Способ получения упрочненных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к получению легких сплавов на основе алюминия с повышенной прочностью. Способ заключается во введении в расплав алюминия лигатуры, содержащей модифицирующую добавку, при одновременном воздействии на расплав ультразвукового поля, причем лигатуру получают в виде цилиндрических рулонных элементов из алюминиевой фольги, на одну из поверхностей которой предварительно наносят электростатическим напылением модифицирующую добавку - порошок оксида алюминия, при содержании порошка оксида алюминия с размерами частиц 1-15 мкм в лигатуре 4,5-5,5 мас. %, а полученные цилиндрические рулонные элементы вводят вертикально в расплав алюминия, нагретый до температуры 720-750°С, при этом массу вводимой лигатуры определяют из соотношения Ме=(0.08÷0.12)МА1, где Ме - суммарная масса цилиндрических рулонных элементов, МAl - масса расплава алюминия. Изобретение направлено на повышение прочности и износостойкости сплава. 2 ил., 1 пр.

 

Изобретение относится к области металлургии, в частности к получению легких сплавов на основе алюминия с повышенной прочностью, и может быть использовано в ракетно-космической, авиационной, автомобильной отраслях промышленности при изготовлении деталей и изделий, обладающих высокими прочностными характеристиками при малом весе.

Известны способы введения упрочняющих частиц путем подачи порошковой шихты в расплав при непрерывной разливке материала. Однако при этом имеется существенный недостаток, заключающийся в том, что при таком способе происходит рост частиц вследствие их коагуляции, причем тем больший, чем меньше размер вводимых в расплав частиц и больше их концентрация [1].

Известны способы получения дисперсно-упрочненных алюминиевых сплавов путем введения в них брикетов из высокопрочных керамических частиц [2] и путем экструзии гранулированных композиций, включающих карбиды и оксид магния [3]. Известен способ получения литого композиционного материала на основе алюминиевого сплава путем формирования на частицах тугоплавкого соединения слоя алюминия и введения полученного порошкообразного композиционного материала в расплав при разливке его в форму [4]. Известно устройство для производства сплавов и композиционных материалов путем введения в матричный расплав мелкодисперсных компонентов с использованием плазмотрона [5].

Все перечисленные способы сложны в техническом исполнении. При использовании наноразмерных порошков, частицы которых обладают избыточной поверхностной энергией, образуются агломераты, которые плохо смачиваются жидким металлом, что препятствуют их введению в расплав. Указанные способы не позволяют разбить агломераты частиц и повысить их смачиваемость.

Наиболее близким по техническому решению к заявляемому изобретению является способ получения упрочненных сплавов на основе алюминия [6], принятый за прототип. Этот способ включает получение лигатуры из смеси порошков алюминия и диборида или карбида титана ударно-волновым компактированием в виде стержней при содержании в лигатуре 5 мас. % порошка диборида или карбида титана с размером частиц (1÷5) мкм и введение полученных стержней в расплав алюминиевой основы, разогретой до 720°С, при одновременном воздействии на расплав ультразвукового поля. Воздействие ультразвукового поля на расплав алюминиевой основы при введении в него стержней лигатуры обеспечивает более равномерное распределение модифицирующей добавки порошка в объеме расплава.

Недостатком данного способа является сложность приготовления лигатур.

Техническим результатом настоящего изобретения является разработка способа получения упрочненных алюминиевых сплавов с повышенной прочностью и износостойкостью.

Для достижения указанного технического результата предложен способ получения упрочненных алюминиевых сплавов, включающий введение в расплав алюминия лигатуры, содержащей модифицирующую добавку, при одновременном воздействии на расплав ультразвукового поля. Лигатуру получают в виде цилиндрических рулонных элементов из алюминиевой фольги, на одну из поверхностей которой предварительно наносят электростатическим напылением модифицирующую добавку - порошок оксида алюминия. Полученные цилиндрические рулонные элементы вводят вертикально в расплав алюминия, нагретый до температуры (720÷750)°С. Содержание порошка оксида алюминия с размерами частиц (1÷15) мкм в лигатуре составляет (4.5÷5.5) мас. %.

