Широкополосное приемопередающее устройство с программной перестройкой рабочей частоты



Широкополосное приемопередающее устройство с программной перестройкой рабочей частоты
Широкополосное приемопередающее устройство с программной перестройкой рабочей частоты
Широкополосное приемопередающее устройство с программной перестройкой рабочей частоты

 


Владельцы патента RU 2631464:

федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации (RU)

Изобретение относится к области радиотехники и может быть использовано в системах связи с программной перестройкой рабочих частот (ППРЧ). Технический результат - разработка широкополосного помехоустойчивого приемопередающего устройства для функционирования в различных условиях сигнальной и помеховой обстановки. Широкополосное приемопередающее устройство с программной перестройкой рабочей частоты состоит на передающей части из кодера (1), фазовых манипуляторов (2) и (3), первого (4) и второго (5) высокочастотного ключа, элемента НЕ (6), сумматора (7), смесителя (8), синтезатора (9), управляемого ключа (10), генератора псевдослучайной последовательности (11), генератора управления ключом (12), на приемной части из смесителя (13), усилителя промежуточной частоты (14), демодулятора (15), фазовых детекторов (16) и (17), ключа (18), элемента НЕ (19), ключа (20), элемента ИЛИ (21), декодера (22), дешифратора команды изменения скорости (23), анализатора качества канала (24), дешифратора квитанции (25), блока формирования сообщения (26), блока памяти (27), линии задержки (28), блока синхронизации (29), генератора псевдослучайной последовательности (30), генератора управления ключом (31), управляемого ключа (32), частотного синтезатора (33), а также на передающей части включены счетчик (34), дешифратор (35), аттенюатор (36), усилитель мощности (37), управляемый ключ (38), линия задержки (39), смеситель (40), синтезатор (41), в приемную часть включены смеситель (46), усилитель промежуточной частоты (47), демодулятор (48), сумматор (42), линия задержки (43), управляемый ключ (44), синтезатор частоты (45), смеситель (46). 2 ил.

 

Заявленное устройство относится к области радиосвязи, в частности к широкополосным приемопередающим устройствам с программной (псевдослучайной) перестройкой рабочей частоты (ППРЧ), и может найти применение в радиоканалах с замираниями при передаче дискретных сообщений.

Известны широкополосные приемопередающие устройства, осуществляющие передачу сообщений в режиме ППРЧ по патенту РФ №2185029. Данное устройство содержит на передающей стороне: кодер, блок синхронизации, генератор псевдослучайной последовательности (ГПСП), блок управления, синтезатор частот, модулятор, усилитель мощности, передающую антенну, преобразователь псевдослучайной последовательности, а на приемной стороне: приемную антенну, входной усилитель, смеситель-гетеродин, детектор, блок АРУ, решающее устройство, декодер, блок синхронизации, ГПСП, блок управления, преобразователь псевдослучайной последовательности.

Недостатком данного аналога является низкая пропускная способность, обусловленная одноканальным режимом его работы.

Известно широкополосное устройство с ППРЧ по патенту РФ №2210187, содержащее: смеситель, полосовой фильтр, амплитудный детектор, решающий блок, управляемый генератор тактовой частоты, перестраиваемый синтезатор частот (генератор кода).

Недостатками данного аналога является низкая пропускная способность, низкая помехозащищенность к ответным помехам (помехам вслед), низкая помехоустойчивость в каналах с замираниями.

Наиболее близким по технической сущности к заявленному устройству является широкополосное приемопередающее устройство по патенту РФ №2296420 от 27.03.07, функционирующее в режиме ППРЧ с управлением скоростью программной перестройки в зависимости от качества связи. Данное устройство выбрано в качестве прототипа. Заявленное широкополосное приемопередающего устройство содержит на передающей стороне кодер, первый фазовый манипулятор, второй фазовый манипулятор, первый высокочастотный ключ, второй высокочастотный ключ, элемент «НЕ», сумматор, смеситель, частотный синтезатор, управляемый ключ, генератор псевдослучайной последовательности, генератор управления ключом.

Вход кодера является информационным входом устройства. Выход кодера подключен параллельно к первому фазовому манипулятору и второму фазовому манипулятору, а их выходы соединены с первым и вторым входами сумматора через первый и второй высокочастотные ключи соответственно. Вход первого канала соединен с вторым входом первого высокочастотного ключа и через элемент «НЕ» с вторым входом второго высокочастотного ключа, выход сумматора соединен с первым входом смесителя, второй вход которого подключен к выходу частотного синтезатора, вход которого через управляемый ключ соединен с выходом генератора псевдослучайной последовательности. Второй (управляющий) вход управляемого ключа соединен с выходом генератора управления ключом, вход которого соединен с приемной частью, а выход смесителя соединен с передающей антенной.

