Устройство формирования фазоманипулированного сигнала с плавным изменением фазы между элементарными импульсами

Изобретение относится к области радиотехники и может быть использовано в системах радиосвязи и радиолокации. Устройство формирования фазоманипулированного семиэлементным кодом Баркера сигнала содержит генератор синхроимпульсов, многоотводную линию задержки, сумматор, а также линию задержки на длительность, меньшую длительности элементарного импульса, генератор треугольных импульсов, высокочастотный LC-генератор, причем выход генератора синхроимпульсов соединен со входом линии задержки, выход которой подсоединен ко входу многоотводной линии задержки, третий, пятый и шестой выходы которой подсоединены соответственно к третьему, пятому и шестому входам сумматора, выход которого подсоединен ко входу генератора треугольных импульсов, подсоединенного выходом к управляющему входу, при наличии на нем постоянного напряжения смещения, высокочастотного LC-генератора, выход которого является и выходом устройства. Технический результат - увеличение частоты на коротком интервале времени, меньшем длительности элементарного импульса, предшествующем моменту изменения фазы на 180°. 5 ил.

 

Изобретение относится к области радиотехники и может использоваться в системах радиосвязи и радиолокации.

Технический результат - увеличение частоты на коротком интервале времени, меньшем длительности элементарного импульса, предшествующем моменту изменения фазы на 180°.

Известно устройство для формирования фазоманипулированного (фазомодулированного) сигнала, содержащее полосовой фильтр, генератор манипулирующих импульсов и последовательно соединенные генератор несущей частоты и формирователь импульсов (авторское свидетельство СССР №492045, кл. H04L 27/20, 1973).

Известно также устройство для формирования фазоманипулированного (фазомодулированного) сигнала, содержащее полосовой фильтр, генератор манипулирующих импульсов и последовательно соединенные генератор несущей частоты, формирователь импульсов, блок управления, последовательно соединенные генератор несущей частоты, формирователь импульсов, блок управления, последовательно соединенные генератор пилообразного напряжения, сумматор, пороговый блок и одновибратор, выход которого подключен к входу полосового фильтра, при этом выход генератора манипулирующих импульсов через блок управления соединен с вторым входом сумматора, на третий вход последовательно подан регулируемый постоянный сигнал, а выход формирователя импульсов подключен к входу генератора пилообразного напряжения (авторское свидетельство СССР №628632, кл. H04L 27/20, 1978).

Известно устройство формирования фазоманипулированного радиосигнала, содержащее два генератора с разными начальными фазами, подключенные к разным входам ключевого устройства, к управляющему входу которого подключен генератор псевдослучайной последовательности (ПСП), имеющий один выход, являющийся выходом устройства (Васильев К.К., Глушков В.А., Дормидонтов А.В., Нестеренко А.Г. Теория электрической связи: учебное пособие / под ред. К.К. Васильева. Ульяновск.: Ул. ГТУ, 2008. 452 с.).

Известно также устройство, содержащее генератор высокой частоты, подключенный к фазовому манипулятору, к управляющему входу которого подключен генератор ПСП, а выход которого является выходом устройства (Шахгильдян В.В, Козырев В.Б., Ляховкин А.А. Радиопередающие устройства: Учебник для вузов / под ред. В.В. Шахгельдяна. 3-е изд., перераб. и доп. М.: Радио и связь, 2003. 560 с.).

Недостатком известных устройств является появление в формируемых фазоманипулированных сигналах разрывности в моменты скачкообразного изменения фазы при модуляции несущего колебания модулирующей последовательностью прямоугольных импульсов, приводящей при приеме таких сигналов к энергетическим потерям и, следовательно, к ухудшению их коэффициентов сжатия, уменьшению отношений сигнал/шум, влекущих уменьшение вероятности правильного обнаружения, точности измерения параметров сигналов и снижению максимальной дальности действия систем радиолокации и связи (Кук Ч., Бернфельд М. Радиолокационные сигналы: Теория и применение: М.: Сов. радио, 1971. 568 с. - 262 с.; Нахмансон Г.С., Суслин А.В. Влияние энергетических потерь при обработке фазоманипулированных сигналов на максимальную дальность действия и точность измерения координат в радиолокационных системах // Известия высших учебных заведений России. Радиоэлектроника. 2015. Вып. 2. С. 51-54.).