Массу вводимой лигатуры определяют по соотношению

Ме=(0.08÷0.12)МAl,

где Ме - суммарная масса цилиндрических рулонных элементов;

МАl - масса расплава алюминия.

Полученный положительный эффект (повышение прочности и износостойкости алюминиевых сплавов) обусловлен следующими факторами.

1. Применение цилиндрических рулонных элементов, изготовленных из алюминиевой фольги, в качестве подложки для нанесения упрочняющих частиц позволяет равномерно ввести необходимое количество упрочняющих частиц в расплав алюминия. Это обеспечивает равномерное смачивание жидким металлом вводимых в расплав частиц.

2. Использование порошка оксида алюминия в качестве тугоплавкой модифицирующей добавки, обладающего высокой температурой плавления (2050°С), позволяет повысить прочностные характеристики алюминиевых сплавов, поскольку Al2O3 является одним из лучших модификаторов [7].

3. Применение электростатического поля для нанесения порошка оксида алюминия позволяет его частицам приобретать и сохранять продолжительное время одинаковый положительный электрический заряд (заряд одной частицы порядка 1018 Кл), который препятствует их коагуляции и образованию агломератов. Процесс электростатического нанесения способствует разбиению уже существующих агломератов [8]. В качестве примера уменьшения размера частиц мелкодисперсного порошка оксида алюминия на Фиг. 1 представлена функция распределения частиц мелкодисперсного порошка оксида алюминия по размерам на поверхности при пневматическом (1) и электростатическом (2) способе нанесения, полученная с помощью оптического анализатора [9].

Приобретенный частицами заряд позволяет им закрепиться на поверхности алюминиевой фольги, откуда затем они попадают в объем расплавленного металла. Известно, что электрический заряд поверхности улучшает смачивание этой поверхности жидкостью, независимо от знака заряда за счет повышения поверхностной энергии частиц [10, 11]. Поэтому при заряжании частиц в процессе электростатического напыления улучшается их смачивание жидким металлом. Смачиваемость частицы, несущей поверхностный электрический заряд, становится больше, чем у незаряженной частицы. Улучшение смачиваемости частиц жидким металлом упрощает введение и обеспечивает равномерное распределение частиц в объеме расплава.

4. Температура алюминиевого сплава (720÷750)°С позволяет в течение (5÷20) с достигать плавления цилиндрического рулонного элемента, избегая агломерирования частиц на поверхности подложки при длительной выдержке. Воздействие ультразвукового поля на расплав алюминиевой основы при введении в него элементов с частицами на поверхности обеспечивает более равномерное распределение модифицирующей добавки в объеме расплава алюминия, что значительно улучшает его прочностные характеристики.

5. Выбранный диапазон диаметров частиц порошка оксида алюминия (1÷15) мкм позволяет оказывать положительное влияние на процесс кристаллизации, сдерживая рост зерен при затвердевании.

6. Заявляемые значения содержания порошка оксида алюминия в лигатуре (4.5÷5.5) мас. % и массы вводимой лигатуры Ме=(0.08÷0.12)МАl определены экспериментально из анализа характеристик модифицированных алюминиевых сплавов и позволяют получить суммарное содержание частиц оксида алюминия в матрице ~0.5 мас. %.

7. Вертикальное введение рулонных элементов в расплав обеспечивает простоту и удобство проведения данной технологической операции.

Пример реализации

Предварительно порошок оксида алюминия со среднемассовым диаметром частиц D43=4.6 мкм напыляли с помощью электростатического пистолета, представленного на Фиг. 2 [12], на поверхность алюминиевой фольги толщиной 0.4 мм. Затем из фольги формировали цилиндрические рулонные элементы диаметром 1 см и длиной 30 см, включающие около 12 слоев фольги.

Полученные таким образом цилиндрические рулонные лигатуры вводили вертикально в расплав алюминия, нагретый в тигле объемом 1 л до температуры 720°С. Соотношение массы вводимой лигатуры к массе расплава составляло МеАl=0.1.