В приемной части устройство содержит смеситель, усилитель промежуточной частоты, демодулятор, первый и второй фазовый детекторы, первый и второй ключи, элемент «НЕ», элемент «ИЛИ», декодер, дешифратор команды изменения скорости, анализатор качества канала, дешифратор квитанции, блок формирования сообщения, блок памяти, линию задержки, блок синхронизации, генератор псевдослучайной последовательности, генератор управления ключом, управляемый ключ, частотный синтезатор.

Приемная антенна соединена с первым входом смесителя, выход последнего подключен к входу усилителя промежуточной частоты, выход которого соединен с входом демодулятора. Первый выход демодулятора одновременно подключен к входам элемента «НЕ» декодера и блока синхронизации. Второй и третий выходы демодулятора подключены соответственно к входам первого и второго фазовых детекторов, выходы которых соединены с первым и вторым входами элемента «ИЛИ» через первый и второй ключи соответственно. Второй вход второго ключа соединен с выходом элемента «НЕ». Выход элемента «ИЛИ» является информационным выходом второго канала.

Выход декодера подключен одновременно к входам дешифратора команды изменения скорости, анализатору качества канала и дешифратору квитанции. Выход дешифратора команды изменения скорости подключен к первому входу блока формирования сообщения и к входу линии задержки, выход которой подключен к входу генератора управления ключом передающей части.

Выход анализатора качества канала подключен к второму входу блока формирования сообщения и первому входу блока памяти, второй вход которого соединен с выходом дешифратора квитанции, а выход соединен с входом генератора управления ключом, выход последнего подключен к управляющему входу управляемого ключа, частотный вход которого через генератор псевдослучайной последовательности и блок синхронизации подключен к первому выходу демодулятора, а выход через частотный синтезатор подключен к второму входу смесителя. Выход блока формирования сообщения подключен к входу первого канала передающей части.

Данное радиосредство позволяет вести передачу и прием сообщений в условиях помех с заданным качеством в условиях преднамеренных ответных помех.

Недостатком прототипа является относительно низкая помехоустойчивость, которая обусловлена уменьшением энергии бита при увеличении скорости перестройки, снижение качества радиосвязи при работе в каналах с замираниями.

Целью изобретения является разработка широкополосного приемопередающего устройства, обеспечивающего повышение помехоустойчивости радиосвязи к преднамеренным ответным помехам путем изменения скорости перестройки частот и управления частотным и энергетическим ресурсами радиолинии в зависимости от сигнальной и помеховой обстановки.

Поставленная цель достигается тем, что в известном широкополосном приемопередающем устройстве, состоящем из передающей части, приемной части и содержащем на передающей стороне кодер (1), вход которого является информационным входом второго канала устройства, а выход подключен к входам первого (2) и второго (3) фазовых манипуляторов, выходы которых соединены с первыми входами соответственно первого (4) и второго (5) высокочастотных ключей, выходы которых подключены соответственно к первому и второму входам сумматора (7), вход первого канала устройства соединен с вторым входом первого высокочастотного ключа (4) и входом элемента НЕ (6), выход которого подключен к второму входу высокочастотного ключа (5), выход сумматора (7) соединен с первым входом смесителя (8), второй вход которого подключен к выходу частотного синтезатора (9), вход которого подключен к выходу управляемого ключа (10), первый и второй входы которого подключены соответственно к выходам генератора псевдослучайной последовательности (11) и генератора управления ключом (12), вход которого соединен с приемной частью, в приемной части приемная антенна соединена с первым входом смесителя (13), выход которого подключен к входу усилителя промежуточной частоты (14), выход которого соединен с входом демодулятора (15), второй и третий выходы демодулятора (15) подключены соответственно к входам первого (17) и второго (16) фазовых детекторов, выходы которых соединены с первыми входами соответственного первого (18) и второго (20) ключей, выходы которых подключены соответственно к первому и второму входам элемента ИЛИ (21), причем второй вход второго ключа (20) соединен с выходом элемента НЕ (19), выход элемента ИЛИ (21) является информационным выходом второго канала устройства, выход декодера (22) является выходом первого канала устройства и подключен к входам дешифратора команды изменения скорости (23), анализатору качества канала (24) и дешифратору квитанции (25), выход дешифратора команды изменения скорости (23) подключен к первому входу блока формирования сообщения (26) и к входу линии задержки (28), выход которой подключен к входу генератора управления ключом (12) передающей части, выход анализатора качества канала (24) подключен к второму входу блока формирования сообщения (26) и первому входу блока памяти (27), второй вход которого соединен с выходом дешифратора квитанции (25), а выход соединен с входом генератора управления ключом (31), выход генератора управления ключом (31) подключен к управляющему входу управляемого ключа (32), частотный вход которого через генератор псевдослучайной последовательности (30) и блок синхронизации (29) подключен к первому выходу демодулятора (15), а выход через частотный синтезатор (33) подключен к второму входу смесителя (13), выход блока формирования сообщения (26) подключен к входу первого канала передающей части устройства, в передающую часть устройства дополнительно введены счетчик (34), вход счетчика (34) подключен к входу генератора управления ключом (12), а выход подключен к входу дешифратора (35), выходы 2…n-1 которого являются 2…n-1 входами аттенюатора (36), а n-й выход подключен к первому входу управляемого ключа (38), второй вход которого подключен к выходу смесителя (40).

