способе всегда выше, чем с Cyanex 471X (способ-прототип). Например, при концентрации экстрагентов 0,05 моль/л и кислотности водной фазы, равной 4,0 моль/л HCl, извлечение серебра с дисульфидом составило 94,8%, тогда как с Cyanex 471Х всего 42,85%.

Пример 3. Демонстрирует высокую селективность дисульфида при экстракции серебра по отношению к основным металлам-примесям. Данные представлены в табл. 3. Высокое извлечение серебра за одну ступень проходит на фоне крайне небольшого извлечения металлов-примесей. Очевидно, что эти примеси могут быть легко вымыты из экстракта разбавленными растворами соляной кислоты.

Пример 4. Приведена изотерма экстракции серебра из хлоридных растворов дисульфидом в толуоле (см. фиг). Составы органической фазы и исходного водного раствора, а также условия эксперимента следующие: водная фаза: раствор HCl с концентрацией 4 моль/л, CAg(в) - 102 мг/л; органическая фаза: 0,1 М дисульфида в толуоле; условия экстракции: Vв:Vорг.≠const. τ=1 час, Т=22°С. Видно, что возможно достижение достаточно высоких концентраций серебра в экстракте. Согласно полученным данным при O:В=1:5 и исходном содержании серебра в водном растворе =100 мг/л для полного извлечения серебра необходимо 2 ступени экстракции.

Пример 5. Данный пример свидетельствует о возможности использования различных разбавителей при экстракции серебра дисульфидом (см. табл. 4).

Пример 6. Демонстрирует возможность полной реэкстракции серебра из органической фазы растворами тиомочевины (Thio) в серной кислоте (см. табл. 5).

Таким образом, показано, что в отличие от известного способа (прототипа), где извлечение серебра из солянокислых растворов осуществляют с использованием в качестве экстрагента триизобутилфосфинсульфида (Cyanex 471X), в предлагаемом способе экстракцию ведут дисульфидом бис(2,4,4-триметилпентил)дитиофосфиновой кислоты. Полученные данные, в частности более высокие коэффициенты распределения серебра, позволяют существенно увеличить извлечение серебра при той же концентрации экстрагента, уменьшить концентрацию экстрагента, сократить поток органической фазы на стадии экстракции, что делает предлагаемый процесс проще и дешевле известного (прототипа).

Способ извлечения серебра из хлоридных растворов, включающий экстракцию серебра нейтральным фосфорсеросодержащим экстрагентом в разбавителе, отличающийся тем, что в качестве экстрагента используют дисульфид бис(2,4,4-триметилпентил)дитиофосфиновой кислоты с концентрацией 0,02-0,2 моль/л.



 

Похожие патенты:
Изобретение относится к гидрометаллургии и может быть использовано при регенерации сернокислых производственных растворов. Сернокислый раствор, содержащий примесные элементы, подвергают экстракционной обработке с переводом основной части серной кислоты в первичный экстракт, а основной части примесных элементов в первичный рафинат.

Изобретение относится к области извлечения веществ органическими экстрагентами из водных растворов, в частности к получению редкоземельных металлов (РЗМ) из бедного или техногенного сырья с помощью экстракции.

Изобретение относится к способам извлечения металлов из кислотных водных растворов, полученных из различных источников материалов при помощи экстракции растворителями.

Изобретение относится к металлургии цветных металлов, а именно к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов, образующихся после извлечения урана.

Изобретение относится к устройству многоступенчатой экстракции редкоземельных элементов. Блок экстракции "жидкость-жидкость" включает емкость экстракции/разделения, водную фазу в виде пузырьков вводят из верхнего впуска, находящегося в одной боковой стенке, и органическую фазу в виде пузырьков вводят из нижнего впуска, находящегося в упомянутой боковой стенке.

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для разделения Ni и Со в растворах, образующихся при выщелачивании Ni-Co сырья. Способ включает предварительное приготовление экстрагента в солевой Ni-Co и Ni формах.