В процессе ввода цилиндрических рулонных элементов на расплав алюминия в тигле в течение (7÷10) минут воздействовали ультразвуковым полем частотой ƒ=17.5 кГц, генерируемым ультразвуковым технологическим аппаратом УЗТА-1/22-0. Амплитуда колебаний рабочего органа аппарата (стержень из тугоплавкого металла, помещенный в тигель с расплавом) составляла (10÷30) мкм. Расплав с введенным модификатором разливали в кокиль и после полного остывания проводили металлографическое исследование образцов полученного материала.

По результатам лабораторного металлографического анализа показано, что введение модификатора (~0.5 мас. %) в расплав алюминия уменьшает средний размер зерен на (30÷50) % от 250 мкм (чистый алюминий в литом состоянии) до (125÷175) мкм (модифицированный материал).

Таким образом, при реализации предлагаемого способа достигается положительный эффект, заключающийся в следующем:

1. Способ позволяет ввести и равномерно распределить тугоплавкие дисперсные частицы упрочняющего порошка в расплав алюминия.

2. Способ дает в результате снижение размеров зерен и, как следствие, повышение прочности и износостойкости легких сплавов на основе алюминия.

ЛИТЕРАТУРА

1. Металловедение, литье и обработка сплавов / под ред. И.С. Полькина. - М.: ВИЛС, 1995. - 294 с.

2. Моисеев В.А. Стацура В.В., Гордеев Ю.И., Летуневский В.В. Способ получения сплава на основе алюминия // Патент РФ №2177047, МПК B22F 9/04, С22С 1/05. Опубл. 20.12.2001.

3. Панфилов А.В., Бранчуков Д.Н., Панфилов А.А. и др. Литой композиционный материал на основе алюминиевого сплава и способ его получения // Патент РФ №2323991, МПК С22С 1/10, С22С 21/00, B22F 3/02, B22F 3/26, В82В 3/00. Опубл. 10.05.2008.

4. Кульков С.Н., Ворожцов А.Б., Ворожцов С.А., Жуков А.С., Жуков И.А., Громов А.А. Способ введения упрочняющих частиц в алюминиевые сплавы // Патент РФ №2425163, МПК С22С 1/10, Опубл. 27.01.2011.

5. Борисов В.Г., Юдаков А.А., Хрипченко С.Ю., Денисов С.А., Зайцев В.Н. Устройство для введения мелкодисперсных компонентов в матричный металлический расплав // Патент РФ №2144573, МПК С22С 32/00, B22D 19/14, B22D 19/16, Опубл. 20.01.2000.

6. Ворожцов А.Б., Ворожцов С.А., Архипов В.А., Кульков С.Н., Шрагер Э.Р. Способ получения упрочненных сплавов на основе алюминия // Патент РФ №2542044, МПК С22С 1/03 (2006.01), С22С 1/06 (2006.01), Опубл. 20.02.2015.

7. Vorozhtsov S.A., Eskin D.G., Tamayo J., Vorozhtsov A.B., Promakhov V.V., Averin A.A., Khrustalyov A.P. The application of external fields to the manufacturing of novel dense composite master alloys and aluminum-based nanocomposites // Metallurgical and Materials Transactions A. - 2015. - Vol. 46. - №. 7. - P. 2870-2875.

8. Банул В.В., Постовалов Г.А., Степус П.П. Распылитель для нанесения порошкообразных материалов // Патент РФ №226983, МПК В05В 5/025 (2006.01), В05В 5/08 (2006.01)/ Опубл. 10.02.2006.

9. Степкина М.Ю., Кудряшова О.Б., Муравлев Е.В. Использование электрического поля для очистки поверхностей // Ползуновский вестник. - 2015. - Т. 2, №4. - С. 95-99.

10. П.Ж. де Жен/ Смачивание: статика и динамика // УФН. - 1987. - №151. - 619-681 с.

11. Сумм Б.Д., Горюнов Ю.В. Физико-химические основы смачивания и растекания. - М: Химия, 1976. - 232 с.

12. Степкина М.Ю., Кудряшова О.Б., Антонникова А.А. Экспериментальное исследование дисперсности заряженных частиц в потоке и на поверхности при электростатическом распылении // Наука. Инновации. Технологии. - 2016. - №3. - С. 89-95.