Выход управляемого ключа (38) подключен к входу (1) аттенюатора (36), выход аттенюатора (36) подключен к входу усилителя мощности (37), выход которого подключен к передающей антенне, первый вход смесителя (40) подключен к выходу синтезатора (41), а второй к выходу сумматора (7). Вход синтезатора (41) через линию задержки (39) подключен к выходу генератора ПСП (11).

В приемную часть устройства дополнительно введены смеситель (46), первый вход которого подключен к приемной антенне, а выход смесителя (46) соединен с входом усилителя промежуточной частоты (47), выход которого подключен к входу демодулятора (48), выход демодулятора (48) подключен к первому входу сумматора (42), к второму входу которого подключен выход демодулятора (15).

Выход сумматора (42) соединен с входом блока синхронизации (29), вторым входом первого ключа (18), входом элемента НЕ (19) и входом декодера (22), выход генератора псевдослучайной последовательности (30) через линию задержки (43) соединен с первым входом управляемого ключа (44), второй вход котрого подключен к выходу генератора управления ключом (31), а выход подключен к входу синтезатора частоты (45), выход которого подключен к второму входу смесителя (46).

Благодаря новой совокупности существенных признаков за счет введения дополнительных блоков в передающую и приемную части появляется возможность увеличивать энергетические параметры формируемого сигнала при увеличении скорости программной перестройки, что повышает отношение уровня сигнала над уровнем помех, а следовательно, повышает помехоустойчивость радиосвязи. Кроме того, при увеличении скорости программной перестройки дополнительно формируется последовательно-параллельная сигнальная конструкция, что позволяет осуществить прием сигнала в радиоканалах с замираниями.

Заявляемое устройство поясняется чертежами, на которых показаны:

фиг. 1 - структурная схема широкополосного приемопередающего устройства с программной перестройкой рабочей частоты;

фиг. 2 - структурная схема аттенюатора.

Устройство на фиг. 1 функционирует следующим образом. Дискретные сигналы второго канала поступают на вход кодера (1), преобразуются в информационную последовательность импульсов с дополнительной кодовой избыточностью и с выхода кодера (1) одновременно поступают на информационные входы первого (2) и второго (3) фазовых манипуляторов, на выходе которых формируются два ОФМ сигнала, отличающихся несущими частотами F1 и F2, сдвинутыми относительно друг друга по частоте на величину ΔF=F2-F1. Сигналы ОФМ второго канала с несущими F1 и F2 используются в качестве частот «нажатия» (F1) и «отжатия» (F2) при передаче сообщения по первому каналу. Таким образом, по второму каналу передача сообщений осуществляется с помощью сигналов ОФМ.

Дискретные сигналы первого канала одновременно подаются на второй управляющий вход первого высокочастотного ключа (4) и через элемент «НЕ»(6) на второй управляющий вход второго высокочастотного ключа (5), а на их первые информационные входы поступают ОФМ сигналы второго канала с выходов первого (2) и второго (3) фазовых манипуляторов соответственно. Причем дискретный сигнал первого канала осуществляет замыкание (размыкание) одного из двух высокочастотных ключей (4) или (5). Это обеспечит появление на одном из входов и выходе сумматора (7) одного из двух ОФМ сигналов с несущей частотой F1 или F2. Таким образом, по первому каналу передача сообщения осуществляется с помощью сигналов ОФМ/ЧМн.

Этот сигнал с ОФМ/ЧМн поступает на первый вход смесителя (8). На второй вход смесителя (8) подается перестраиваемое по псевдослучайной программе опорное колебание рабочей частоты ƒpi с выхода частотного синтезатора (9), управляемого с помощью ГПСП (11). При этом частотный синтезатор (9) формирует опорное колебание рабочей частоты передачи ƒpi, по псевдослучайной программе из совокупности n частот, выделенных для связи, со скоростью перестройки, которая может быть изменена по команде приемной части. Изменение скорости перестройки частотного синтезатора осуществляется с помощью управляемого ключа (10), первый (частотный) вход которого подключен к выходу ГПСП (11), второй (управляющий) вход подключен к выходу генератора управления ключом(12), а выход подключен к входу частотного синтезатора (9).

