Полиарилендифталиды и способ их получения

Настоящее изобретение относится к способу получения полиариленфталидов, используемых в производстве термостойких материалов, а также как растворимые высокомолекулярные прекурсоры в высокотемпературном синтезе сопряженных полимерных структур. Способ получения полиарилендифталидов заключается в проведении поликонденсации псевдохлорангидридов о-дикетокарбоновых кислот формулы , где R - двухвалентный ароматический (гетероароматический) радикал полифениленового ряда, в среде ацетона или N,N-диметилформамида в присутствии йодида щелочного металла или в среде N,N-диметилацетамида в присутствии комплексного катализатора на основе Ni(0). Комплексный катализатор на основе Ni(0) образуется при смешении цинкового порошка, хлорида никеля (II), трифенилфосфина и 2,2′-бипиридила, взятых в мольном соотношении 3,1:0,05:3,1:0,05. В результате осуществления данного способа получают полиариленфталиды, в которых с ароматическим (гетероароматическим) фрагментом R в полимерной цепи регулярно чередуется две смежные фталидные группы, соединенные между собой С(sp3)-C(sp3) одинарной связью и обладающие хорошей растворимостью в широком круге органических растворителей. 1 з.п. ф-лы, 6 пр.

 

Изобретение относится к области высокомолекулярных соединений, в частности к неизвестному ранее типу фталидсодержащих полимеров - поли-арилендифталидам общей формулы

где R - двухвалентный ароматический (гетероароматический) радикал поли-фениленового ряда, и к способу их получения.

Заявляемые полиарилендифталиды являются термореактивными поли-гетероариленами и могут быть использованы в производстве термостойких материалов, а также как растворимые высокомолекулярные прекурсоры в высокотемпературном синтезе сопряженных полимерных структур.

Указанные соединения, их свойства и способ получения в литературе не описаны.

Задача, на решение которой направлено заявляемое изобретение, заключается в получении полиарилендифталидов, в которых с ароматическим (гетероароматическим) фрагментом R в полимерной цепи регулярно чередуется не одна (как, например, в полиариленфталидах и фталидсодержащих полимерах других классов [Салазкин С.Н. Ароматические полимеры на основе псевдохлорангидридов. Высокомол. соед. 2004, 46, 1244.; Бюллер К.А. Тепло- и термостойкие полимеры. М.: "Химия", 1984]), а две смежные фталидные группы, соединенные между собой C(sp3)-C(sp3) одинарной связью.

Поставленная задача достигается путем проведения поликонденсации псевдохлорангидридов о-дикетокарбоновых кислот I, где R - двухвалентный ароматический (гетероароматический) радикал полифениленового ряда, в среде ацетона или N,N-диметилформамида при 55-80°С в присутствии трехкратного мольного избытка йодидов щелочных металлов в течение 10 часов, или в среде N,N-диметилацетамида при 75°С в присутствии комплексного катализатора на основе Ni(0), образующегося при смешении цинкового порошка, хлорида никеля (II), трифенилфосфина и 2,2'-бипиридила, взятых в мольном соотношении 3.1:0.05:3.1:0.05, в течение 10 часов.

Доказательством структуры полученных полимеров является наличие в ИК-спектрах полиарилендифталидов полосы поглощения в области 1780 см-1, характерной для валентных колебаний карбонильной группы лактонного цикла, сигналов углеродного атома этой группы в спектрах ЯМР13С в области 169 м.д., а также характеристических сигналов узлового четвертичного атома углерода фталидной группы в области 90 м.д.

Полученные полиарилендифталиды имеют хорошую растворимость в широком круге органических растворителей различных классов, в том числе в таких доступных, как хлороформ, тетрахлорэтан, метиленхлорид, N,N-диметилформамид, N,N-диметилацетамид, крезол и др., из растворов которых образуют прозрачные пленки. Синтезированные полимеры плавятся в области 300-320°С и начинают разлагаться при ≈ 350°С в инертной среде и ≈ 270°С на воздухе.

Сущность изобретения подтверждается следующими примерами.

1. Поли[(дифенилоксид-4,4'-диил)-(3,3'-дифталид)]