Способ получения упрочненных алюминиевых сплавов, включающий введение в расплав алюминия лигатуры, содержащей модифицирующую добавку, при одновременном воздействии на расплав ультразвукового поля, отличающийся тем, что лигатуру предварительно получают в виде цилиндрических рулонных элементов из алюминиевой фольги, на одну из поверхностей которой наносят электростатическим напылением модифицирующую добавку в виде порошка оксида алюминия при содержании в ней порошка оксида алюминия с размерами частиц 1-15 мкм 4,5-5,5 мас. %, а полученные цилиндрические рулонные элементы вертикально вводят в расплав алюминия, нагретый до температуры 720-750°C, при этом массу вводимой лигатуры определяют из соотношения

Me=(0,08-0,12)MA1,

где Ме - суммарная масса цилиндрических рулонных элементов,

МА1 - масса расплава алюминия.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к спеченным материалам на основе меди, которые могут быть использованы для изготовления деталей машин, работающих в условиях трения.

Изобретение относится к цветной металлургии, в частности к способам изготовления стандартных образцов состава лигатур на основе алюминия с аттестованным содержанием одного или нескольких легирующих химических элементов.

Изобретение относится к литейному производству, в частности к получению кремниевых профильных отливок для мишеней магнетронного распыления. Шихту полупроводникового поликристаллического кремния расплавляют в графитовом тигле, который перемещают вертикально в полости нагревателя.

Изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью.

Изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью.
Группа изобретений относится к получению композиционного материала, содержащего металлическую матрицу и упрочняющие наночастицы. Способ включает подготовку смеси исходных материалов и ее механическое легирование.

Изобретение относится к изготовлению металлосплавных катодов для приборов СВЧ-электроники. Способ получения катодного сплава на основе металла платиновой группы и бария включает прессование навески порошка металла платиновой группы, очистку поверхности бария от оксидов, совместную дуговую плавку прессовки и бария в атмосфере аргона с использованием нерасходуемого вольфрамового электрода.

Изобретение относится к электронной технике и может быть использовано для изготовления эффективных термо- и вторично-эмиссионных катодов. Путем плавки получают интерметаллид Рd5Ва, размалывают в атмосфере инертного газа или СО2 с получением порошка, полученный порошок смешивают с порошком палладия и проводят механоактивацию полученной смеси в планетарной или вибромельнице в течение 5-15 минут.

Изобретение относится к области металлургии и может быть использовано для получения модифицированной лигатуры неодим-железо для постоянных магнитов неодим-железо-бор.

Группа изобретений относится к горячему изостатическому прессованию металлургического порошкового материала. Торцевая пластина для контейнера содержит центральную область и основную область, простирающуюся радиально от центральной области и заканчивающуюся в углу по периметру торцевой пластины кромкой контейнера.
Изобретение относится к получению дисперсно-упрочненного нанокомпозитного материала на основе алюминия. Способ включает введение лигатуры в расплав матрицы на основе алюминия при одновременном воздействии на расплав ультразвукового поля. Лигатуру готовят в виде компактированных стержней из равномерно перемешанной смеси, состоящей из 90 мас.% порошка алюминия микронных размеров и 10 мас.% нанопорошка алмаза с диаметром частиц 4÷6 нм, полученные стержни вводят в расплав матрицы на основе алюминия с обеспечением содержания нанопорошка алмаза в получаемом нанокомпозитном материале 0,1÷0,5 мас.% и выдерживают в нем не менее 10 мин при одновременном воздействии на расплав ультразвукового поля интенсивностью 20÷22 Вт/см2. Обеспечивается повышение прочности, твердости и пластичности нанокомпозитного материала. 1 пр.

Изобретение относится к получению материала на основе алюминида никеля. Способ включает приготовление экзотермической шихты путем смешивания порошков алюминия, оксида никеля и по крайней мере одной легирующей добавки и инициирование в экзотермической шихте металлотермической реакции с обеспечением восстановления оксидов и образования алюминида никеля. Экзотермическую шихту готовят с добавлением балластной добавки, выполняющей роль флюса, в виде фтористого кальция. Порошок алюминия используют в избытке относительно стехиометрического соотношения порошков в смеси. В качестве легирующей добавки используют оксиды хрома, или оксиды молибдена, или оксиды вольфрама, или оксиды титана в количестве не более 15 мас.%. Металлотермическую реакцию в экзотермической шихте проводят без внешнего подогрева в реакторе или на открытом воздухе с получением материала на основе алюминида никеля в виде слитка. Обеспечивается уменьшение количества технологических циклов и повышение чистоты и выхода материала на основе алюминида никеля. 1 табл., 3 пр.