Изменение скорости переключения производится следующим образом: ГПСП (11) формирует цифровой код с частотой wmax, который подается на вход управляемого ключа (10), коммутирующего выход ГПСП (11) с входом частотного синтезатора (9). Коммутация выхода ГПСП (11) с входом частотного синтезатора (9) происходит после прихода импульса с выхода генератора управления ключом (12) на второй (управляющий) вход управляемого ключа. Цифровой код поступает на вход частотного синтезатора (9), который формирует частоту, соответствующую этому коду. Формирование данной частоты происходит до поступления следующего цифрового кода, который поступит на вход частотного синтезатора (9) при следующей коммутации выхода ГПСП (11) с входом частотного синтезатора (9). Таким образом, время формирования частотным синтезатором одной частоты будет изменяться от частоты подачи импульсов управления на второй вход управляемого ключа.

Таким образом, на выходе смесителя (8) формируется сигнал с ОФМ/ЧМн на i-й рабочей частоте ƒpi, i=1…n, который излучается антенной в сторону корреспондента. Принятый сигнал ОФМ/ЧМн - ППРЧ на частоте ƒpi поступает на первый сигнальный вход смесителя (13), на второй вход которого подается перестраиваемое по псевдослучайной программе опорное колебание ƒi с выхода частотного синтезатора (33).

В результате преобразования в смесителе (13) принятого и опорного сигналов на его выходе формируется ОФМ/ЧМн сигналы промежуточной частоты, которые усиливаются в УПЧ (14) и подаются на вход демодулятора (15). На первом выходе демодулятора (15) формируется дискретный сигнал первого канала, по которому вместе с информационными сигналами передаются команды управления. Этот сигнал через сумматор (42) поступает на вход декодера (22) и одновременно на блок синхронизации (29), обеспечивающего формирование очередного номера рабочей частоты ГПСП (30) и синхронную перестройку частотного синтезатора (33), а с выхода декодера (22) - к получателю сообщения и одновременно на входы анализатора качества канала (24), дешифратора квитанции (25) и дешифратора команды изменения скорости (23). При браковке канала с выхода анализатора качества канала (24) подается сигнал логической единицы одновременно на первый вход блока памяти (27) и на второй вход блока формирования сообщения (26), на выходе которого формируется квитанция на изменение скорости программной перестройки.

Управление частотным и энергетическим ресурсами радиолинии формируемого сигнала при изменении скорости ППРЧ осуществляется следующим образом. На информационный вход аттенюатора (36) поступает сигнал с выхода смесителя (8), этот сигнал распараллеливается на количество ветвей аттенюатора (36), соответствующее количеству градаций регулировки скорости и соответственно количеству регулировок мощности. В каждой ветви аттенюатора (36) сигнал поступает на вход элемента «И», на второй вход которого поступает управляющий сигнал с выхода дешифратора (35).

Логическая единица может быть только на одном выходе дешифратора, и, следовательно, сигнал с выхода смесителя (8) пройдет только через одну ветвь аттенюатора (36). С выхода элемента «И» сигнал поступает на вход усилителя через сопротивление ветви (см. фиг. 2).

При изменении скорости программной перестройки с выхода дешифратора (35) поступает команда на подключение выхода управляемого ключа (38) к первому входу аттенюатора (36). Причем частота подключения пропорциональна скорости программной перестройки. На другой вход управляемого ключа (38) поступает высокочастотный сигнал в режиме ППРЧ, сформированный блоками (7), (11), (39)-(41). Функционирование блоков (39)-(41) аналогично функционированию блоков (8)-(12), за исключением дополнительного включения линии задержки (39) в целях формирования несовпадающего кода ПСП.

Таким образом, на выходе заявляемого устройства обеспечивается формирование последовательно-параллельной сигнальной конструкции с ППРЧ. Данная сигнальная конструкция обеспечивает повышение помехоустойчивости приема элемента сигнала в каналах с замираниями за счет формирования последовательно-переллельной сигнальной конструкции.

На приемной стороне обработка сформированной сигнальной конструкции с ППРЧ происходит следующим образом. При передаче параллельного сигнала с ППРЧ дополнительно к основной схеме обработки сигнала, сформированной блоками (13)-(15), (29)-(33), подключена схема обработки сигнала, сформированная блоками (43)-(48), которые объединяются через блок (42).

Функционирование блоков (43)-(48) аналогично функционированию блоков (13)-(15), (29)-(33), за исключением введения линии задержки (43) для формирования кода ПСП, аналогичного коду на передающей стороне. Сложение обработанных сигналов при параллельной передаче на двух частотах осуществляется в сумматоре (42) перед входом демодулятора.

Кодер (1) служит для преобразования входной информационной последовательности импульсов в выходную последовательность с дополнительной кодовой избыточностью, позволяющей в декодере (22), служащем для восстановления исходной информационной последовательности, исправлять ошибки, появляющиеся из-за помех в переключаемых частотных каналах. Варианты реализации кодера (1) и декодера (22) известны и приведены, например, в [5], стр. 323-330, рис. 8.9, 8.11, 8.16.