Пример 1. В продутую аргоном трехгорлую колбу, снабженную мешалкой, загружают 2.0 г (3.9 ммоль) дихлорангидрида 4',4''-бис-(2-карбоксибензоил)дифенилоксида, 2.0 г (12 ммоль) иодида натрия, вводят 12 мл ацетона и перемешивают при 55°С в течение 10 ч. Образовавшийся полимер отфильтровывают, выгружают в метанол, промывают метиловым спиртом и растворяют в хлороформе. Отфильтрованный раствор высаживают в 8-10 кратное количество метанола. Выпавшие хлопья полимера отфильтровывают, промывают метиловым спиртом и сушат на воздухе при 125°С до постоянного веса. Выход поли[(дифенилоксид-4,4'-диил)-(3,3'-дифталида)] 1.45 г (80% от теоретического). Температура начала разложения в инертной среде 350°С, на воздухе 270°С. Мол.м., определенная методом гельпроникающей хроматографии, Mw 26200, Mn 8600 (Mw/Mn 3.1). ИК-спектр, ν, см-1: 1780.37; 1596.16; 1501.65; 1465.96; 1287.54; 1247.03; 1173.73; 1100.44; 1073.43; 1019.42; 1004.96; 973.13; 743.59; 705.98; 686.69. Спектр ЯМР 13С, δ, м.д.: 89.99; 90.65; 118.03; 118.29; 118.39; 124.30; 125.02; 125.72; 125.82; 126.18; 128.18; 128.47; 129.92; 131.61; 137.47; 134.77; 148.78; 148.95; 156.64; 156.77; 168.59; 169.08.

Пример 2. В продутую аргоном трехгорлую колбу, снабженную мешалкой, загружают 2.0 г (3.9 ммоль) дихлорангидрида 4',4''-бис-(2-карбоксибензоил)дифенилоксида, 2.0 г (12 ммоль) иодида натрия, вводят 12 мл диметилформамида и перемешивают при 55°С в течение 10 ч. Реакционную массу выгружают в метанол, промывают метиловым спиртом и растворяют в хлороформе. Отфильтрованный раствор высаживают в 8-10 кратное количество метанола. Выпавшие хлопья полимера отфильтровывают, промывают метиловым спиртом и сушат на воздухе при 125°С до постоянного веса. Выход поли[(дифенилоксид-4,4'-диил)-(3,3'-дифталида)] 1.5 г (88% от теоретического). Температура начала разложения в инертной среде 350°С, на воздухе 270°С. Мол.м., определенная методом гельпроникающей хроматографии, Mw 4000 и Mn 900 (Mw/Mn 4.5). ИК-спектр, ν, см-1: 1780.37; 1596.16; 1501.65; 1465.96; 1287.54; 1247.03; 1173.73; 1100.44; 1073.43; 1019.42; 1004.96; 973.13; 743.59; 705.98; 686.69. Спектр ЯМР 13С, δ, м.д.: 89.99; 90.65; 118.03; 118.29; 118.39; 124.30; 125.02; 125.72; 125.82; 126.18; 128.18; 128.47; 129.92; 131.61; 137.47; 134.77; 148.78; 148.95; 156.64; 156.77; 168.59; 169.08.

Пример 3. В продутую аргоном двугорлую колбу загружают 2.0 г (3.9 ммоль) дихлорангидрида 4',4''-бис-(2-карбоксибензоил)дифенилоксида, 0.81 г (12.4 ммоль) цинкового порошка, 3.25 г (12.4 ммоль) трифенилфосфина, 0.026 г (0.2 ммоль) хлорида никеля, 0.031 г (0.2 ммоль) 2,2'-бипиридила, вводят 5 мл диметилацетамида и перемешивают при 75°С в течение 10 ч. Реакционную массу отфильтровывают от остатков цинка и высаживают в метанол. Высадившийся полимер промывают спиртом, сушат и растворяют в хлороформе. Раствор высаживают в 8-10 кратное количество метанола. Выпавшие хлопья полимера отфильтровывают, промывают на фильтре спиртом и сушат на воздухе при 150°С до постоянного веса. Выход поли[(дифенилоксид-4,4'-диил)-(3,3'-дифталида)] 1.33 г (78% от теоретического). Температура начала разложения (в инертной среде) 340°С, на воздухе 300°С. Мол.м., определенная методом гельпроникающей хроматографии, Mw 3800 и Mn 1500 (Mw/Mn 2.5). ИК-спектр, ν, см-1: 1780.37; 1596.16; 1501.65; 1465.96; 1287.54; 1247.03; 1173.73; 1100.44; 1072.47; 1019.42; 1003.99; 973.13; 744.55; 705.98; 686.69. Спектр ЯМР 13С, δ, м.д.: 89.99; 90.65; 118.03; 118.29; 118.39; 124.30; 125.02; 125.72; 125.82; 126.18; 128.18; 128.47; 129.92; 131.61; 137.47; 134.77; 148.78; 148.95; 156.64; 156.77; 168.59; 169.08.