Изобретение относится к порошковой металлургии. Способ получения металлического порошка включает выбор исходного сырья и его измельчение с контролем удельной поверхности полученного порошка, при этом определяют удельную поверхность исходного сырья, а выбор сырья и его измельчение производят в соответствии с условием: , где Sуд.с - удельная поверхность исходного сырья (м2/г), Sуд.п - удельная поверхность полученного порошка (м2/г). Обеспечивается повышение качества порошков, выражающееся в стабилизации гранулометрических свойств, уменьшении морфологического разнообразия частиц, увеличении насыпной плотности и улучшении прессуемости, снижении пирофорности и чувствительности к трению. 4 з.п. ф-лы, 2 табл., 4 ил., 6 пр.

Изобретение относится к области металлургии, в частности к производству литейных жаропрочных углеродсодержащих и безуглеродистных сплавов на никелевой основе, и может быть использовано для литья лопаток газотурбинных двигателей. Способ производства литейных жаропрочных сплавов на никелевой основе включает расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование полученного расплава в две стадии. На первой стадии рафинирования вводят окислитель в количестве, превышающем необходимое для окисления углерода до его диоксида в 2,0-8,5 раза, в атмосфере инертного газа при давлении 20-150 мм рт.ст., затем проводят раскисление расплава и удаляют газ, после чего осуществляют вторую стадию рафинирования, на которой вводят редкоземельные металлы в количестве, превышающем в 2,0-20,0 раз количество углерода, оставшегося в расплаве после первой стадии рафинирования, а после второй стадии рафинирования в расплав вводят хром с активными легирующими элементами. После проведения первой стадии обезуглероживающего рафинирования на поверхность расплава присаживают шлаковую смесь, состоящую из, мас.%: 35-65 BaO, 15-30 BaF2, 15-30 BaCl2, 5-15 NiO, в количестве 0,3-0,8 мас.% от массы расплава, в 2-3 приема с выдержкой 5-15 мин после каждой присадки, а в качестве активных легирующих элементов, вводимых в расплав с хромом, используют титан, алюминий и по крайней мере один элемент, выбранный из тантала, углерода, ниобия и гафния. Получают стабильные результаты по содержанию фосфора в расплаве менее 0,007 мас.%, вследствие чего повышается долговечность сплавов при рабочих температурах. 1 табл., 14 пр.

Изобретение относится к получению интерметаллидного ортосплава на основе титана. Способ включает перемешивание порошков титана и ниобия с обеспечением механического легирования порошка титана порошком ниобия в течение 8-24 ч, затем проводят механическое перемешивание легированного ниобием порошка титана с порошком алюминия. Полученную порошковую смесь компонентов сплава наносят на металлическую платформу слоями толщиной 35-150 мкм с лазерным плавлением слоев постоянным непрерывным лазером мощностью 400-1000 Вт со скоростью сканирования 300-1000 мм/с. Обеспечивается высокая химическая однородность интерметаллидного ортосплава на основе титана. 2 з.п. ф-лы, 3 пр., 1 табл.