В заявленном устройстве фазовые манипуляторы (2) и (3) предназначены для формирования двух фазомодулированных сигналов (ОФМ), сдвинутых относительно друг друга по несущей частоте. Фазовые манипуляторы (2) и (3) известны и, в частности, могут быть реализованы по схеме относительного фазового модулятора, описанного в работе [6], стр. 119 на рис. 4.25.

Высокочастотные ключи (4) и (5) предназначены для поочередного подключения одного из независимых трактов (выходов фазовых манипуляторов (2) и (3)) на сумматор (7) по закону изменения информационного сигнала в первом канале.

Элемент «НЕ»(6) предназначен для инверсии сигнала первого информационного канала с целью обеспечения противофазного управления ключами (4) и (5) соответственно.

Сумматоры (7) и (42) предназначены для объединения сигналов двух независимых трактов. Он может быть реализован в простейшем случае на обычном резистивном сумматоре и описан в патенте на изобретение №2157051 от 27.09.2000 г.

В качестве смесителя (8), (13), (40), (46) могут быть использованы любые выпускаемые промышленностью смесители.

Демодуляторы (15) и (48) предназначены для выделения сигналов ЧМн первого канала и разделения сигналов ОФМ второго канала по двум независимым трактам. Он может быть реализован по известным схемам, в частности по схеме частотного детектора с двумя расстроенными контурами. Реализация демодулятора известна и описана в [9].

Первый и второй фазовые детекторы (17) и (16) предназначены для детектирования фазоманипулированных сигналов, соответствующих первому и второму трактам второго канала. Реализация фазовых детекторов известна и описана в [9].

Ключи (18) и (20) предназначены для выбора тракта приема демодулированных сигналов от фазовых детекторов (17) и (16) на соответствующие входы элемента «ИЛИ»(21). Они могут быть выполнены на базе транзистора, в ключевом режиме представленного в [6] на рис. 3.4.9, стр. 93.

Элемент «НЕ»(19) предназначен для инверсии сигнала первого информационного канала с целью обеспечения противофазного управления ключами (18) и (20) соответственно, он аналогичен элементу «НЕ»(6).

Элемент «ИЛИ»(21) предназначен для формирования единой последовательности информационных символов второго канала.

Использованные в заявленном устройстве элементы и их схемы описаны в следующих источниках информации:

- высокочастотные ключи (4) и (5) в [1] на стр. 376;

- элементы НЕ (6) и (19) в [1] на стр. 59;

- элемент ИЛИ (21) в [1] на стр. 74.

Управляемые ключи (10), (32), (38) и (44) предназначены для коммутации ГПСП и частотного синтезатора для передачи на частотный синтезатор цифровой последовательности, в соответствии с которой частотный синтезатор генерирует номер рабочей частоты. В качестве управляемого ключа можно использовать элемент «И» который реализован в микросхемах серии КР 1533.

Дешифраторы команды изменения скорости (23) предназначены для преобразования цифрового кода, сформированного в блоке формирования сообщения приемной части корреспондента «Б», в сигнал для перестройки частоты генерирования импульсов управления в генераторе управления ключом предающей части. Схема дешифратора (23)описана, например, в [8], стр. 47, рис. 2.4.

Блок синхронизации (29) служит для формирования тактовой последовательности импульсов с периодом следования Т/2, где Т - длительность работы радиолинии на одной частоте. Вариант реализации блока синхронизации (29) известен и описан, например, в [1], стр. 193, рис. 5-19.

Генераторы псевдослучайной последовательности (ГПСП) (11) и (30) предназначены для формирования одинаковых на передающей (11) и приемной (30) сторонах радиолинии последовательностей равновероятных номеров частот в диапазоне i=1, …, N. В качестве ГПСП можно использовать любой ГПСП, производимый промышленностью, например, ГПСП, используемый в радиостанциях комплекса Р-168.

Синтезаторы частот (9), (33), (41), (45) служат для формирования несущего колебания на каждой очередной псевдослучайно перестраиваемой частоте. Вариант реализации синтезатора частот (9), (33), (41), (45) известен и представлен, например, в [7], стр. 214, рис. 7.7(a).

Усилитель промежуточной частоты (14) и (47) предназначен для усиления принятого радиосигнала на промежуточной частоте до величины, необходимой для работы последующих блоков приемного тракта. Вариант реализации усилителя промежуточной частоты (14) и (47) известен и описан, например, в [1], стр. 100, рис. 3-3.

Анализатор качества канала (24) предназначен для контроля качества рабочего канала. Оценка рабочего канала производится по отношению уровней полезного сигнала и помех. В качестве анализатора рабочего канала можно взять анализатор канала, применяемый в аппаратуре Р-163-АР [8].

Дешифратор квитанции (25) предназначен для дешифрации цифрового кода, означающего, что корреспондент получил команду на изменение скорости перестройки частоты. В качестве дешифратора квитанции можно использовать дешифратор, аналогичный дешифратору команды изменения скорости.