2. Поли[(дифенилсульфид-4,4'-диил)-(3,3'-дифталид)]

Пример 4. В продутую аргоном трехгорлую колбу, снабженную мешалкой, загружают 1.64 г (3.2 ммоль) дихлорангидрида 4',4''-бис-(2-карбоксибензоил)дифенилсульфида, 1.5 г (10 ммоль) иодида натрия, вводят 9.5 мл ацетона и перемешивают при 55°С в течение 10 ч. Реакционную массу выгружают в метанол, промывают метиловым спиртом и растворяют в хлороформе. Фильтрованный раствор высаживают в 8-10 кратное количество метанола. Выпавшие хлопья полимера отфильтровывают, промывают метиловым спиртом и сушат на воздухе при 125°С до постоянного веса. Выход поли[(дифенилсульфид-4,4'-диил)-(3,3'-дифталида)] 1.24 г (87% от теоретического). Температура начала разложения в инертной среде 360°С; на воздухе 270°С. Мол.м., определенная методом гельпроникающей хроматографии, Mw 83800 и Mn 35200 (Mw/Mn 2.4). ИК-спектр, ν, см-1: 1779.41; 1594.23; 1492.00; 1465.96; 1398.45; 1287.54; 1246.07; 1085.97; 1072.47; 1019.42; 1003.99; 973.13; 811.10; 751.31; 722.37; 699.23. Спектр ЯМР 13С, δ, м.д.: 89.66; 90.38; 124.27; 124.92; 125.62; 125.73; 126.05; 127.14; 127.19; 127.54; 129.94; 130.53; 133.84; 134.42; 134.75; 135.61; 135.85; 148.21; 148.50; 168.25; 168.74.

3. Поли[(терфенил-4,4'-диил)-(3,3'-дифталид)]

Пример 5. В продутую аргоном трехгорлую колбу, снабженную мешалкой, загружают 1.97 г (3.5 ммоль) дихлорангидрида 4',4''-бис-(2-карбоксибензоил)терфенила, 1.8 г (12 ммоль) иодида натрия, вводят 11 мл диметилформамида и перемешивают при 80°С в течение 10 ч. Реакционную массу выгружают в метанол, промывают метиловым спиртом и растворяют в хлороформе. Отфильтрованный раствор высаживают в 8-10 кратное количество метанола. Выпавшие хлопья полимера отфильтровывают, промывают метиловым спиртом и сушат на воздухе при 100°С до постоянного веса. Выход поли[(терфенил-4,4'-диил)-(3,3'-дифталида)] 1.2 г (70% от теоретического). Температура начала разложения в инертной среде 350°С, на воздухе 270°С. Мол.м., определенная методом гельпроникающей хроматографии, Mw 39600 и Mn 7700 (Mw/Mn 5.1). ИК-спектр, ν, см-1: 1780.37; 1595.20; 1491.01; 1465.96; 1394.56; 1286.58; 1246.07; 1174.70; 1103.33; 1073.43; 1002.06; 810.14; 751.31; 702.12. Спектр ЯМР 13С, δ, м.д.: 90.17; 90.91; 124.50; 125.10; 125.67; 125.77; 126.25; 126.67; 126.96; 127.28; 127.39; 127.65; 129.90; 134.16; 134.41; 134.80; 135.82; 138.80; 139.13; 140.37; 148.06; 168.80; 169.32.

Пример 6. Аналогично примеру 5, только вместо NaI берется KI. Выход поли[(терфенил-4,4'-диил)-(3,3'-дифталида)] 0.44 г (70% от теоретического). Температура начала разложения в инертной среде 350°С; на воздухе 270°С. Мол.м., определенная методом гельпроникающей хроматографии, Mw 70000 и Mn 17000 (Mw/Mn 4.1). ИК-спектр, ν, см-1: 1780.37; 1595.20; 1491.01; 1465.96; 1394.56; 1286.58; 1246.07; 1174.70; 1103.33; 1073.43; 1002.06; 810.14; 751.31; 702.12. Спектр ЯМР 13С, δ, м.д.: 90.17; 90.91; 124.50; 125.10; 125.67; 125.77; 126.25; 126.67; 126.96; 127.28; 127.39; 127.65; 129.90; 134.16; 134.41; 134.80; 135.82; 138.80; 139.13; 140.37; 148.06; 168.80; 169.32.

1. Способ получения полиарилендифталидов, заключающийся в поликонденсации псевдохлорангидридов o-дикетокарбоновых кислот общей формулы

,

где R - двухвалентный ароматический (гетероароматический) радикал полифениленового ряда, в среде ацетона или N,N-диметилформамида при 55-80°C в присутствии трехкратного мольного избытка йодидов щелочных металлов в течение 10 часов или в среде N,N-диметилацетамида при 75°C в присутствии комплексного катализатора на основе Ni(0) в течение 10 часов.

2. Способ по п. 1, отличающийся тем, что комплексный катализатор на основе Ni(0) образуется при смешении цинкового порошка, хлорида никеля (II), трифенилфосфина и 2,2'-бипиридила, взятых в мольном соотношении 3.1:0.05:3.1:0.05.