Наиболее близким по технической сущности к предлагаемому является устройство формирования фазоманипулированных радиосигналов. (Варакин Л.Е. Системы связи с шумоподобными сигналами. М.: Радио и связь, 1985. 384 с. - на с. 47, рис 3.11).

Структурная схема устройства прототипа представлена на фиг. 1, где обозначено:

1 - генератор синхроимпульсов (ГСИ);

2 - генератор одиночных импульсов (ГОИ);

3 - многоотводная линия задержки (МЛЗ);

4.1, 4.2, 4.3 - первый, второй и третий инверторы;

5 - сумматор;

6 - балансный модулятор;

7 - генератор несущей частоты (ГНЧ).

Известное устройство содержит последовательно соединенные ГОИ 2 и МЛЗ 3, первый, второй, третий и шестой выходы (отводы) которой соединены соответственно с первым, вторым, третьим и шестым входами сумматора 5, а четвертый, пятый и седьмой выходы МЛЗ 3 соединены соответственно через первый 4.1, второй 4.2 и третий 4.3 инверторы с четвертым, пятым и седьмым входами сумматора 5, выход которого подсоединен ко второму входу балансного модулятора 6, первый вход которого соединен с выходом ГНЧ 7, а выход является выходом устройства. При этом выход ГСИ подсоединен ко входу ГОИ 2.

Работает устройство-прототип следующим образом.

Генератор синхроимпульсов 1 вырабатывает последовательность коротких синхроимпульсов (с периодом формирования фазоманипулированных сигналов, равным длительности генерируемого фазоманипулированного сигнала Баркера Nτи, где τи - длительность элементарного прямоугольного импульса, N - число импульсов в кодовой последовательности). Число импульсов N кодовых последовательностей Баркера можно выбрать из таблицы (Варакин Л.Е. Системы связи с шумоподобными сигналами. М.: Радио и связь, 1985. 384 с.). В нашем случае N=7. С выхода блока 1 узкие прямоугольные импульсы подаются на блок 2, который генерирует одиночные импульсы длительностью τи. Одиночные прямоугольные импульсы поступают на вход блока 3, который имеет для нашего случая семь выходов (отводов), расположенных через интервалы времени, равные τи. Кодовая последовательность Баркера с N=7 имеет вид 111-1-11-1. В этом случае импульсы с первого, второго, третьего и шестого выходов блока 3 поступают на первый, второй, третий и шестой входы блока 5 соответственно, а импульсы с четвертого, пятого и седьмого выходов соответственно через блоки 4.1, 4.2, 4.3, которые осуществляют изменение фазы на π (180°), то есть преобразуют положительные одиночные импульсы в отрицательные, поступают на четвертый, пятый и седьмой входы блока 5. На выходе блока 5 формируется видеосигнал Баркера, который поступает на второй вход блока 6, на первый вход которого подается радиочастотное колебание с выхода блока 7. Блок 6 осуществляет фазовую модуляцию радиочастотного колебания в соответствии с кодовой последовательностью Баркера.

Недостатком этого устройства является возникновение в формируемых фазоманипулированных радиосигналах ситуаций, когда из-за случайных флуктуаций частоты несущего колебания на временных интервалах, соответствующих длительности элементарных импульсов τи, не укладывается целое число периодов несущего колебания, что приводит к появлению в моменты скачкообразного изменения фазы в конце импульсов разрывности, наличие которой при обработке фазоманипулированного сигнала на приемной стороне приводит к существенным энергетическим потерям, достигающим 50% и более и, соответственно, к ухудшению характеристик обнаружения фазоманипулированного сигнала, точности измерения его параметров и уменьшению максимальной дальности действия радиотехнической системы при использовании таких сигналов.

Задачей изобретения является создание устройства, позволяющего формировать фазоманипулированные радиосигналы без разрывов между элементарными импульсами в точках изменения фазы на 180°.

Технический результат заключается в формировании фазоманипулированных радиосигналов с плавным изменением фазы между элементарными импульсами, достигаемым увеличением частоты на коротком интервале времени, меньшем длительности элементарного импульса, предшествующем моменту изменения фазы на 180°.