Линии задержки (12), (39), (43) предназначены для задержки сигнала на увеличение скорости перестройки частоты на время передачи сообщения корреспонденту. В качестве линии задержки можно использовать выпускаемые промышленностью линии задержки с требуемым временем задержки.

Генератор управления ключом (12), (31) представляет из себя генератор импульсов с регулируемой частотой генерации и служит для генерации импульсов, поступающих на вход управляемого ключа. Частота генерации импульсов может быть увеличена в случае браковки канала. В качестве генератора управления ключом можно использовать, любой генератор с изменяющейся частотой импульсов.

Блок формирования сообщения (26) предназначен для формирования цифрового кода, обозначающего увеличение скорости переключения частоты, при подаче импульса на первый вход, и формирования цифрового кода, обозначающего квитанцию, при подаче импульса на второй вход. Структурная схема блока формирования сообщения известна и описана в патенте РФ №2296420.

Блок памяти (27) предназначен для формирования управляющего импульса, поступающего на вход блока (31), при поступлении импульсов на первый и второй входы. Структурная схема блока памяти известна и описана в патенте РФ №2296420.

Счетчик (34) предназначен для считывания количества импульсов в единицу времени, поступающих от блока (23) через линию задержки (28). Структурная схема счетчика (34) известна и приведена в [11], стр. 98, рис. 5.16.

Дешифратор (35) предназначен для выдачи сигнала логической единицы на аттенюатор (36) в зависимости от количества импульсов от счетчика (34). Структурная схема дешифратора известна и приведена в [11], стр. 73, рис. 4.12.

Аттенюатор (36) представляет собой n параллельных ветвей (см. фиг. 2), где n - количество градаций мощности, соответствующее количеству градаций изменения скорости перестройки радиолинии с ППРЧ. Каждая ветвь аттенюатора содержит элемент «И», последовательно соединенный с сопротивлением R. Величина сопротивления выбирается исходя из условия Rn=kRn-1, где k=Vn-1/Vn - коэффициент градации скорости ППРЧ, V - скорость ППРЧ.

Усилитель мощности (37) предназначен для усиления уровня сформированного сигнала. Структурная схема усилителя мощности приведена, например, в [12], стр. 96, рис. 4.3.

По сравнению с прототипом предлагаемое техническое решение позволяет повысить помехоустойчивость широкополосного приемопередающего устройства с программной перестройкой рабочей частоты в условиях воздействия ответных помех при передаче дискретных сообщений. Это обусловлено тем, что при увеличении скорости ППРЧ для сохранения информационной скорости передаваемого сообщения длительность одного бита, передаваемого на одной частоте, уменьшается. Следовательно, уменьшается энергия на бит формируемого сигнала.

В этом случае для увеличения мощности сигнала в блоке управления подключается меньшее сопротивление ветви Rn, причем Rn=kRn-1, где k=Vn-1/Vn -коэффициент градации скорости ППРЧ, V - скорость ППРЧ.

Таким образом, обеспечивается увеличение мощности сигнала, а следовательно, повышение помехоустойчивости его приема. Кроме того, часть элементов сигнала передается одновременно на двух частотах. Это обеспечивает реализацию сдвоенного приема в целях дополнительного повышения помехоустойчивости приема сигнала, позволяет осуществить обработку сигнала в каналах с замираниями.

Литература

1. Батушев В.А. Микросхемы и их применение. М.: Радио и связь, 1983. - 271 с.

2. Горелов Г.В., Волков А.А., Шелухин В.И. Каналообразующие устройства железнодорожной телемеханики и связи. - М.: Транспорт, 1994. - 240 с.

3. Интегральные микросхемы. Справочник. Под редакцией Тараблина Б.В. – М.: Радио и связь, 1984. - 528 с.

4. Кларк Дж., Кейн Дж. Кодирование с исправлением ошибок в системах цифровой связи. - М.: Радио и связь, 1987. - 392 с.

5. Королев А.И. Автоматика, телемеханика и связь на железнодорожном транспорте. М.: Воениздат, 1985. - 488 с.

6. Радиоприемные устройства / Под ред. Л.Г. Барулина. М.: Радио и связь, 1984. - 272 с.

7. Системы с прыгающей частотой / В кн.: Кларк Дж., Кейн Дж. Кодирование с исправлением ошибок в системах цифровой связи. - М.: Радио и связь, 1987. - С. 352-356.

8. Комплекс средств радиосвязи «Арбалет». - СПб.: ВАС, 1996. - 132 с.

9. Широкополосное приемопередающее устройство (патент на изобретение РФ №2157051, 2000 г.).

10. Шило В.Л. Популярные микросхемы ТТЛ. - М.: Аргус, 1993. - 63 с.