Изобретение относится к способу извлечения солей гольмия (III) из бедного или техногенного сырья с помощью метода жидкостной экстракции. Способ извлечения солей гольмия (III) включает жидкостную экстракцию с использованием в качестве экстрагента изооктилового спирта.
Изобретение относится к области комплексной переработки апатита и других фосфатсодержащих руд с извлечением и получением концентрата редкоземельных металлов и радионуклидов и может быть использовано при переработке минерального сырья в химической промышленности.

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания.

Изобретение относится гидрометаллургии, к извлечению фазы органического экстрагирующего растворителя из эмульсии, стабилизированной твердыми частицами, образовавшейся в контуре гидрометаллургической экстракции растворителем.

Изобретение относится к способу обработки золы, в частности летучей золы, в котором несколько элементов отделяют от золы. В способе отделяют благородные металлы и редкоземельные элементы.

Изобретение относится к флотационному обогащению золото-углеродсодержащих руд. Способ включает кондиционирование золото-углеродсодержащих руд с депрессором в виде продукта поликонденсации нафталинсульфоната натрия и формальдегида.

Способ может быть использован в гидрометаллургии для переработки золотосодержащих концентратов двойной упорности, т.е. сырья, содержащего тонко диспергированное в сульфидах золото и органическое углистое вещество.

Изобретение относится к области металлургии и может быть применено для комплексной переработки пиритсодержащего сырья. Способ комплексной переработки включает обжиг высушенного пиритсодержащего сырья при температуре 680÷725°С в токе воздуха, обедненного по содержанию кислорода добавлением азота, и три последовательных хлоридных выщелачивания: солянокислотное, хлоридное в присутствии кислорода воздуха и хлоридное в присутствии сильных окислителей в виде гипохлорита, хлора, диоксида хлора, азотной кислоты, озона.

Изобретение относится к утилизации сбросных пульп золотоизвлекательных фабрик, в том числе хвостов обогащения. Способ включает насыщение сбросных пульп электролитическими газами и электрофлотацию в электрофлотационных колоннах.

Изобретение относится к гидрометаллургическим способам переработки сульфидных концентратов, содержащих цветные металлы, железо и драгоценные металлы. Суть изобретения заключается в том, что для проведения процесса выщелачивания пентландит-пирротинового концентрата при температуре 90-105°С при подаче в автоклав серной кислоты и сульфата натрия повышают парциальное давление кислорода от более 0,5 до 1,5 МПа.

Изобретение относится к способам извлечения микроколичеств благородного металла, такого как палладий, из разбавленных растворов. Cпособ извлечения палладия из многокомпонентных растворов включает перемешивание дитиооксамидированного полисилоксана с раствором, в котором при помощи ацетатной буферной системы создана кислотность среды в диапазоне pH 2.0-4.0, в течение 30 минут.

Изобретение относится к области металлургии драгоценных металлов, в частности к гидрометаллургической переработке сырья, содержащего драгоценные металлы и сульфиды.
Изобретение относится к обогащению руд благородных металлов и может использоваться в горно-обогатительной и металлургической отраслях для переработки природного и техногенного минерального сырья.

Изобретение относится к области гидрометаллургии и может быть использовано для получения чистых соединений железа, концентратов цветных и благородных металлов из пиритных огарков, являющихся отходами сернокислотного производства.

Изобретение относится к области радиохимической технологии и может быть использовано в технологии переработки отработавшего ядерного топлива (ОЯТ). Способ извлечения металлов платиновой группы из осадков после осветления продукта кислотного растворения волоксидированного отработавшего ядерного топлива включает окислительную трансформацию осадка, восстановительную обработку. Далее ведут вскрытие восстановленного осадка и селективное отделение платиноидов из полученных растворов Результатом является получение концентрированных азотнокислых растворов металлов платиной группы (рутения, родия, палладия) с величиной удельной активности, позволяющей производить их последующий аффинаж вне защитной зоны. Техническим результатом изобретения является переведение в азотнокислый раствор более 94,3% осадков, образующихся при кислотном растворении и осветлении ОЯТ, извлечение более 92,4% суммы содержащихся в осадках платиноидов, возвращение в переработку 99,4% содержащегося в осадках плутония, очистка платиноидов от продуктов деления с коэффициентами 104-105, получение рутениевого, палладиевого, родиевого концентратов. 28 з.п. ф-лы, 1 ил., 1 пр.
Наверх