Технический результат достигается тем, что в устройство формирования фазоманипулированных радиосигналов, содержащее последовательно соединенные генератор синхросигналов, генератор одиночных импульсов, многоотводную линию задержки, первый, второй, третий и шестой выходы (отводы) которой соединены соответственно с первым, вторым, третьим и шестым входами сумматора, а четвертый, пятый и седьмой выходы многоотводной линии задержки соединены соответственно через первый, второй и третий инверторы с четвертым, пятым и седьмым входами сумматора, выход которого соединен со вторым входом балансного модулятора, выход которого является выходом устройства, а первый вход балансного модулятора подсоединен к выходу генератора несущей частоты, согласно изобретению в устройство введены генератор треугольных импульсов, вход которого подсоединен к выходу сумматора, а выход подсоединен к управляющему входу управляемого генератора высокочастотного напряжения, выход которого является выходом устройства, а выход генератора синхросигналов подсоединен через линию задержки со входами многоотводной линией задержки, третий, пятый и шестой выходы (отводы) которой соединены с третьим, пятым и шестым входами сумматора.

Введение линии задержки позволяет задерживать синхроимпульс в пределах временного интервала, равного длительности элементарного импульса формируемого фазоманипулированного радиосигнала, и определять временной интервал, отводимый для плавного изменения фазы, достигающего 180° на границе двух элементарных импульсов, определяемый положением задержанного синхроимпульса относительно момента окончания элементарного импульса.

Подключение третьего, пятого и шестого выходов многоотводной линии задержки соответственно к третьему, пятому и шестому входам сумматора позволяет получить на его выходе три задержанных синхроимпульса, определяющих начала временных интервалов плавного изменения фаз для достижения поворота фаз на 180° на границах третьего и четвертого, пятого и шестого, и шестого и седьмого элементарных импульсов для формирования фазоманипулированного радиосигнала Баркера с N=7.

Введение в устройство генератора треугольных импульсов обеспечивает получение треугольных импульсов на временных интервалах, отведенных для плавного изменения фазы на 180°, на границе третьего и четвертого, пятого и шестого, шестого и седьмого импульсов, подаваемых в цепь управления управляемого генератора высокочастотного напряжения.

Введение управляемого генератора высокочастотного напряжения позволяет управлять изменением частоты генерируемого напряжения на выделенных временных интервалах, обеспечивающим плавное изменение фазы на 180°, на границах третьего и четвертого, пятого и шестого, шестого и седьмого импульсов путем изменения емкости варикапа, включенного в колебательный контур генератора под действием треугольных импульсов напряжения.

На фиг. 2 представлена функциональная схема предлагаемого устройства, где обозначено:

1 - генератор синхроимпульсов (ГСИ);

2 - линия задержки;

3 - многоотводная линия задержки;

4 - сумматор;

5 - генератор треугольных импульсов;

6 - управляемый генератор высокочастотного напряжения.

На фиг. 3 представлено пояснение работы предлагаемого устройства. Фиг. 3а - короткие синхроимпульсы, генерируемые ГСИ; фиг. 3б - задержанный линией задержки синхроимпульс; фиг. 3в - последовательность коротких импульсов на выходе сумматора; фиг. 3г - треугольные импульсы на выходе генератора треугольных импульсов; фиг. 3д - фазоманипулированный сигнал с плавным изменением фазы между третьим и четвертым, пятым и шестым, шестым и седьмым элементарными импульсами; фиг. 3е - идеальный фазоманипулированный сигнал с отсутствием разрывности в моменты изменения фазы.

На фиг. 4 представлена цепь питания управляемого элемента в колебательном контуре управляемого генератора высокочастотного напряжения - варикапа.

На фиг. 5 - представлена зависимость изменения емкости варикапа от управляющего напряжения Uтр.

Предлагаемое устройство содержит генератор синхроимпульсов 1, выход которого через линию задержки 2 подсоединен к многоотводной линии задержки 3, третий, пятый и шестой выходы (отводы) которой подсоединены соответственно к третьему, пятому и шестому входам сумматора 4, выход которого подсоединен ко входу генератора треугольных импульсов 5, выход которого подсоединен к управляющему входу управляемого генератора высокочастотного напряжения 6, выход которого является выходом устройства.

Предлагаемое устройство работает следующим образом.