11. Грачев Н.П., Грачев В.П., Грецев С.Е. и др. Вычислительная техника и информационные технологии. – СПб.: ВАС, 2013. - 204 с.

12. Першин В.Т. Формирование и генерирование сигналов в цифровой радиосвязи. - М.: «ИФРА-М», 2015. - 614 с.

Широкополосное приемопередающее устройство с программной перестройкой рабочей частоты, состоящее из передающей части, приемной части и содержащее на передающей стороне кодер (1), вход которого является информационным входом второго канала устройства, а выход подключен к входам первого (2) и второго (3) фазовых манипуляторов, выходы которых соединены с первыми входами соответственно первого (4) и второго (5) высокочастотных ключей, выходы которых подключены соответственно к первому и второму входам сумматора (7), вход первого канала устройства соединен с вторым входом первого высокочастотного ключа (4) и входом элемента НЕ (6), выход которого подключен к второму входу высокочастотного ключа (5), выход сумматора (7) соединен с первым входом смесителя (8), второй вход которого подключен к выходу частотного синтезатора (9), вход которого подключен к выходу управляемого ключа (10), первый и второй входы которого подключены соответственно к выходам генератора псевдослучайной последовательности (11) и генератора управления ключом (12), вход которого соединен с приемной частью, в приемной части приемная антенна соединена с первым входом смесителя (13), выход которого подключен к входу усилителя промежуточной частоты (14), выход которого соединен с входом демодулятора (15), второй и третий выходы демодулятора (15) подключены соответственно к входам первого (17) и второго (16) фазовых детекторов, выходы которых соединены с первыми входами соответственно первого (18) и второго (20) ключей, выходы которых подключены соответственно к первому и второму входам элемента ИЛИ (21), причем второй вход второго ключа (20) соединен с выходом элемента НЕ (19), выход элемента ИЛИ (21) является информационным выходом второго канала устройства, выход декодера (22) является выходом первого канала устройства и подключен к входам дешифратора команды изменения скорости (23), анализатору качества канала (24) и дешифратору квитанции (25), выход дешифратора команды изменения скорости (23) подключен к первому входу блока формирования сообщения (26) и к входу линии задержки (28), выход которой подключен к входу генератора управления ключом (12) передающей части, выход анализатора качества канала (24) подключен к второму входу блока формирования сообщения (26) и первому входу блока памяти (27), второй вход которого соединен с выходом дешифратора квитанции (25), а выход соединен с входом генератора управления ключом (31), выход генератора управления ключом (31) подключен к управляющему входу управляемого ключа (32), частотный вход которого через генератор псевдослучайной последовательности (30) и блок синхронизации (29) подключен к первому выходу демодулятора (15), а выход через частотный синтезатор (33) подключен к второму входу смесителя (13), выход блока формирования сообщения (26) подключен к входу первого канала передающей части устройства, отличающееся тем, что в передающую часть устройства дополнительно введены счетчик (34), вход которого подключен к входу генератора управления ключом (12), а выход подключен к входу дешифратора (35), выходы 2…n-1 которого являются 2…n-1 входами аттенюатора (36), a n-й выход подключен к первому входу управляемого ключа (38), второй вход которого подключен к выходу смесителя (40), выход управляемого ключа (38) подключен к входу (1) аттенюатора (36), выход аттенюатора (36) подключен к входу усилителя мощности (37), выход которого подключен к передающей антенне, первый вход смесителя (40) подключен к выходу синтезатора (41), а второй к выходу сумматора (7), вход синтезатора (41) через линию задержки (39) подключен к выходу генератора ПСП (11), а в приемную часть устройства дополнительно введены смеситель (46), первый вход которого подключен к приемной антенне, а выход смесителя (46) соединен с входом усилителя промежуточной частоты (47), выход которого подключен к входу демодулятора (48), выход демодулятора (48) подключен к первому входу сумматора (42), к второму входу которого подключен выход демодулятора (15), выход сумматора (42) соединен с входом блока синхронизации (29), вторым входом первого ключа (18), входом элемента НЕ (19) и входом декодера (22), выход генератора псевдослучайной последовательности (30) через линию задержки (43) соединен с первым входом управляемого ключа (44), второй вход которого подключен к выходу генератора управления ключом (31), а выход подключен к входу синтезатора частоты (45), выход которого подключен к второму входу смесителя (46).



 

Похожие патенты:

Изобретение относится к области многоканальных радиочастотных модулей, предназначенных для станций радиорелейной связи миллиметрового диапазона длин волн с высокой скоростью передачи данных и электронным сканированием луча.

Изобретение относится к радиотехнике. Технический результат изобретения заключается в возможности адаптивной компенсации амплитудных и фазовых нелинейных искажений KB радиопередатчика.

Изобретение относится к радиоэлектронике и может быть использовано в профессиональных радиоприемных устройствах. Многоканальное устройство для селекции, усиления и преобразования сигналов содержит М поддиапазонных каналов, при этом у каждого канала вход соединен с входом устройства, а выход одновременно является выходом как канала, так и устройства.