 

Похожие патенты:

Изобретение относится к псевдохлорангидриду 2-[4'-(2",6"-диметилфенокси)бензоил]бензойной кислоты формулы I, который может быть использован в качестве мономера в синтезе полиариленфталидов, а также к способу получения соединения I, включающему взаимодействие 2-(4'-фторбензоил)бензойной кислоты с 2,6-диметилфенолом в присутствии K2СО3 при нагревании в N,N-диметилацетамиде и последующую обработку образовавшейся 2-[4'-(2",6"-диметилфенокси)бензоил]бензойной кислоты хлористым тионилом.

Изобретение относится к 2-[4'-(2'',6''-диметилфенокси)бензоил]бензойной кислоте (I), которая может быть использована в качестве полупродукта в синтезе полиариленфталидов c ценными свойствами.

Настоящее изобретение относится к сопряженным полимерам. Описан сопряженный полимер, содержащий полностью сопряженную полимерную последовательность по меньшей мере двух чередующихся триад, содержащих первое повторяющееся звено, представляющее собой одно или более звеньев алкилендиокситиофена, и второе повторяющееся звено, выбранное из одного или более ароматических звеньев, причем сопряженный полимер является желтым в нейтральном состоянии и демонстрирует максимум поглощения между 300 и 500 нм, а при окислении является пропускающим между 400-750 нм, при этом полимерная последовательность имеет структуру где А представляет собой ароматическое звено, х представляет собой 0 или 1, у представляет собой 0 или 1, n составляет от 2 до 200 000; X представляет собой S, a R1, R2, R3, R4, R5, R6, R7 и R8 независимо представляют собой Н, С2-С30 алкенилокси, где кислород находится в любом положении, и где А выбран из: или , где X представляет собой CR2, и R независимо представляет собой Н или C1-С30 алкил.

Изобретение относится к новому полимеру бензодитиофена, способу его получения, к полимерной смеси и составу, используемым в качестве полупроводников в органических электронных устройствах, к применению полимера, а также к оптическому, электрооптическому или электронному компоненту или устройству.

Изобретение относится к области электротехники и может найти широкое применение при создании преобразователей внешнего воздействия физических полей в электрический сигнал.

Изобретение относится к области органической электроники, а именно к сопряженному полимеру на основе карбазола, бензотиадиазола, бензола и тиофена формулы (Poly-1), где n=5-200.

Изобретение относится к сельскому хозяйству и защите окружающей среды, в частности к средствам для дезактивации почв, зараженных радиоактивными элементами. Средство для дезактивации почв, зараженных радиоактивными элементами, содержит в своем составе поли-N,N-диалкил-3,4-диметиленпирролидиний галогенид общей формулы в которой R1 и R2 означают независимо друг от друга линейный или разветвленный алкил с 1-6 атомами углерода и X означает фтор, хлор, бром, йод или тетрафторборат, причем средняя молекулярная масса полимера составляет от 75000 до 100000 г/моль.

Изобретение относится к сопряженным полимерам, содержащим бензо-бис(силолотиофеновые) звенья или их производные, к способам их получения, и к применению полимеров в органических электронных (ОЕ) устройствах, и к ОЕ устройствам, содержащим полимеры.

Изобретение относится к донорно-акцепторному конъюгированному полимеру (DA-CP) и способу его получения. .
Изобретение относится к клеевой композиции на основе фенольной смолы и ее использованию для форм и стержней форм. .

Изобретение относится к способу получения полихинона окислительным дегидрированием исходного мономера: гидрохинона, и/или бензохинона, и/или хингидрона, и/или пирокатехина, и/или их смесей в присутствии мягкого дегидрирующего агента, пространственно замещенного дифенохинона общей формулы (1) с получением конечного продукта: полихинона и эквимолярного количества пространственно замещенного бисфенола общей формулы (2).
Изобретение относится к способу получения олигомера гидрохинона, который применяют в качестве продукта для эпоксидирования, как отвердителя эпоксидных смол, а также в качестве антиоксиданта в шинной и медицинской промышленности.

Изобретение относится к новым полимерным соединениям, которые могут быть использованы в качестве активных слоев органических светоизлучающих диодов с высокой эффективностью излучения в синей области.

Изобретение относится к химической и электронной отраслям промышленности, а конкретно к разветвленным полифениленам и способу их получения. .

Изобретение относится к области получения синтетических смол, используемых в качестве пленкообразующих при производстве лакокрасочных материалов. .

Изобретение относится к натриевой соли, поли(мра-диридрокси-парафенилен)тиосульфокислоты общей формулы I , обладающей супероксидазной активностью. .

Изобретение относится к области биологии и медицины и касается веществ, регулирующих метаболизм клетки. .

Изобретение относится к способам получения полимерных покрытий на основе п-ксилилена и может быть использовано в электронной, радиотехнической и химической отраслях промышленности.

Изобретение относится к синтезу новых электропроводящих полимеров и может использоваться для получения антистатиков и в качестве электродов в химических источниках тока.
Наверх