Генератор синхроимпульсов 1 вырабатывает короткие импульсы с периодом Т формирования фазоманипулированных сигналов Баркера (фиг. 3а), содержащего N импульсов длительностью τи (T=Nτи). Число N кодовых последовательностей Баркера можно выбрать из таблицы 3.2 с. 45 (Варакин Л.E. Системы связи с шумоподобными сигналами. М.: Радио и связь, 1985. 384 с.). В нашем случае N=7 (T=7τи). С выхода блока 1 короткие прямоугольные импульсы поступают на вход блока 2 (линии задержки), которая осуществляет задержку импульса на τи-Δτ, где Δτ=0,1÷0,25τи - временной интерваля. отводимый для плавного изменения фазы импульса (фиг. 3б). С выхода блока 2 задержанный короткий прямоугольный импульс поступает на вход блока 3 (многоотводной линии задержки), который для нашего случая имеет семь выходов (отводов), расположенных через интервалы времени τи. Кодовая последовательность Баркера с N=7 имеет вид 111-1-11-1. Изменение фазы происходит в конце третьего, пятого и шестого импульсов. Поэтому в нашем случае импульсы с третьего, пятого и шестого выводов блока 3 поступают соответственно на третий, пятый и шестой входы блока 4. На выходе блока 4 формируется последовательность коротких импульсов (фиг. 3в), которые подаются на вход блока 5, в котором формируются треугольные импульсы с длительностью Δτ (фиг. 3г). Реализуемость треугольных импульсов возможна, например, на операционном усилителе (Хоровиц П., Хилл У. Искусство схемотехники: пер. с англ. / под ред. М.В. Гальперина. 3-е изд. М.: Мир, 1986. 584 с.). Треугольные импульсы длительностью Δτ (фиг. 3г) поступают на управляющий вход управляемого генератора высокочастотного напряжения 6, в цепь питания варикапа (управляемого элемента в контуре генератора высокочастотного напряжения) (фиг. 4), на интервалах 3τи-Δτ<t<3τи, 5τи-Δτ<t<5τи и 6τи-Δτ<t<6τи (фиг. 3г). При отсутствия треугольных импульсов напряжения на управляющем входе управляемого высокочастотного генератора напряжения частота генерируемого напряжения генератором высокочастотного напряжения

,

где Lk и ck - индуктивность и емкость контура генератора высокочастотного напряжения, c0 - емкость варикапа (управляемого элемента в колебательном контуре генератора) при отсутствии на управляющем входе треугольных импульсов (фиг. 5). При поступлении на управляющий вход генератора высокочастотного напряжения треугольного импульса емкость варикапа уменьшается с c0 до c1, что вызывает увеличение частоты генерируемого напряжения от до на интервале от τи-Δτ до , Fm - максимальное отклонение частоты генерируемого напряжения от несущей частоты в момент времени . Затем на интервале от до τи частота изменяется от до . Тогда набег фазы на интервале от τи-Δτ до τи за счет изменения частоты должен достигать на границе двух элементарных импульсов π (180°).

.

Напряжение фазоманипулированного сигнала Баркера с N=7 на выходе управляемого генератора высокочастотного напряжения принимает вид фиг. 3д. Для сравнения на фиг. 3е. показан идеальный фазоманипулированный сигнал с отсутствием разрывности в моменты изменения фазы (Варакин Л.Е. Системы связи с шумоподобными сигналами. М.: Радио и связь, 1985. 384 с.), с 47, рис 3.12.

Покажем связь Fm с Δτ.

Зависимость изменения емкости варикапа от прилагаемого напряжения за интервале от τи-Δτ до τи при поступлении треугольного импульса (фиг. 5)

.

Тогда частота генерируемого напряжения изменяется на этом интервале по закону

,

где Δc=с01.

Так как , то на интервале τи-Δτ<t<τи

,

где - максимальное отклонение частоты от в момент времени .

В этом случае набег фазы на интервале Δτ за счет изменения частоты

Δϕ=2πFmΔτ.

Следовательно - максимальное отклонение частоты генерируемого напряжения от несущей частоты определяется величиной обратной длительности интервала отводимого на плавное изменение фазы.