Изобретение относится к области мобильной связи и предназначено для улучшения рабочих характеристик приема индикатора качества канала (CQI), даже когда возникает задержка в тракте распространения, возникает ошибка синхронизации передачи или формируются остаточные взаимные помехи между величинами циклического сдвига разных последовательностей ZC.

Изобретение относится к области устройств для размещения идентификационных карт в мобильных терминалах пользователей, а именно к держателю карты. Техническим результатом является упрощение замены карты в терминале с несменяемым аккумулятором за счет конструкции соединителя, содержащего листовую пружину в гнезде карты.

Изобретение относится к радиолокации и гидролокации. Технический результат – обеспечение подавления боковых лепестков для кода P3 нечетной длины.

Изобретение относится к средствам, используемым в качестве электронных этикеток, а также к системам электронных этикеток. Технический результат заключается в повышении надежности защиты данных электронных этикеток.

Изобретение относится к технике радиосвязи и может использоваться в передающей аппаратуре радиолинии телеграфной и телефонной связи различного назначения. Задача изобретения - расширение функциональных возможностей путем обеспечения дистанционного управления от внешних устройств и местного управления параметрами сигналов, формируемых блоками, входящими в возбудитель для радиопередатчиков, при обеспечении радиосвязи, обеспечение номинального уровня сигнала на выходе при снижении уровня искажений и помех.

Изобретение относится к радиоэлектронике и может быть использовано для защиты радиоэлектронной аппаратуры от сверхкоротких импульсов. Устройство защиты состоит из трех в поперечном сечении одинаковых и прямоугольных проводников на диэлектрическом слое, причем первый и второй проводники расположены на одной его стороне, а третий - между ними по центру, отличающееся тем, что два дополнительных проводника расположены зеркально-симметрично относительно первого и второго проводников на обратной стороне диэлектрического слоя, третий проводник расположен в диэлектрическом слое на равном расстоянии от внешних проводников, толщина и относительная диэлектрическая проницаемость диэлектрического слоя равны 1,105 мм и 5, ширина всех проводников одинакова и равна 0,3 мм, толщина проводников равна 105 мкм, расстояние между проводниками равно 0,4 мм, на обоих концах устройства подключены резисторы сопротивлением 92 Ом между вторым и третьим проводниками, а также между двумя дополнительными и третьим проводниками, значение минимального модуля разности погонных задержек мод линии, умноженное на длину линии, не меньше суммы длительностей фронта, плоской вершины и спада импульса, подающегося между первым и третьим проводниками.

Изобретение относится к импульсной технике и может быть использовано для формирования импульсов управления СВЧ-приборами с сеточным управлением (Клистроны, ЛБВ и т.п.) в передающих и других электрофизических устройствах.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат стоит в повышении помехоустойчивости передаваемой информации. Для этого в изобретении обеспечивается подавление интерференции, действию которой подвергается устройство радиосвязи WCD. Интерференция вызывается сигналами, передаваемыми интерферирующим узлом. Устройство связи определяет информацию, связанную с интерферирующим узлом, выбирает, основываясь, по меньшей мере частично, на определенной информации, связанной с интерферирующим узлом, конфигурации приемника WCD из набора доступных конфигураций приемника WCD. Набор доступных конфигураций приемника WCD содержит первую конфигурацию приемника WCD, которая подавляет только интерференцию, вызванную физическими сигналами, передаваемыми интерферирующим узлом, и вторую конфигурацию приемника WCD, которая подавляет только интерференцию, вызванную физическими каналами, передаваемыми интерферирующим узлом. 2 н. и 22 з.п. ф-лы, 8 ил., 7 табл.

Изобретение относится к радиотехнике, а именно к способам обнаружения узкополосных сигналов, выступающих в виде имитационных помех, в условиях априорной неопределенности о времени их излучения, и может быть использовано в радиоканалах передачи сигналов с двухпозиционной частотной манипуляцией (ЧМ-2). Технический результат - обнаружение имитационных помех в условиях априорной неопределенности о времени их излучения в радиоканалах передачи сигналов с ЧМ-2. Способ обнаружения имитационных помех в радиоканалах, использующих сигналы с частотной манипуляцией, заключается в том, что принимают аналоговый сигнал, оцифровывают его и рассчитывают параметр сигнала, который сравнивают с предварительно вычисленным порогом и по результатам сравнения принимают решение о наличии имитационных помех. А в качестве параметра сигнала вычисляют дисперсию его амплитуды. Решение о наличие имитационной помехи принимают в том случае, если значение параметра сигнала превысит значение предварительно вычисленного порога более чем в 1,5 раза, в качестве которого используют значение дисперсии амплитуды сигнала, вычисленной в отсутствии имитационной помехи. 1 ил.
Наверх