Изобретение относится к получению композиционного металломатричного материала, армированного сверхупругими сверхтвердыми углеродными частицами. Способ включает приготовление смеси порошков металла и фуллеритов и ее прессование при давлении 5-8 ГПа и температурах 800-1000°С с обеспечением образования сверхтвердых углеродных частиц. Причем перед приготовлением смеси порошков металла и фуллеритов проводят механоактивацию фуллеритов. Обеспечивается увеличение микротвердости и модуля Юнга армирующих углеродных частиц, что повышает износостойкость композитов при сохранении или уменьшении коэффициента трения. 1 з.п. ф-лы, 1 ил., 1 табл., 1 пр.
Изобретение относится к металлургии и может быть использовано при производстве лигатур на основе меди, никеля, магния и алюминия. При производстве лигатуры шихтовые материалы в виде гранул чистых металлов размером от 1 до 10 мм, таких как никель, медь и магний смешивают в требуемых пропорциях и подвергают брикетированию, при этом размер гранул каждого компонента уменьшается пропорционально увеличению температуры его плавления. Дополнительно в состав лигатуры вводится алюминий в виде гранул размером от 2 до 5 мм. Количество алюминия составляет от 0,1 до 0,2% от общей массы металлов, входящих в состав лигатуры. Изобретение позволяет снизить время растворения лигатуры в расплаве, повысить усвояемость компонентов, снизить затраты на производство лигатуры. 3 пр.
Изобретение относится к изготовлению твердосплавных гранул, включающий смешивание порошков карбида вольфрама и кобальта, пластифицирование полученной смеси с использованием растворенного в бензине каучука, прессование, размол, ситовое разделение на фракции с отсевом гранул размером до 400 мкм и не менее 130 мкм, смешивание отсеянных гранул с порошком более мелкодисперсной инертной не спекаемой засыпки, отжиг, выделение спеченных гранул путем ситового отсева инертной порошковой засыпки. Полученные спеченные гранулы загружают в аттритор вместе с порошком карбидообразующего металла и обрабатывают в среде инертного газа с промежуточным удалением загрязненного порошка, а затем отжигают в вакууме при температуре 1050-1100°C в течение 2-4 ч с получением твердосплавных гранул с карбидным слоем на поверхности. Обеспечивается получение твердосплавных гранул с повышенной износостойкостью и твердостью, которые могут быть использованы в качестве износостойкого наполнителя связок в абразивном инструменте для обработки материалов с высокой, более 65 HRC, твердостью. 1 пр.

Изобретение относится к области металлургии, а именно к способам получения листов из алюминиевых сплавов на основе системы алюминий-магний-марганец, применяемых для изготовления ряда ответственных конструкций в судостроении, авиационной и ракетной промышленности, в вагоностроении для скоростных поездов, а также для изготовления корпусов автомобилей. Способ включает кристаллизацию слитков со скоростью не менее 100 К/с с температурой разливки 700-720°С, гомогенизационный отжиг при температуре 360°С в течение 6 ч, после чего осуществляют прокатку при комнатной температуре с суммарным обжатием 80% с последующим рекристаллизационным отжигом при температуре 320°С в течение 2 ч. Способ обеспечивает получение листов с однородной мелкозернистой структурой и равномерным распределением дисперсных наноразмерных частиц. 1 пр., 1 табл.

Изобретение относится к производству алюминия, в частности к получению титансодержащих алюминиевых сплавов и лигатур, и может быть использовано в алюминиевой, авиационной, автомобильной и других отраслях промышленности, изготавливающих модифицированные деформируемые и литейные алюминиевые сплавы и изделия из них. Способ получения модифицирующей лигатуры Al-Ti включает взаимодействие пористого кускового титанового сырья с перегретым алюминиевым расплавом, при этом в качестве пористого кускового титанового сырья используют титановую губку и/или брикетированную титановую стружку, весовое отношение пористого кускового титанового сырья к алюминию выдерживают в пределах (0,38÷0,58):1, а уровень перегретого алюминиевого расплава поддерживают выше уровня пористого кускового титанового сырья, при этом методом самораспространяющегося высокотемпературного синтеза получают концентрированный титансодержащий сплав алюминия с содержанием титана 27,5-36.7 мас. %, полученный титансодержащий сплав охлаждают и измельчают до содержания фракции минус 10 мкм не менее 95%, после чего измельченные частицы сплава вводят в алюминиевый расплав с получением модифицирующей лигатуры или наносят на поверхность алюминиевой проволоки или полосы с получением модифицирующей лигатуры. Изобретение направлено на получение лигатуры алюминий-титан с равномерно распределенными в объеме лигатуры частицами алюминида титана. 2 н. и 8 з.п. ф-лы, 2 ил., 2 табл., 2 пр.
Наверх