Введение в устройство блоков 2, 5 и 6 позволяет сформировать фазоманипулированный сигнал Баркера для N=7 с плавным изменением фазы на интервале Δτ между третьим и четвертым импульсами, пятым и шестым, шестым и седьмым импульсами, при обработке которого на приемной стороне энергетические потери не превышают 6% (Нахмансон Г.С., Суслин А.В. Влияние энергетических потерь при обработке фазоманипулированных сигналов на максимальную дальность действия и точность измерения координат в радиолокационных системах // Известия высших учебных заведений России. Радиоэлектроника. 2015. Вып. 2. С. 51-54).

Предлагаемое устройство может найти применение в качестве генератора фазоманипулированных радиосигналов в системах связи и радиолокации.

Устройство формирования фазоманипулированного семиэлементным кодом Баркера сигнала, содержащее генератор синхроимпульсов, многоотводную линию задержки, сумматор, отличающееся тем, что в него введены линия задержки на длительность, меньшую длительности элементарного импульса, генератор треугольных импульсов, высокочастотный LC-генератор, причем выход генератора синхроимпульсов соединен со входом линии задержки, выход которой подсоединен ко входу многоотводной линии задержки, третий, пятый и шестой выходы которой подсоединены соответственно к третьему, пятому и шестому входам сумматора, выход которого подсоединен ко входу генератора треугольных импульсов, подсоединенного выходом к управляющему входу, при наличии на нем постоянного напряжения смещения, высокочастотного LC-генератора, выход которого является и выходом устройства.



 

Похожие патенты:

Изобретение относится к области беспроводной связи. Раскрыты системы и способы, предназначенные для передачи данных, связанные с конфигурацией антенн передачи.

Изобретение относится к области связи и может найти применение в системах связи, в которых используются шумоподобные фазоманипулированные сигналы. Технический результат - повышение пропускной способности системы связи и ее надежности.

Изобретение относится к области радиотехники и может быть использовано в дискретных каналах радиосвязи, используемых как для энергетически скрытной, так и для высоконадежной передачи сообщений.

Изобретение относится к области радиотехники и может быть использовано в системах радионавигации и радиосвязи, построенных на базе шумоподобных фазоманипулированных сигналов, в которых информация должна быть конфиденциальной.

Изобретение относится к технике цифровой связи и сигнализации и может быть использовано для квазиоптимального асинхронного приема сообщений. Технический результат - упрощение реализации и повышение надежности работы фильтра.

Изобретение относится к технике радиосвязи, в частности к фазоразностным манипуляторам с двукратной фазовой манипуляцией, и может быть использовано в мощных передатчиках в аппаратуре передачи данных.

Изобретение относится к области передачи цифровой информации и предназначено для применения в системах цифровой связи с шумоподобными сигналами (ШПС). Технический результат - повышение скорости передачи цифровой информации.

Изобретение относится к области передачи цифровой информации и предназначено для применения в системах цифровой связи с шумоподобными сигналами (ШПС). Технический результат - повышение скорости передачи цифровой информации.

Изобретение относится к радиотехнике и может быть использовано для повышения помехоустойчивости радиосигналов в системах связи. Технический результат повышение помехоустойчивости радиосигналов в системах связи путем увеличения ширины полосы, занимаемой ими частот.

Изобретение относится к области передачи цифровой информации и предназначено для применения в системах цифровой связи с шумоподобными сигналами (ШПС). Технический результат - повышение скорости передачи цифровой информации.

Изобретение относится к области передачи цифровой информации и предназначено для применения в системах цифровой связи с шумоподобными сигналами (ШПС). Технический результат - повышение помехоустойчивости передачи информации. В способе передачи информации в системах связи с ШПС осуществляют, в том числе, преобразование совокупности информационных символов каждого фрагмента в избыточный символ, преобразование каждого из избыточных символов в избыточную ПСП с введенным в нее временным сдвигом, формирование избыточной ШПС и передачу совокупности всех объединенных по каждому фрагменту сообщений ШПС, при приеме при детектировании принимаются «мягкие» решения (т.е. фактически решения о возможных и предположительных альтернативах принятых символов), после чего на основе применения процедуры обнаружения ошибок из совокупности принятых «мягких» решений выбирается решение, не содержащее ошибок. 2 ил.

Изобретение относится к области радиолокации и предназначено для формирования и обработки радиолокационных модифицированных фазоманипулированных (ФМ) сигналов в радиолокационных станциях. Техническим результатом является формирование модифицированного ФМ-сигнала, имеющего минимальные энергетические потери на передачу, и прием с сохранением одноканального дискретного фильтра с небольшими потерями. В способе осуществляют формирование, усиление и излучение ФМ-сигналов с последующим приемом, фильтрацией и обработкой, при формировании осуществляют деление ФМ-сигнала на три ФМ-импульса, сдвинутых по времени относительно друг друга, при этом два из них (второй и третий) предназначены для формирования узких импульсов, заполняющих провалы в местах инверсии фазы первого ФМ-импульса, для чего первый ФМ-импульс подают на первый сумматор, являющийся общим для трех ФМ-импульсов, с временем задержки t=τ/8, второй ФМ-импульс с поворотом фазы на -90° и третий ФМ-импульс с временем задержки t=τ/4 и с поворотом фазы на +90° суммируют на втором сумматоре, в результате чего на первом сумматоре возникают несколько коротких импульсов, заполняющих провалы в местах инверсии фазы первого (среднего по времени) ФМ-импульса, а принятый сигнал обрабатывают в оптимальном фильтре. 6 ил.

Изобретение относится к технике связи и может быть использовано для передачи и приема информации по скоростным информационным радиолиниям в цифровом виде (символами 1 и 0) с помощью фазоманипулированных сигналов. Достигаемый технический результат - повышение чувствительности приемника без помехозащитного кодирования не менее чем на 20 дБ путем уменьшения требований к отношению сигнал/шум при приеме фазоманипулированных сигналов в режимах QPSK (квадратурная фазовая манипуляция), BPSK (бинарная фазовая манипуляция), APSK (амплитудно-фазовая манипуляция (АФМн)). Модем (модулятор-демодулятор) характеризуется тем, что в модуляторе (на передающей стороне) сигнал передатчика на выходе модулятора подвергается дополнительной фазовой манипуляции на 180° цифровым сигналом типа меандр с периодом, равным длительности цифрового сигнала , а в демодуляторе (на приемной стороне) - деманипуляции на входе демодулятора, устраняющей дополнительную фазовую манипуляцию сигнала передатчика, с последующей узкополосной фильтрацией при полосе пропускания существенно (на порядок и более) меньшей ширины спектра сигнала по первым нулям, после чего сигнал подвергается обработке в режиме QPSK. Приведенный выше энергетический выигрыш обеспечивается при совместном использовании дополнительной манипуляции и узкополосной фильтрации. 2 ил.

Изобретение относится к области связи. Описаны технологии сигнализации смещения мощности для приемников с сетевым подавлением и устранением помех (NAICS). В одном варианте осуществления, например, устройство пользователя (UE) может содержать по меньшей мере один радиочастотный (RF) приемопередатчик, по меньшей мере одну RF антенну и логику, по меньшей мере часть которой выполнена в виде аппаратных средств, причем логика выполнена с возможностью принимать сообщение управления соединением управления радиоресурсами (RRC), содержащее поле RadioResourceConfigDedicated, и выполнять процедуру конфигурирования радиоресурсов в ответ на прием сообщения управления соединением RRC, причем сообщение управления соединением RRC содержит вспомогательную информацию для сетевого подавления и устранения помех (NAICS), которая идентифицирует значение смещения мощности для одной или более передач в UE по физическому нисходящему совместно используемому каналу (PDSCH) обслуживающей соты UE. 4 н. и 21 з.п. ф-лы, 10 ил.

Изобретение относится к радиотехнике и может использоваться в радиолокационных станциях в режимах сопровождения целей для обработки полифазных (p-фазных, p≥2) пачечных фазокодоманипулированных сигналов, кодированных ансамблем из p дополнительных последовательностей длины N=pk, k∈N, N - множество натуральных чисел, по предварительному целеуказанию в ограниченном доплеровском диапазоне частот. Техническим результатом является уменьшение аппаратурных затрат. Устройство содержит регистр сдвига, процессор быстрого Д-преобразования Фурье, блок перекрестных связей, блок весовых коэффициентов, N блоков формирования автокорреляционной функции, каждый из которых содержит p-1 регистров сдвига и p-1 сумматоров комплексных чисел, N пороговых устройств. 1 з.п. ф-лы, 2 ил., 2 табл.
Наверх